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Abstract: Printed circuit board (PCB) defect detection is critical for ensuring the safety of electronic
devices, especially in the space industry. Non-reference-based methods, typically the deep learning
methods, suffer from a large amount of annotated data requirements and poor interpretability. In
contrast, conventional reference-based methods achieve higher detection accuracy by comparing with
a template image but rely on precise image alignment and face the challenge of fine defects detection.
To solve the problem, we propose a novel Edge-guided Energy-based PCB Defect Detection method
(EEDD). We focus on the salient edge characteristic of PCB images and regard the functional defects as
contour differences and then propose a novel energy measurement method for PCB contour anomaly
detection. We introduce the energy transformation using the edge information of the template and
test image, then Speeded-Up Robust Features method (SURF) is used for image alignment, and finally
achieve defect detection by measuring the energy anomaly score pixel by pixel with the proposed
energy-based defect localization and contour flood fill methods. Our method excels in detecting
multi-scale defects, particularly tiny defects, and is robust against interferences such as non-finely
aligned images and edge spurs. Experiments on the DeepPCB-A dataset and our high-resolution
PCB dataset (HDPCB) show that the proposed method outperforms state-of-the-art methods in PCB
defect-detection tasks.

Keywords: printed circuit board; tiny defect detection; edge feature; energy transformation; energy
anomaly score; contour flood fill

1. Introduction

A way to achieve miniaturization and low power consumption in an electronics
system is to use monolithic integration technology and flexible printed circuit board (PCB)
technology. PCB is the carrier for the electrical interconnection of electronic components,
the quality of which plays a significant role in sensors, magnetorquers, gyroscopes of
microsystems and nano satellites. Thus, PCB defect detection is crucial for ensuring the
safety performance and survival time of electronic systems. Their manufacturing process
produces cosmetic and functional defects [1]. The latter may pose serious effects on the
circuit’s performance. Thus, it is of significance to detect those defects for ensuring the
reliability and safety of electronic products. The six major functional PCB defects, including
pin-hole, copper, mousebite, spur, open circuit and short circuit, are presented in our
HDPCB dataset as well as on the DeepPCB dataset [2], as shown in Figure 1. The red lines
sketch the edge of defects, which are also the detection results of this work. Among the
conventional PCB inspection methods, manual inspection is inefficient and prone to false
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detection, while contact-based electrical testing [3] may cause damage to the PCB. Thus,
these methods have been replaced by non-contact automatic optical inspection (AOI)
methods, which are based on images and use image processing algorithms to detect defects.
We observe that functional defects can be regarded as shape or contour differences between
the actual and the ideal circuit structure in images, resulting from the increase or decrease of
copper material on PCB. Therefore, this work mainly aims at solving the defect localization
problem using important image edge information.

Figure 1. Main types of functional defects on our realistic high-resolution HDPCB dataset (copper in
brown and board in dark green) and synthetic DeepPCB dataset (copper in white and board in black).
The detection results of our energy-based method sketch the contours of defects in red.

Image-based methods can be mainly divided into two categories: non-reference
methods and reference methods [1]. The latter can achieve more accurate defect detection
but have strict requirements for image alignment. Non-reference methods, represented by
deep learning methods [2,4–7], use algorithms such as the classic object detection [8–10] to
directly detect defects by training a predictive model to learn the data distribution with a
large number of positive or negative data. However, it faces challenges such as the few-shot
problem, small object detection and poor interpretability, resulting from the diversity of
defects and their unknown and subjective characteristics. Once the standard of defect
changes, it needs to train the model again to adjust to the new conditions. Conversely,
reference methods can achieve more accurate detection results with more prior information.
They compare the test image with a template image to find differences and identify defects.
The template image can be either a real defect-free image or a CAD design image. However,
the effect of reference methods is highly dependent on image alignment. Thereby, strict
image alignment is needed for high defect-detection accuracy.

The existing image-alignment methods can be generally categorized into pixel-based,
frequency domain-based and feature-based. Among them, feature-based methods are more
mature and widely used. They usually use Scale-Invariant Feature Transform (SIFT) [11],
Speeded-Up Robust Features (SURF) [12], Oriented FAST and Rotated BRIEF (ORB) [13] to
extract corner points, followed by feature matching and transform estimation. In this work,
we use SURF for image alignment because it achieves higher accuracy than ORB while
solving the drawbacks of high computational complexity and time consumption of SIFT.
SURF finds the feature points by Hessian matrix polarization, then describes the feature
points by Haar wavelet, calculates the main direction of the feature points and generates
the feature description. It provides excellent performance, ensuring the accuracy of PCB
defect detection later.

The existing reference-based defect-detection methods cannot address our high-
resolution defect image problem well. Conventional defect-detection methods generally
find the shape differences between the test image and the template image to locate PCB
defects through image subtraction or exclusive OR (XOR) method. However, these methods
rely on strict image alignment, making them vulnerable to the following conditions and
having poor robustness: (1) images that are not strictly aligned, (2) subtle production
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deviations and (3) edge spurs caused by image segmentation. We found that the functional
defects can all be represented as image contour anomalies.

Through observation and analysis, we found that PCB images have salient edge
features. More importantly, functional defects can be viewed as contour anomalies, as pre-
sented in Figure 1. Specifically, they are reflected as either deviation in existing contours or
contour increase or decrease. Therefore, studying how to use edge information effectively
is not only more beneficial for detecting defects, but may also be able to solve the problems
caused by edge spurs. However, there are few edge-guided defect-detection methods.
An existing method compared the distance sequences of the edges through barycenter
calculation and circular correlation to located defects, but the barycenter could easily be
influenced by the defect contours, which decrease the detection accuracy.

To leverage the valuable information of the edge, we propose to find an energy expres-
sion method to represent the energy of each pixel in the image for similarity measurement
between template and test edges. The energy distribution, which we call Energy Map,
is obtained from the template edge and then viewed as a standard to measure the error
between the test edge and the template edge. It assigns an energy value to any point, where
the energy is lowest at the edge and increases as further away from the edge. Thereby,
when given any point of the test image, we can obtain its energy value relative to the
template image to measure the similarity between the images. The higher the energy value
of a point, the higher the anomaly score, and the higher the possibility of being judged
as a defect. In this way, with the Energy Map, we can subtly achieve defect detection by
measuring the anomaly energy values.

In this study, we propose an edge-guided energy-based high-precision PCB defect-
detection method. Firstly, we propose an edge-guided energy transformation module
(EET) to calculate the Energy Map of the template image. Secondly, we introduce SURF
to align the test image and then sample edge points of the aligned test image. Thirdly,
Energy Map is used to assign energy values to the aligned edge points through coordinate
corresponding. In this way, the task is transformed into a point cloud energy measurement
problem. In this way, we can use the inconsistency between the images, i.e., the energy
anomaly region, for defect detection. Finally, we propose an edge-guided energy-based
defect-detection module (EEDD) for defect localization. Specifically, the energy-based
defect-detection method consists of the basic defect localization method, contour flood fill
method and sliding-window contour flood fill method for defect contour refinement.

The proposed energy-based method addresses the challenges above well with the
following advantages: the energy-based defect-detection method (1) addresses the problem
of diversity and unknown numbers of defects without prior training, which relies on a
large amount of annotated data, and in particular, excels in detecting tiny defects thanks to
the pixel-by-pixel comparing and (2) is highly interpretable, enabling flexible adjustment of
defect criteria according to different production needs, solving the problem of subjectivity
in the definition of defects. In this way, it is more resistant to edge spurs and non-finely
aligned images.

The main contributions are as follows:

1. We propose a novel edge-guided energy-based defect-detection framework, which
introduces the Energy Map through energy transformation, and then transforms the
functional defect-detection problem into a pixel-by-pixel edge point energy anomaly
measurement problem;

2. We propose a novel edge-guided energy-based sliding-window contour flood fill
method for robust defect contour refinement;

3. We made augmented synthetic DeepPCB-A datasets through geometric transforma-
tion which may cause non-finely aligned interferences for defect detection and realistic
high-resolution HDPCB datasets containing multi-scale defects, and experiments veri-
fied the effectiveness and robustness of our method.
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2. Related Work

Edge-guided Defect Detection. Conventional PCB detection methods are usually
more interpretable in comparison to deep learning algorithms. They start by analyzing the
causes and forms of defects theoretically, which can better meet the challenge of subjectivity
in defect definition. At the feature-extraction level, conventional methods can be divided
into three categories: texture-based, color-based and shape-based methods, which are more
widely used since PCB images have distinct structural features. These methods commonly
use algorithms such as morphological methods, edge detection [14], Hough transform [15]
and Fourier shape descriptors to describe the boundary characteristics of objects. Most
existing PCB defect-detection methods achieve defect localization through subtraction or
XOR operations [1,16] to find out the shape differences between two images. By analyzing
PCB functional defects, we found that they can be further regarded as anomalies of the
edge. Unfortunately, we found that there is little research on edge-based defect detection.
A method proposed to locate defects by finding the differences between the barycenter-edge
points distance sequences of the template and test image using the circular correlation
theorem. However, it [1,16] relies too heavily on the centroid calculation which can be
easily influenced by defect contour points, leading to defect-detection errors and poor
anti-interference ability.

Our proposed defect-detection algorithm based on edge-guided template Energy
Map. In this way, we avoid the impact of defect contour points on the centroid calcula-
tion that leads to transmission errors, thus improving the accuracy and robustness and
outperforming conventional methods.

Energy-based Measurement. In this paper, energy is a description of the image
similarity, specifically, the error between edges. Distance is one of the effective evaluation
metrics to express energy, with which we can easily achieve defect detection through energy
measurement. The common distances includes Euclidean distance, Manhattan distance,
Chamfer distance, Mahalanobis distance, cosine similarity, etc. Euclidean distance is the
most common distance. It measures the straight-line distance between two points in space,
which is simple and intuitive. Manhattan distance, also known as city block distance,
is the distance between two points along the shortest path of a lattice-like network and
is more applicable to path-planning problems. Chamfer distance calculates the distance
from each point to its nearest neighbor, accumulates and averages these distances to
measure the overall shape difference between two point clouds, which is widely used
in point cloud matching, 3D reconstruction tasks. Mahalanobis distance is based on the
covariance matrix, which considers the correlation between features and is more suitable
for measuring the difference between high-dimensional data. Cosine similarity is used to
measure the similarity between vectors by calculating the cosine of the angle between two
vectors to measure the similarity between them and is suitable for similarity comparison of
high-dimensional data.

In this paper, we focus on the distance between edge points of images. Therefore,
Euclidean distance is more applicable to the case. Based on this, we introduce an Euclidean
distance transform method, which uses the edge information of the template image to
obtain the ideal energy distribution map of all points, thus avoiding the repeated distance
calculation when detecting multiple defect images corresponding to the same template and
greatly improving the efficiency of industrial detection.

3. Methods

We propose an edge-guided energy-based PCB defect-detection method and the
overview is shown in Figure 2. The process begins with the input of the test image It and
a reference template CAD image Ir. Then, the aligned test image I′t is obtained through
the Image Alignment module. Furthermore, segmentation and edge detection are used
to obtain the test contour image and template contour images Cr. Cr is then used to
calculate the Energy Map Er in the Energy Transformation module. Meanwhile, the test
edge point cloud Pt is sampled from the test contour image, and then each point can obtain
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an energy value from the template Energy Map through coordinate correspondence. Then,
in the Energy-based Defect Detection module, the energy value of the target edge point is
thresholded for defining anomalies. At this time, the energy value of the template Energy
Map Er can be viewed as the anomaly score of the target edge point ASt, which can be used
to compare the contour difference pixel by pixel to obtain the defect-localization result of
test image Dt.

Figure 2. Overview of the edge-guided energy-based PCB defect-detection method, including edge-
guided energy transformation module (EET), image alignment module and edge-guided energy-
based defect-detection module (EEDD).

This paper proposes a novel edge-guided energy-based PCB defect-detection method,
encompassing three modules: Edge-guided Energy Transformation (in Section 3.1), Image
Alignment and Edge-guided Energy-based Defect Detection (in Section 3.2). In the Image
Alignment module, we use SURF since its better alignment performance in both accuracy
and operation speed in the defect-detection task. The overview is shown in Figure 2.

3.1. Edge-Guided Energy Transformation

We propose an edge-guided energy transformation method (EET) to represent the
energy distribution of points. Then, when given any point of the test image, we can
obtain its energy value in the template image through coordinate position to measure
the similarity.

We first extract the contours of the input images by semantic segmentation and edge
detection [14], to distinguish all pixels into edge points and flat points. In particular, we
found that using Euclidean distance transformation (EDT) [17], we can achieve the energy
transformation subtly and quickly. The distance between any point and the nearest edge
point in the template image is calculated through EDT, which we call Energy Map. In this
map, any pixel is assigned an energy value. It is noteworthy that distance transformation is
one way to represent the Energy Map, which can also be realized using other metrics or
transformations. We define the edge points as e and the remaining flat points as p. Given
the coordinate of any point, we can quickly and easily obtain the corresponding energy
value with the Energy Map. The selection of the nearest edge point and the principle
of calculating the energy value are shown in Figure 3. The energy at the edge is zero,
as visualized darkest in the image. With increasing distance from the edge, the energy
gradually increases and becomes brighter.

Here, we use the Euclidean distance transformation method to calculate the energy
value of the arbitrary point. First, we review the one-dimensional distance conversion
method. Let G be a one-dimensional grid and f : G −→ R be the grid sampling function.
We define the one-dimensional distance transformation of f as D f : G −→ R. In this work,
the Euclidean distance is utilized as the metric between edge points e and flat points p,
denoted as d(e, p). The distance transformation aims to find the nearest edge point for any
flat point, assigning the flat one an energy value, which is represented by a function f (e),
and then we calculate the distance D f (p) from the flat point p to the corresponding nearest
edge point e. The Euclidean distance transformation of f is calculated as Equation (1).

D f (p) = min
p∈G

(d(e, p) + f (e)) (1)
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Figure 3. Illustration of Energy Map calculation principle. (a) Template contour. (b) Template Energy
Map. (c) A local image of (b). Let the upper left corner of (c) be the coordinate origin. (c) shows
the selection of the nearest contour point corresponding to the point (0, 0) with coordinates and the
principle of calculating the energy value. The further away from the edge, the higher the energy
value, which is brighter as visualized.

In this paper, we use two-dimensional distance between a flat (x, y) point to the nearest
edge point (x′, y′) to express the its energy. Then we calculate the two-dimensional distance
transform for our edge images under the squared Euclidean distance by Equation (2).

D f (x, y) = min
x,y

((
x− x′

)2
+

(
y− y′

)2
+ f

(
x′, y′

))
(2)

Since the distance relationship between the two dimensions x and y is independent of
an image. Therefore, we can obtain the distance transform of the two-dimensional distance
transform by first calculating the one-dimensional distance transform of each column of the
grid D f|x

(y) by Equation (1) and then calculating the one-dimensional distance transform
of each row based on that. In this way, Equation (2) can be rewritten as Equation (3).

D f (x, y) = min
x

((
x− x′

)2
+D f |x (y)

)
(3)

where D f|x
(y)) is a one-dimensional distance transform of f restricted to the column

indexed by x. Thus, the Energy Map, i.e., the distance distribution map, can be obtained by
calculating Equation (4).

E = min
x

((
x− x′

)2
+D f |x (y)

)
(4)

here, the Energy Map E of the template image is derived, which is a significant reference
for subsequent defect-detection tasks.

3.2. Edge-Guided Energy-Based Defect Detection

A segment consisting of all adjacent defective points in a contour is called a defective
segment Sa. We first propose a novel edge-guided energy-based defect localization method
to find out the fragments Sn ⊆ Sa by defining an adjustable threshold in Section 3.2.1. All
the energy values of points in the Sn exceed the threshold. We do this to solve the problem
resulting from the images not being finely aligned. However, it results in a new problem
that the defect fragments Sn ⊆ Sa may be not the incomplete defect contour. Therefore, we
further propose a novel edge-guided energy-based contour flood fill method that enables
us to obtain Sa through Sn according to the continuity of edge defects in Section 3.2.2.
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3.2.1. Edge-Guided Energy-Based Defect Localization

We found that the functional defects, such as pinhole, copper, mousebite, spur, open
circuit, short circuit and other deviations, have distinct edge features, which can be regarded
as differences between the target and template contour. To take advantage of this character-
istic, this paper proposes an edge-guided energy-based defect-detection method (EEDD)
based on the energy-based alignment result. The method transforms functional defects
localization into a point cloud energy anomaly measuring problem by energy thresholding.

The innovation of our algorithm is using the energy measuring method to replace the
conventional subtraction and exclusive OR (XOR) detection method. The core concept is
depicted in Figure 4. We propose to further localize the defects based on the energy values
of the transformed point cloud obtained from the energy-based alignment outcome, where
most energy values have been decreased to zero. By defining a threshold value to confirm
whether a point belongs to a defect, the energy value in the template Energy Map Er can be
considered to be the anomaly score of the target contour point ASt. The higher the energy
value of a point, the higher the abnormal score, and the higher the possibility of being
judged as a defect. If the anomaly score exceeds a certain value or falls within a specific
range according to a specific standard, the pixel can be considered one point of a defect.
The proposed method is highly interpretable, as shown in Figure 4. By adjusting the energy
threshold T, it is easy and flexible to fine-tune and adjust different industrial standards and
production requirements. Setting threshold value enables our approach to overcome issues
such as image misalignment or edge spur resulting from the production process or image
pre-processing, and finally achieve higher accuracy and stronger robustness.

Figure 4. Illustration of the edge-guided energy-based defect-detection method. (a,b) show the
overlay effect of the template and the target edge on the template Energy Map, respectively. (c) shows
the visualization of the energy values of the target edge points. (d–f) show the different defect-
detection results with different threshold values.

3.2.2. Edge-Guided Energy-Based Contour Flood Fill Method for Defect Refinement

We obtain a subset of the complete defect contour points, the energy values of
which are greater than a threshold T by the energy-based defect localization method
in Section 3.2.1, as shown in Figure 5b.
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Figure 5. Illustration of the edge-guided energy-based contour flood fill method. (a) Template contour.
(b) Localization results in a defect contour. T denotes the threshold for the energy-based detection
method. Arrow indicates the direction of flooding. (c) The result of the energy-based contour flood
fill method.

The principle of the proposed edge flood fill method is as follows. The point with
the highest energy on the defect fragment Sn is taken as the starting point, i.e., the seed
point, and then backtrack along the contour to both ends. During the backtracking process,
the energy value of the flooding point, i.e., the growing point, is expected to decrease
gradually until it no longer decreases. At that point, we obtain the complete defect fragment
Sa, as shown in Figure 5c. Our proposed one-dimensional flooding method is expressed by
Equation (5).

Pn =

{
1, En < En−1
0, En = En−1

(5)

where Pn denotes the probability of the current contour point n that is included in the
defect fragment. When the energy value of the current contour point En is less than that
of the previous contour point En−1, it indicates that the current point n is a defect point,
i.e., the probability is 1. When the energy of the current contour point En is equal to the
energy of the previous contour point En−1, it means that the current point is not a defect
point, i.e., the probability is 0.

However, in practice, defects are often irregular. The overall change trend of energy
during defect contour retracing is decreasing, but the energy between consecutive points
is not strictly monotonically varying; it may fall and rise at times. Therefore, we propose
the concept of a sliding window, as shown in Figure 6b. If the overall trend is decreasing
within a window, the flooding operation is continued until it tends to be stable. Then finally
we obtain the complete defect contour, as shown in Figure 6c.

Figure 6. Illustration of the edge-guided energy-based sliding-window contour flood fill method.
(a) Template contour. (b) Localization results in a defect contour. T denotes the threshold for the
energy-based detection method. Arrow indicates the direction of flooding. W is a sliding window,
in which although the energy between consecutive points is not strictly monotonically varying but
the overall change trend of energy is decreasing along the direction of flooding. (c) The refined result
of the energy-based contour flood fill method with sliding window.
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If the energy of the current point En in the flooding process is lower than the energy
value of a point En−s that occurs before a step length s along the traceback path, we could
consider the energy trend is still decreased. In this way, the current point is considered
a defective point, i.e., its probability Pn of being judged as defective is 1, which can be
expressed as Equation (6).

Pn =

{
1, En < En−s
0, En ≥ En−s

(6)

4. Experiments
4.1. Datasets
4.1.1. DeepPCB Dataset

To simulate the real image acquisition situation, we performed geometrically trans-
formed image enhancement on the existing paired DeepPCB dataset. Our proposed method
was evaluated by measuring the defect-detection metrics to compare the effectiveness of the
proposed method with several conventional alignment methods and detection methods.

The DeepPCB dataset [2] consists of 1500 pairs of 640 × 640 PCB images containing
six types of defects, such as pinhole, copper, mousebite, spur, open and short, as can be
seen in Figure 1. Each pair includes a defect-free template image and a defective test image
with approximately 3 to 12 defects. We made the DeepPCB-A dataset by augmenting the
500 image pairs in the test set divided by the original authors with a random geometric
transformation. We randomly rotated and translated 480 images, and the remaining
20 images were selected for translation only. The details are shown in Table 1, where tx, ty
indicate the horizontal and vertical offset of the image, respectively. We randomly selected
a possible minor translation within 2 percent of image size and rotation angle between 2 to
5 degrees on the original test image x ∈ RW×H to obtain the transformed image x′. Then we
performed a central crop on the paired template image, test image and enhanced test image.
Then we obtained 512 × 512 template images XTemplate, test images XTest and transformed
test images X′Test, respectively, with approximately 3 to 10 defects retained in each pair. We
altered the ground truth of the bounding boxes of defects correspondingly. To evaluate
defect localization rather than classification, we used the F1-score [18] of a single category
of defect detection in the experiments.

Table 1. Transformation details and composition of 500 augmented images of DeepPCB (DeepPCB-A)
dataset, 4% for random translation (t) only and 96% for rotation (R) and translation.

Transformation Transformation Details DeepPCB-A
Composition

t (tx ± 0.02*W, ty ± 0.02*H) 20(4%)
R&t ±2° < R < ±5°, (tx ± 0.02*W, ty ± 0.02*H) 480(96%)

4.1.2. HDPCB Dataset

We presented the HDPCB dataset comprising a billion-pixel high-resolution paired
PCB template and test images covering 100 PCB patterns. The weight and height of the
images are about 8300 px and 26,000 px, which produce the following characteristics of
the dataset: Firstly, different PCB patterns may consist of multi-scale sub-units, which
cause the varying numbers of sub-units, i.e., the massive repetitive features in a high-
resolution image. That may cause some problem for the commonly used feature-based
image alignment methods and, once the images are not finely aligned, the reference-based
defect-detection methods would not perform well. Secondly, our data are RGB images,
and image segmentation is needed to further obtain the edge information, which may
cause some edge spurs. Moreover, the production errors are common. That could cause
a subtle offset between different test images and the standard images around the edge
region. Thirdly, high resolution increases the possibility of multi-scale defects, varying
from a few pixels to several hundred pixels, which poses certain challenges to detection for
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some defect-detection methods. Last but not least, unlike the manually created synthetic
DeepPCB dataset, our realistic HDPCB dataset contains rich styles of defects. They may be
more irregular and some of them may be similar with some defect-free PCB elements.

4.2. Results on DeepPCB-A Dataset

Reference-based defect-detection methods have strict requirements for alignment
accuracy. Using test images that are not precisely aligned for detection can easily lead to
false or missed results. In this section, we designed ablation experiments on the alignment
and detection methods. The objects were the aligned images on the Test x–Test x′ dataset
using multiple alignment methods. We evaluated our proposed energy-based detection
method, compared with conventional methods based on morphology and subtraction.
The experiments aim to compare the performance of different alignment methods, and more
importantly, to compare the performance of our detection method with the conventional
subtraction or XOR method.

The effectiveness of object detection is commonly evaluated by the mean average
precision (mAP) [19]. A detection result is considered correct if the intersection over union
(IoU) between the predicted bounding box and ground true (GT) with the same class is
greater than 0.33. In this work, we compared the performances of the final defect detection
by calculating the F1-score, the harmonic mean of Precision and Recall, to evaluate the
ability of different image alignment and defect-detection methods.

We validated the alignment and defect-detection results on the DeepPCB-A defect
annotation dataset. The experiment results are shown in Table 2. On the one hand,
the results also revealed that SIFT and SURF methods achieved greater alignment effects
than ORB in the PCB defect task. In the condition of the conventional detection method,
SURF showed a slight disadvantage against SIFT but was greater in the condition of our
energy-based detection. On the other hand, as can be seen in the table, the F1-scores
of the energy-based method considerably surpassed those of the subtraction or XOR
detection methods when using the same alignment algorithm. The results indicated that
our defect-detection method approach achieved remarkable performance compared to the
conventional detection methods.

Table 2. F1-score results of defect-detection evaluation ablation experiments using different alignment-
and defect-detection methods on the DeepPCB-A dataset.

Alignment
Detection

Subtraction/XOR [16] Energy-Based

ORB [13] 75.1 91.0
SIFT [11] 86.2 92.1
SURF [12] 85.5 92.3

Two sets of images were chosen to compare the performance of XOR and our method,
as depicted in Figure 7. There are issues such as not being strictly aligned and edge
spurs resulting from segmentation. To reduce interference from these issues, the XOR
method needed to apply morphological techniques such as opening and closing operations.
The opening operation removed isolated dots, burrs and thin connecting lines between two
shapes. The closing operation filled in small holes and bridged small cracks. As shown
in Figure 7, most of the interferences have been eliminated in the XOR-processed image.
Nevertheless, the choice of a smaller kernel matrix to avoid damaging the original im-
age’s structure resulted in False Positives caused by some uneliminated edge interference
(Figure 7 top). Conversely, choosing a larger kernel matrix to eliminate interferences such as
edges and tiny holes wrongly removed tiny defects, i.e., False Negatives (Figure 7 bottom).
Our method, in contrast, handled the above challenges with high robustness. For instance,
it avoided the breakdown of small defects since it did not rely on morphological processing.
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Figure 7. Comparison of the effectiveness of different methods on DeepPCB-A dataset. (top) False
Positives in XOR method resulting from non-fine alignment or edge spur. (bottom) False Negatives
in XOR method due to the missing detect of tiny defect.

4.3. Results on HDPCB Dataset

In this section we first compared the inspection results on our HDPCB dataset with
those of one of the most widely used PCB optical inspection equipment manufacturers
based on optical technology and machine vision for quality inspection in the Chinese
industry (in the paper we named it YM). Due to their closed-source algorithm, we compared
the results on the limited 35 PCB billion-pixel images containing 74 sets of functional
defects that we were able to obtain. Unlike the evaluation metrics used on the DeepPCB-A
synthetic dataset (Section 4.2), industry is more concerned with the number of defects
correctly detected, false detections and missing detections, i.e., True Positive, False Positive
and False Negative, respectively. The results are shown in Table 3. The high-resolution
images allow the PCB defects varying from multi-scale to rich styles, which increase the
difficulty for other detection method that may result in many False Positives and False
Negatives. As can be seen in the table, our method achieved higher precision and more
robust effectiveness.

Table 3. Comparison of results of our method and a PCB inspection equipment manufacturer (YM)
on the HDPCB dataset that contains 74 sets of functional defects in total.

Truth and Prediction Situation YM Energy-Based

True Positive 9 70
False Positive 26 13
False Negative 65 4

Moreover, we conducted extensive experiments on our entire HDPCB dataset using
the proposed energy-based detection method. Our method achieved high-precision pixel-
by-pixel defect localization results, as shown in Figure 8. Experiments indicated that our
approach is accurate and efficient in detecting defects of multiple scales and morphologies
in billion-pixel images. These results demonstrated our advantages over conventional
methods and deep learning algorithms. On the one hand, the experiments revealed the
superiority of our proposed alignment method over conventional subtraction or XOR
detection methods, which is robust against the non-finely aligned images, edge spurs
and performs well in detecting tiny defect. On the other hand, the efficient performance
of our detection algorithm surpassed deep learning methods, and the reasons were as
follows: Firstly, our algorithm could achieve outstanding detection outcomes without prior
training or a large number of annotated data. Secondly, our algorithm performed better
for tiny defect-detection tasks of high-resolution images, as it processed detection directly
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on high-resolution images without pixel compression, preventing the loss of detail and
missed detection of fine defects. Additionally, it could avoid inefficient, repetitive detection
of large-scale defects due to sliding window slicing of high-resolution images.

Figure 8. Multi-scale and different types of PCB defect-detection results on our HDPCB dataset. Our
method outlines the defect segment in red and the size of each image is marked in yellow.

5. Discussion

The energy-based defect-detection method proposed in this paper effectively solves the
detection problem in the case of imprecise alignment that cannot be solved by conventional
subtraction or exclusive OR algorithms. However, the present method also has some
limitations. For example, we define a small threshold to ensure a certain seat belt around
the edge region in order to solve the above problem, which causes some kind of tiny
defects with very low energy within the seat belt to be difficult to detect. Furthermore,
experiments on the XTemplate − X′Test data, that we did not show in this paper because of the
poor performances, indicated that the existing feature-based alignment method including
SIFT and SURF can not address the problem due to the defect feature interference, especially
in DeepPCB-A dataset and repetitive feature resulting from the high-resolution images
in our HDPCB dataset. Therefore, improving the precision of the alignment algorithm
for reference-based detection approaches is also a researchable direction in the future to
improve the defect-detection accuracy of this method.

6. Conclusions

This study proposes an edge-guided energy-based PCB defect-detection approach
for ensuring the safety performance and the survival time of electronics in more than just
the space industry. The novelty of this work is to transform the defect-detection task into
a target edge point cloud energy measurement problem through energy transformation.
The difference between the target contour and the template contour point cloud is high-
lighted, and the defect is localized by measuring the energy value of the target contour point
cloud. Experiments on the 512 × 512 synthetic DeepPCB-A dataset showed that, when
using the same alignment methods, the F1-score results of our proposed energy method
reached at least 5 percentage points higher than the conventional PCB defect-detection
method, and the comparison with the widely used PCB optical inspection equipment
manufacturer in industry on our realistic billion-pixel HDPCB dataset showed that our
method had higher accuracy and fewer false detections. Experiments demonstrated that the
proposed edge-guided energy-based defect-detection method is more robust to edge spurs,
poorly aligned images and multi-scale defects, varying from several pixels to hundreds of
pixels. Furthermore, it is more interpretable and adaptable to production needs as it can
flexibly adjust anomaly thresholds to adapt different defect criteria to production needs.
Above all, the proposed energy-based method is applicable not only to PCB inspection but
also to other surface defect-detection problems with distinct structural features.
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