
Citation: Chen, L.; Zheng, W.

Research on Railway Dispatcher

Fatigue Detection Method Based on

Deep Learning with Multi-Feature

Fusion. Electronics 2023, 12, 2303.

https://doi.org/10.3390/

electronics12102303

Academic Editors: Yuji Iwahori,

Haibin Wu and Aili Wang

Received: 13 April 2023

Revised: 16 May 2023

Accepted: 17 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Research on Railway Dispatcher Fatigue Detection Method
Based on Deep Learning with Multi-Feature Fusion
Liang Chen 1 and Wei Zheng 2,3,*

1 School of Electronic Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
newboy_01@163.com

2 National Research Center of Railway Safety Assessment, Beijing Jiaotong University, Beijing 100044, China
3 Collaborative Innovation Center of Railway Traffic Safety, Beijing 100044, China
* Correspondence: wzheng1@bjtu.edu.cn

Abstract: Traffic command and scheduling are the core monitoring aspects of railway transportation.
Detecting the fatigued state of dispatchers is, therefore, of great significance to ensure the safety
of railway operations. In this paper, we present a multi-feature fatigue detection method based
on key points of the human face and body posture. Considering unfavorable factors such as facial
occlusion and angle changes that have limited single-feature fatigue state detection methods, we
developed our model based on the fusion of body postures and facial features for better accuracy.
Using facial key points and eye features, we calculate the percentage of eye closure that accounts for
more than 80% of the time duration, as well as blinking and yawning frequency, and we analyze
fatigue behaviors, such as yawning, a bowed head (that could indicate sleep state), and lying down on
a table, using a behavior recognition algorithm. We fuse five facial features and behavioral postures
to comprehensively determine the fatigue state of dispatchers. The results show that on the 300 W
dataset, as well as a hand-crafted dataset, the inference time of the improved facial key point detection
algorithm based on the retina–face model was 100 ms and that the normalized average error (NME)
was 3.58. On our own dataset, the classification accuracy based the an Bi-LSTM-SVM adaptive
enhancement algorithm model reached 97%. Video data of volunteers who carried out scheduling
operations in the simulation laboratory were used for our experiments, and our multi-feature fusion
fatigue detection algorithm showed an accuracy rate of 96.30% and a recall rate of 96.30% in fatigue
classification, both of which were higher than those of existing single-feature detection methods. Our
multi-feature fatigue detection method offers a potential solution for fatigue level classification in
vital areas of the industry, such as in railway transportation.

Keywords: intelligent transportation; fatigue testing; multi-feature fusion; dispatcher; HOG-PSO-
SVM

1. Introduction

In recent years, China’s railway industry has developed rapidly, and the country
has entered an era of high-speed, high-density, and heavy-weight railway transportation.
Railway traffic dispatching is critical to ensuring the safe operation of railways. During
active operations, it is necessary to follow the unified commands given by those in charge of
traffic dispatching. A dispatcher organizes relevant personnel to fulfill the train operation
diagram, the marshaling plan, and the transportation schedule, and to meet the transporta-
tion goals. Errors in dispatching can cause traffic delays and service interruptions, and
occasionally, they may lead to severe accidents. Therefore, detecting the fatigued state of
the dispatcher should be the basis for ensuring successful, reliable operations and is of
great significance for the safe operation of railways. Research on the detection of the fatigue
state of dispatchers refers to research on fatigue detection methods for high-speed rail and
car drivers, and it has combined the characteristics of the dispatching work itself to design
fatigue detection methods for dispatchers.
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Many methods for measuring fatigue have been developed and can be divided into
two types: subjective and objective. Subjective detection methods aim to obtain the fatigue
status of personnel with the filling out of questionnaires, subjective evaluations, and other
methods. Evaluation scales include the Karolinska sleepiness scale (KSS), the morning-type
and evening-type questionnaire (MEQ) [1], the mood fatigue scale (POMS-F), the vitality
scale (POMS-V), the NASA task load index (NASA-TLX), etc. Courtney et al. conducted
sleep restriction and deprivation experiments and concluded that all scales are effective for
fatigue detection [2]. Gaydos et al. [3] proposed an approach not only based on pilots them-
selves but also their peers’ perspectives. Useche et al. [4] studied the relationships among
fatigue, work-related and stress-related conditions, and dangerous driving behaviors. Fan,
J., et al. [5] studied the correlation between workload and fatigue but did not consider other
factors. When a person is in a state of fatigue, the body has physiological reactions, such as
increased blinking, increased yawning, and general weakness [6], and these are used to
inform detection methods based on human physiological indicators and behavioral feature
detection using image- and voice-processing technologies. To evaluate a driver’s physiolog-
ical indicators while driving, the authors collected drivers’ bio-electrical signals recorded
using electro-encephalogram (EEG), electro-oculogram (EOG), and electro-cardiogram
(ECG) tests [7], as well as their physiological parameters, such as body temperature. Then,
a fatigue detection method was applied for feature extraction analysis in order to determine
drivers’ alertness [8,9].

Research on fatigue detection has been focused on fatigue state detection, often using
a single facial feature, for example, monitoring an operator’s eye movements. When
an operator is tired, the body posture changes, and the operator may perform certain
movements or gestures, such as covering the face. It is often the case that people exhibit
more bodily behaviors indicative of fatigue than facial behaviors [10]. Thus, detecting
fatigue based on a single facial feature must be reconsidered. The goal of this study was
to propose a dispatcher fatigue detection method based on the fusion of multi-feature
information. We performed this by combining facial cues and body postures. In this study,
we explored a fatigue detection model based on multi-feature fusion in order to improve
the train dispatcher fatigue detection accuracy. The major contributions of this work are
summarized as follows:

• Fusing multiple features in addition to facial movements, such as body posture: We integrate
facial features and behaviors indicative of a fatigued state, and we use the RetinaFace
model to identify the key indicators of the face. The particle swarm optimization–
support vector machine (PSO-SVM) algorithm of the histogram of oriented gradient
(HOG) feature graph is used to determine the open and closed states of the eyes, and
the LSTM–AdaBoost algorithm, to determine fatigue gestures.

• Differential model robustness: In order to improve the effect of the fusion model, we ex-
plored the RetinaFace network model, optimized the support vector machine method
using particle swarm optimization, and improved the LSTM–AdaBoost algorithm.

• Comprehensive experiments and studies: We conducted detailed ablation studies and com-
prehensive experimentation to evaluate the model’s efficiency and accuracy, and the
behavior classification of the model; an ablation test comparison; and a benchmarking
test against other algorithms’ results.

The abbreviations used in the article are listed in Table 1.
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Table 1. Abbreviations Table.

Abbreviations Full Spelling

KSS Karolinska sleepiness scale
MEQ Morning-type and evening-type questionnaire

POMS-F Mood fatigue scale
POMS-V Vitality scale

EEG Electro-encephalogram
EOG Electro-oculogram
ECG Electro-cardiogram

QRS WAVES Combination of Q waves, R waves, and S waves
MLP Multi-layer perceptron

PERCLOS Percentage of eyelid closure over the pupil over time
LBP Local binary pattern

PSO-SVM Particle swarm optimization–support vector machine
HOG Histogram of oriented gradient
LSTM Long short-term memory
FPN Feature pyramid network
EAR Eye aspect ratio
MAR Mouth aspect ratio
SSM Single-stage multi-task
SSH Single-stage headless face detector

HRNet High-resolution network
NME Normalized mean error
DBN Deep Belief Networks
CNN Convolutional neural network

2. Related Works

Subjective evaluation methods are simple and direct. Participants complete answers
according to an evaluation scale and their own feelings. Objective fatigue detection methods
are feature detection methods based on human physiological indicators, behavioral actions,
and image- and speech-processing technology.

(1) Subjective fatigue measurement methods.

In 2013, Gaydos et al. [3] proposed a new peer fatigue scoring system based on the
subjective evaluation of pilot fatigue in the military. The flight safety office records and
tracks the median and the variance of each pilot’s peer rating. The rating system consists of
a simple 1–10 rating scale, with instructions for each rating to ensure the consistency of the
subjective assessments and accurately determine the level of exhaustion of each pilot. The
scoring system evaluates a pilot’s fatigue state, their relative response, and their degree
of coping from a multi-dimensional, external perspective. Scoring is based on a peer’s
perspective, which could include activities other than work, such as social interactions,
and could also observe the pilot’s service limitations. Based on this approach, fatigue
management is transformed into a more proactive management approach.

In 2017, Useche et al. [4] studied the specific relationships among the fatigue of bus-
rapid-transit (BRT) drivers, their work-related and stress-related conditions, and dangerous
driving behaviors. The trial involved 524 male drivers from four BRT transport companies
in Bogota, Colombia’s capital city. The participants completed three questionnaires on
driver behavior, effort–reward imbalance, and job performance, along with a subjective
fatigue scale. Using a structural equation model (SEM), they found that dangerous driving
behavior is predicated on work stress, effort–reward imbalance, and social support and
that fatigue driving plays a role in the relationship between work stress and dangerous
driving, as well as between social support and dangerous driving.

In 2017, Fan and Smith [5] studied the correlation between workload and fatigue,
and its impact on work performance, particularly in the railway industry. The results
showed that workload is a predictor of fatigue. Furthermore, they applied a combination of
subjective measures and online objective cognitive tests, including self-assessment, a 10 min
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psycho-motor alertness task, a visual search, and a logical reasoning task. SPSS software
was used for the statistical analysis of the data to evaluate the correlations among workload,
fatigue, and performance. The results showed that workload was an important factor that
intensified fatigue and that subjective fatigue could be predicted using an evaluation test.

(2) Objective fatigue measurement methods.

Allam, J.P., et al. [11] proposed a deep learning algorithm based on a convolutional
neural network to automatically recognize the state of drowsiness. Their model uses single-
channel raw EEG signals as the input and then extracts features from the applied EEG
signals. In [1], researchers proposed an algorithm for detecting QRS waves (a combination
of Q waves, R waves, and S waves), T waves, and P waves in ECG data, which could not
only identify the amplitude and intervals of the ECG data but also shorten the long-term
detection and identification time.

In [12], researchers used eight EEG channels to monitor drivers’ state and then applied
a matrix decomposition algorithm to classify the EEG signals collected using wireless
wearable technology. If a driver was determined to be fatigued, an early warning alert
sounded. This method had a high accuracy rate for fatigue detection, but it was more
intrusive and disturbed drivers’ work.

A behavior feature detection method is based on image-/voice-processing technology.
Fatigue detection technology based on image processing and video algorithms is employed
to evaluate facial features, such as head position, the closing frequency of eyes and mouth,
and body posture. Researchers have found with experiments that these features reflect the
fatigue state of the human body. It is generally accepted that eye features have the greatest
correlation with a fatigued state, such as the duration of eye closure, blink frequency, etc.
Human posture and voice characteristics have been used as a supplementary basis for
determining the fatigue state of the human body.

The literature [13] compared human eye detection technologies based on neural
network methods, support vector machine methods, cascade algorithms, etc., according
to images and the PERCLOS (percentage of eyelid closure over the pupil over time, eye
closure time per unit time) principle, and the authors designed a deep learning method to
detect driver fatigue. The authors of [14], however, used a driver’s facial image, which was
collected with a camera, and employed the YOLO-LITE deep learning network and the
Haar-like feature cascade for detection. In addition, they proposed a multi-layer perceptron
(MLP), instead of the PerStat method of the PERCLOS method.

In [15], the authors proposed an eye state recognition network based on transfer learn-
ing, which consists of Gabor features and LBP features that are added to a convolutional
neural network module using transfer learning, and they also used a multi-task cascaded
convolutional neural network to detect a driver’s face and eyes, which classified the fatigue
state of the driver according to the PERCLOS principle. In [16], a machine learning method
was applied; it uses the f-value of the PERCLOS criteria for the longest continuous eye
closure time and the number of mouth-opening instances as the input of the neural network
and then constructs a three-layer BP neural network to identify fatigued states. The authors
of [17] extracted image features based on the improved RetinaFace model as well as the
improved ShuffleNetV2 network model, and they determined the fatigue status using face
detection and the opening and closing of eyes and mouth. In [18], the authors proposed
a multi-feature fusion method that combines the degrees by which eyes and mouth open
and close, along with the eye movement rate, to determine the level of fatigue using a
fuzzy reasoning system. The authors of [19] proposed a two-stream fusion network model
based on upper-body postures to determine the level of fatigue of high-speed rail drivers.
Regarding issues on fairness in facial detection systems, we have referred to the research
findings of the following researchers: The authors of [20] offer a simple and straightforward
recipe for confidence calibration in deep learning that improves the network credibility
judgment. The authors of [21] introduced Fair-Net, a branched multi-task neural network
architecture that improves both classification accuracy and probability calibration across
identifiable sub-populations in class-imbalanced datasets. The authors of [22] presented an
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approach to evaluate the bias present in automated facial analysis algorithms and datasets
with respect to phenotypic subgroups.

3. Features of Dispatcher Fatigue

In this study, we examined several features indicative of dispatcher fatigue: fea-
tures based on eye closure (Section 3.1), blink frequency (Section 3.2), yawn frequency
(Section 3.3), bowing the head and dozing off (Section 3.4), and dozing off on a table
(Section 3.5).

3.1. Eye Closure-Based Features

PERCLOS refers to the percentage of eye closure during a specified time period. It
collects data from videos to realize non-contact fatigue detection without affecting the
normal work of personnel. It measures the amount of time during which the eyes are
at least 80% closed. This proportion of time is expressed as P80 in [23]. In 1998, the U.S.
Federal Highway Administration compared various fatigue detection methods in simulated
driving tests conducted in a laboratory, and the researchers found that the P80 standard
of the PERCLOS method is the most accurate. The measurement principle assumes that
the blink of the eyelid begins at t1 and ends at t4 and that the eye is open at both t1 and t4.
During this blinking process, the pupil is covered for more than 80% of the time period,
which is t2 t3, as shown in Equation (1).

f =
t3 − t2

t4 − t1
(1)

In the video acquisition in this study, the acquisition parameter was 30 fps, that is,
30 frames of images were collected per second. Therefore, the f -value of PERCLOS [24] was
obtained by counting the number of image frames with open versus closed eyes, instead of
the eyelid coverage area, as shown in Equation (2).

f =
M
N
× 100% (2)

where N is the number of image frames collected with the camera within a specified period
of time and M is the number of frames of closed-eye images. The value range of f is
0 < f ≤ 1. Studies have shown that when the human body is more awake, the f -value of
PERCLOS is lower, generally in the range of 0 < f ≤ 0.15, and when the human body is in a
state of fatigue, the f -value exceeds 0.4. When one enters the sleep state and the eyes are
closed for a long time, f is equal to 1.

3.2. Blink Frequency

Blinking is determined according to the state of the eyes in continuous image se-
quences. The process of blinking is defined as transitioning from eye opening to closing to
opening again. The total number of blinks in a unit cycle is the blink frequency, Freqblink,
which has been medically shown to predict the awake state of the human body. In a normal
awake state, the number of blinks per 60 s is 15–30 times, and the duration of each blink is
0.2–0.3 s. While fatigued but not yet asleep, an individual’s blink frequency increases, until
reaching a sleep state, where the blink frequency is 0. Equation (3) is used to calculate the
blink frequency.

Freqblink =
N
T

(3)

where N is the number of eye blinks within time T and T is the specified time period. We
set the time period to 60 s, collected 30 frames of continuous image data per second, and
calculated the number of eye blinks in approximately 1800 frames.
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3.3. Yawn Frequency

For the evaluation of facial movements with no occlusion of the mouth, we assumed
that the mouth has four states: closed, slightly open, talking, and yawning. When the
human body starts to experience tiredness, the frequency of yawning increases. When
yawning, the opening of the mouth is the largest in the upward and downward directions,
and the length between the left and right corners becomes narrower. Therefore, to accurately
identify facial yawning movements, the mouth aspect ratio (MAR) of the upper lip and
lower lips is introduced. The distance value is used as an indicator [25], and the index
value is calculated with the coordinates of key points around the mouth. Since the mouth
movement of yawning could be clearly distinguished from that of speaking, the occurrence
of yawning could be determined using the MAR threshold method.

To evaluate behaviors, such as covering the mouth, that indicate yawning, we assumed
that people have different habits when yawning. When some people yawn, they cover
their mouths with their hands. When this occurred in the image sequences, it occluded
the movement of the mouth, which made the determination of yawning using facial key
points infeasible. To overcome this, we propose a method that identifies key points in the
upper body and uses recognized behaviors to determine yawn occurrence. The schematic
diagram is shown in Figure 1.

Figure 1. Yawning (covering the mouth).

3.4. Bowing the Head and Dozing Off

When the human body experiences tiredness, it physically reflects drowsiness; the
brain response decreases; and the ability to support the head decreases, which is typically
manifested with head drooping and frequent nodding. When a person is assuming a sleep
state, key points of the face may not be viewable on video, so the fatigue state cannot be
determined using the PERCLOS method. At this time, physical behaviors, such as bowing
the head, that could indicate fatigued and sleep states are used instead [26].

3.5. Dozing Off on a Table

When a person experiences drowsiness, they may fall asleep in their current position
or seek out a convenient location, such as a nearby table, on which to lie down and fall
asleep. Therefore, to determine the fatigue of a dispatcher, the fatigue characterization
of “table drowsiness” is included, which is defined according to specified movements
and behaviors.

4. Multi-Feature Fusion Fatigue Detection Method Based on Deep Learning

The flowchart of our fatigue detection model based on the RetinaFace model [27],
HOG-PSO-SVM, and the Bi-LSTM-SVM adaptive enhancement algorithm is shown in
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Figure 2. The technical reasons for using the RetinaFace and HRNet network models are
as follows: RetinaFace is a single-stage multi-task detection algorithm for face detection
that has been characterized as fast, lightweight, having high accuracy, and being capable
of parsing information extracted from multi-level and multi-scale feature maps. Based on
the RetinaFace algorithm, we designed a detection model that could infer the key points
of the eyes and is superior in speed and more suitable for a series of tasks, such as facial
key point detection, on a small industrial computer. Similarly, HRNet is a high-precision
human posture estimation model that was jointly developed and released by University
of Science and Technology of China and Microsoft Research Asia. Compared with the
serial human posture estimation model, HRNet constructs a unique parallel structure.
The parallel connection of high-to-low resolution convolution enables a high-resolution
representation to be maintained at all times; then, multi-scale fusion can be performed
using cross-parallel convolution to enhance the high-resolution feature representation. It
does not rely on the restoration of high-resolution features from low-resolution features,
as other methods do, thus significantly improving the prediction results of key points of
human postures.

The algorithm flow is as follows: First, real-time video images of the dispatcher are
obtained using a video acquisition device. The key points of the eyes and mouth are
extracted using the RetinaFace model, while the key points of the body posture are detected
using the high-resolution network (HRNet). After the point detection model [28] has
extracted these key points, it inputs them into the SVM and the Bi-LSTM-SVM adaptive
enhancement algorithm model to obtain the eigenvalues of the fatigued state, which are
then used as the input of the artificial neural network to calculate the fatigue state using
multi-feature fusion.

Video Data 

Acquisition

image 

preprocessing

Retinaface network model HRNet network model

PERCLOS Blink frequency yawn frequency Bow head doze off
Doze off at the 

table

Mild-to-no 

fatigue
moderate fatigue severe fatigue

Extract facial key points Extract body key points

SVM model for identifying 

open and closed eyes

Behavior Recognition Based on Bi-LSTM-

SVM Adaptive Enhancement Algorithm

LSTM model for 

recognizing yawns

Artificial Neural Networks 

for Fatigue Detection

START

meet the fragment detection 

duration?

a face or a human body is 

detected

Y

N

Y

N

END

Figure 2. Algorithm flow chart of multi-feature fusion fatigue detection method.



Electronics 2023, 12, 2303 8 of 25

4.1. Face Key Point Recognition Based on RetinaFace

RetinaFace is a single-stage multi-task (SSM) detection algorithm proposed by the
InsightFace team that specifically detects faces. The characteristics of its network model
include single-stage target detection, feature pyramid networks (FPNs), context feature
modules (single-stage headless face detector (SSH)), multi-task learning, an anchor box
mechanism (Anchors), and the use of lightweight backbone networks.

Based on the RetinaFace algorithm, we designed a detection model that can actively
memorize and learn the behaviors of facial key points using data transfer learning [29],
network structure redesign, Gabor feature extraction [30], and other methods.

(1) Face Key Point Design

In the original RetinaFace network, the five key points of the face are originally the
left and right eyes, the left and right mouth corners, and the nose tip. According to the
needs of fatigue detection, 21 key points of the face are implemented, i.e., 6 each for the left
and right eyes, 1 for the tip of the nose, and 8 for the mouth. In this paper, detection points
for the eyes and mouth are used. This model has excellent reasoning speed and is suitable
for completing the task of facial key point detection on a small industrial computer. The
results of facial key point detection using RetinaFace are shown in Figure 3.

Figure 3. Face key point detection based on RetinaFace.

(2) Loss Function Design

L = Lcls(pi, p∗i ) + λ1 p∗i Lbox(ti, t∗i ) + λ2 p∗i Lpts(li, l∗i ) + λ3 p∗i Lpixel (4)

Equation (4) is the loss function of the RetinaFace network. In Equation (1), (a) Lcls(pi, p∗i )
is the loss function of face classification, and pi is the i-th anchor frame predicted by the
network as a person. The probability of the face, p∗i , is the data label. (b) Lbox(ti, t∗i ) is the
face box regression loss function, and ti, t∗i are the coordinates of the predicted anchor box
and the coordinates of the data label, respectively, including face Box 4 positioning data: tx,
ty, tw, and th. (c) Lpts(li, l∗i ) is the regression loss function of the key points of the face. In
order to improve the computational efficiency, therefore, the dense loss function that is less
related to the regression of the key points of the human eye is removed. We select lambdas
based on the RetinaFace network, which are 0.25/0.1/0.01, respectively. This means that
the loss weights from the detection branch are higher than those from the key point branch.
Our parameter values are still 0.25/0.1. The optimized loss function is Equation (5).

L = Lcls(pi, p∗i ) + λ1 p∗i Lbox(ti, t∗i ) + λ2 p∗i Lpts(li, l∗i ) (5)
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(3) Network Structure Design

The pyramid structure of the FPN feature map was employed to enhance the detection
of small-sized faces. In the fatigue detection scene of the dispatcher, the face area in the
collected image accounts for a moderate proportion of the original image. Therefore, in
RetinaFace, the P2 and P6 layer structures of the original feature pyramid network of the
model can be removed, which greatly improves the reasoning speed and accuracy of the
model. The feature pyramid network designed in this paper is shown in Figure 4.

Figure 4. RetinaFace network structure designed in this paper.

(4) Image Data Gabor Pre-Processing Design

A Gabor filter is used to extract the feature maps in the directions of 0°, 45°, and 90°
from the original image; then, the three-feature images are mapped into a new three-channel
image; finally, the Gabor feature map is obtained in gray scale.

(5) Pre-trained Model Transfer Learning

RetinaFace includes three tasks: face classification, face frame detection, and facial key
point detection. When using the pre-trained network weighting file for prediction, there is
no need to re-train the model for face classification and face frame detection. We use the
previous freezing of the related weights, as separately training the detection points of eye
key points can not only greatly improve the training efficiency, but it also improves the
accuracy of face detection.

4.2. Eye Opening and Closing Recognition with Support Vector Machine Based on HOG Feature

The extracted features applied for the detection of eye closure include the eye aspect
ratio (EAR), image binarization, local binary patterns (LBPs), and the HOG feature. Among
these, selecting the EAR thresholds that determine whether an eye is opening or closing
is challenging, as people have many different eye sizes [31]. The image binarization
method determines the differences between the black pixels of two consecutive frames.
The disadvantage is that the distance between the human eye and the camera is greatly
affected, and if the subjects continuously close their eyes, the difference between the black
pixels cannot be reflected. The LBP feature extraction method [32,33] is not robust under
complex lighting conditions. Compared with other features, the HOG feature is stable
and less sensitive to changes in lighting conditions. It has better robustness for the feature
description of the target, and the detection effect is relatively stable [34].

The HOG feature extraction process is as follows:

• Calculate the gradient of each pixel in the image.
• Divide the picture into gridded blocks; then, divide each block into multiple small-

cell grids.
• Count the gradient distribution histogram in each cell; obtain a descriptor of each

cell; count the gradient direction distribution of each pixel; then, project it onto the
histogram according to the weighted gradient size.

• Combine N cells into a block, and concatenate the descriptors of each cell to obtain
the description of the block.

• Concatenate the descriptions of each block in the picture to obtain a feature description
of the picture, which is the HOG feature of the picture [35]. Since the pixel size of each
eye photo was 120 × 60, we set the pixel size of the cells to 6 × 6, and each block was
set to 3 × 3.
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(1) Eye Image Cropping

In an actual working environment, dispatchers always look at the control screen from
left to right, so their faces would always be turned away from the camera. Because the
distances between each eye and the camera are different, the positioning errors of the key
points would increase. To solve this problem, we propose a method that selects the eye
closest to the camera as the focus. When the dispatcher’s face is turned away, the eye that
is closer to the camera is detected, as shown in Figure 5. In the figure, fw and fh represent
the width and height, respectively, of the face frame, as detected with RetinaFace. The
positioning point of the tip of the nose is compared with the face and the position of the
center line of the frame in terms of the direction of the picture. If the tip of the nose is on
the right, it detects the left eye in the image (the subject’s right eye); otherwise, it detects
the right eye in the image (the subject’s left eye).

Figure 5. Eye selection method.

Eye cropping is performed on the selected reference eyes. Since the distance between
the upper and lower key points changes greatly when the eyes open and close, while the
distance between the left and right key points generally does not change, a specific ratio
could be used to crop the eye image. Generally, the eye aspect ratio is 1.6 [36]. According
to this, Equation (6) is applied to proportionally crop the eye image.{

wcrop = weyehorizon × 1.02,

hcrop = wcrop ÷ 1.6.
(6)

In Equation (4), wcrop and hcrop represent the width and height of the cropped eye
image, respectively.

(2) HOG Feature Extraction

The cropped image is in a three-channel RGB format that contains the color infor-
mation. The gradient calculation of the image does not require color information, so the
first step is to convert the image into a gray-scale image. The participating dispatchers’
workplace was the dispatching hall of the Railway Bureau with sufficient and uniform
lighting. Because the HOG feature is a local gradient feature, it is not sensitive to light.
Therefore, this study did not consider image-processing methods for scenarios with insuffi-
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cient lighting. When extracting the HOG features, it is necessary to calculate the horizontal
and vertical gradients of each pixel, as shown in Equations (7) and (8).

gx(x, y) = H(x + 1, y)− H(x− 1, y) (7)

gy(x, y) = H(x + 1, y)− H(x, y− 1) (8)

where g represents the gradient; H represents the pixel value of the corresponding point;
and x and y represent the horizontal and vertical directions, respectively. Based on these
calculations, the magnitude and angle of the gradient can be obtained at this point, as
shown in Equations (9) and (10).

g =
√
(g2

x + g2
y) (9)

θ = arctan
gy

gx
(10)

The figure is divided into a large number of cells, and the gradient information of each
cell is counted to form a histogram. The HOG feature map is shown in Figure 6.

Figure 6. HOG characteristic diagram visualization diagram.

4.3. Yawning Recognition Based on Facial Key Points

The extraction of the key points of the mouth also uses the RetinaFace network to
locate the eight key points around the mouth. The key points of the mouth position are
numbered 13 to 20, as shown in Figure 7.

Figure 7. Key points of the mouth when yawning.
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Generally, when yawning, the MAR changes greatly, which is different from the MAR
value when speaking. In order to determine mouth states such as speaking, yawning, and
closed, we used the aspect ratio to evaluate the samples, and the experimental results are
shown in Figure 8. When MAR < 0.3, the mouth is closed or speaking. When 0.4 < MAR, we
determine that the mouth state is yawning. Therefore, we directly use the fixed threshold
method to detect yawning based on facial key points [37]. The changes in the mouth MAR
are shown in Figure 8.

Figure 8. MAR Change Chart.

By recording the MAR value of different subjects when yawning, 0.3 was determined
as the threshold of yawning. When MAR > 0.3, the state is determined as yawning, and
when MAR ≤ 0.3, it is determined as other actions.

4.4. Behavior Recognition Based on Bi-LSTM-SVM Adaptive Enhancement Algorithm

In order to classify the characteristics of a sitting posture when only half of the subject’s
body can be captured with a camera, a human posture classification method based on
a bidirectional long short-term memory neural network and an adaptive enhancement
algorithm is proposed. Based on the HRNet key point detection model of body postures,
multiple key points of the human body were extracted, and by constructing the angle and
length features of human movements, an adaptive enhancement algorithm for movement
recognition based on the bidirectional long-short-term memory neural network (Bi-LSTM)
was built to improve recognition. This improved efficiency, reduced the risk of generaliza-
tion error and recognized a dispatcher’s fatigue behaviors with excellent precision. The
flowchart of the algorithm is shown in Figure 9.

The algorithm is divided into four parts: data acquisition and pre-processing, Bi-LSTM-
SVM neural network, Bi-LSTM-SVM adaptive enhancement algorithm, and dispatcher
fatigue behavior results. Data acquisition and pre-processing extract and normalize the key
points of the human body and allocate them to the training sets and testing sets.

The format of the human posture key point data extracted with HRNet is information
on 17 key points in a row, with each key point including horizontal and vertical coordinates,
as well as confidence. Therefore, there are a total of 54 columns of data in one row. The
pre-processing of data such as denoising mainly includes the following items:

(1) Remove key point data with a confidence level below 0.5.
(2) Remove key point data with obvious errors in location.
(3) Remove key point data with missing data information.

In order to improve the accuracy of human posture detection, it is necessary to extract
features from the data. Based on the differences in behavioral movements with body
changes and the relatively fixed body length ratio, 7 types of angle features and 10 types
of length ratio features are extracted. The seven types of angle features include the angle
between each limb and the trunk, and the angle of the line connecting the head and
shoulders, and the relative position proportion feature mainly extracts the relative position
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relationship between limbs, as well as the limb proportion feature based on the length of
the trunk. The specific features are shown in Tables 2 and 3.

Figure 9. Overall flow chart of Bi LSTM-SVM adaptive enhancement algorithm.

Table 2. Limb angle feature.

No. Angular Feature

1 The angle between the line connecting the midpoint of the nose and the shoulder and the line
connecting the right and left shoulders

2 The angle between the right shoulder–elbow line and the right wrist–leg root line
3 The angle between the right shoulder–elbow line and the right wrist–elbow line
4 The angle between the left wrist–elbow line and the left elbow–shoulder line
5 The angle between the left wrist–elbow line and the left elbow–shoulder line

6 Angle between the line connecting the root of the right leg and the right shoulder and that connecting
the root of the right leg and the right knee

7 Angle between the line from the base of the left leg to the left shoulder and that from the base of the
left leg to the left knee

Table 3. Proportional characteristics of key points’ relative location.

No. Position Scale and Distance Features

1 Nose–shoulder midpoint distance/shoulder midpoint–thigh root midpoint distance
2 Nose–elbow midpoint distance / shoulder midpoint–thigh root midpoint
3 Nose–wrist midpoint distance/shoulder midpoint–thigh root midpoint
4 Distance between nose–thigh root midpoint/shoulder midpoint–thigh root midpoint
5 Distance between the midpoint of the right elbow and the base of the thigh
6 Distance between the midpoint of the right wrist and the base of the thigh
7 Distance between left elbow and thte midpoint of the thigh base
8 The distance between the midpoint of the left wrist and the base of the thigh
9 Distance between right wrist and nose

10 Distance between left wrist and nose
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The Bi-LSTM-SVM neural network uses softmax to first train Bi-LSTM; then, the
trained output of the fully connected layer is used as the input of the SVM network to
complete the training of the Bi-LSTM-SVM network. Next, the Bi-LSTM-SVM adaptive
enhancement algorithm focuses on training the AdaBoost integrated classifier with the
Bi-LSTM+SVM classifier. Dispatcher fatigue behavior is determined and provided as the
output of the Bi-LSTM-SVM adaptive enhancement algorithm. The parameters of the model
are optimized using the orthogonal experimental method to complete the classification and
recognition of human body postures. Human key point recognition is shown in Figure 10.

Figure 10. Human body key point recognition.

This algorithm achieved good results on the scheduling simulation fatigue behavior
dataset. Compared with the optimized single classifier Bi-LSTM-SVM, the classification
ability of the model has been further improved. By building a strong AdaBoost classifier,
the accuracy of human behavior classification has been improved.

4.5. Classification Model of Fatigued State Based on Artificial Neural Network

(1) Selection of Fusion Algorithm

Commonly used fusion algorithms include the fuzzy theory algorithm, Bayesian
inference, the voting method, the weighted-average method, artificial neural networks,
etc. [38]. The fuzzy theory algorithm is suitable for information fusion in uncertain prob-
lems. Bayesian reasoning is suitable for scenarios based on previous knowledge. The
voting method works well in scenarios with multiple classifiers and sufficient features,
while the weighted-average method is suitable for relatively simple goal–result calculations.
However, we adopted an artificial neural network as the fusion algorithm. By training the
artificial neural network, the corresponding relationship between the weight of each charac-
teristic parameter and the fatigue level can be found. An artificial neural network is suitable
for solving nonlinear problems and finding the relationship between the input and output
of different dimensions and features. The accuracy of artificial neural network classification
is high; it has strong parallel distributed processing ability, strong distributed storage and
learning ability, and strong robustness and fault tolerance to noisy nerves, and it is able to
fully approximate complex nonlinear relationships. Based on the previous analysis and
comparison, we adopted an artificial neural network for fatigue state detection.

Before using the artificial neural network to analyze the feature information, it is
necessary to establish the data labels of fatigue detection and the evaluation benchmarks.
For dispatcher fatigue, we used the subjective KSS data of the subjects during the test,
along with expert evaluations, to determine the degree of fatigue.

(2) Network Model Construction

The input of the network includes the f-value of PERCLOS, the blink frequency,
the yawning frequency, and physical behaviors including the bowing of the head (and
potentially falling asleep) and falling asleep on a table. The network structure is a three-
layer fully connected neural network with a dense layer. In order to avoid overfitting,
a dropout layer was set after each layer, and the value was set to 0.25. The activation
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function used was the softmax function, and the relative probability of three classifications
was used as the output. The optimizer used was Adam. The learning rate was 0.001; the
evaluation index was the accuracy rate; and the loss function of the neural network was
the cross-entropy loss function.

There are two significant differences between the proposed method and existing
methods. The first is that existing multi-feature fusion algorithms detect fatigue by only
using facial or posture features. Our multi-feature fusion algorithm considers both features,
ensuring the identification of the level of fatigue even when the face is obscured. The
second is that our multi-feature algorithm is relatively advanced, as we use RetinaFace for
facial feature recognition, and the Bi-LSTM-SVM–AdaBoost model is applied for posture
recognition. Not only is the algorithm small in size, but it is highly effective in fatigue
detection.

5. Results and Discussion
5.1. Experimental Environment

The experimental environment configuration of this article includes the following:
an operating system that used Windows10, a development language based on Python 3.6
and TensorFlow2.7.0, an Intel i7-6500U 2.5 GHz CPU, and 16 GB memory. We also used a
camera (1280 × 720); the GPU was NVIDIA Geforce GTX 1080Ti, and the graphics memory
was 11 GB.

5.2. Experimental Dataset

The source of the experimental dataset was composed of the data of the simulation ex-
periment conducted by volunteers in the simulation laboratory. There were five volunteers
involved in creating the dataset. Each volunteer was in good physical condition and had
no pathological symptoms, such as a poor sleep history.

The ground truth of the dataset was a self-made dataset that used cameras to capture
video data of volunteers conducting simulation experiments in a scheduling simulation
laboratory. There were a total of 5 volunteers in the dataset, and all of them had been
informed of the trial content and purpose in advance and were asked to sign the trial
information form. Their information is detailed in the table below. Each volunteer collected
40 min of video data. The time distribution was 10 min between 9:00 a.m. and 10:00 p.m.,
10 min between 15:00 p.m. and 16:00 p.m., and 20 min between 23:00 and 24:00 p.m. A
total of 200 min of data was collected, including mild-to-no fatigue, moderate fatigue, and
severe fatigue states. Each data sample was collected for 1 min, with a total of 200 samples
of data. After screening, 192 samples of data were available, including 54 severe fatigue
samples, 64 moderate fatigue samples, and 74 mild-to-no fatigue samples. We divided
all data into 138 training data (each number was 36, 46, and 56) and 54 testing data (each
number was 18, 18, and 18). The training data adopted the 5-fold cross-validation method,
and 110 data in the training set were used for training, in turn, while the other 28 data were
used for training verification, as shown in Tables 4 and 5.

Table 4. Dataset Description Table.

Volunteer Age Gender 9:00–10:00 15:00–16:00 23:00–24:00 Time (min)

A 31 male 10 10 20 40
B 37 female 10 10 20 40
C 41 male 10 10 20 40
D 26 female 10 10 20 40
E 34 male 10 10 20 40

Total 200
Available

data 192
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Table 5. Training data and testing data sizes.

Fatigue State Size Training Data Testing Data

Severe 54 36 18
Moderate 64 46 18

Severe 74 56 18

In the process of recording the video of the dispatchers’ simulation work, the sub-
jects were asked to fill in the fatigue self-examination form (KSS) [39–41] every 300 s and
to measure their own fatigue levels during this time period from a subjective perspec-
tive. Therefore, 1–4 points indicated that the participant was awake; a total of 5–6 points
indicated that the participant had mild fatigue; a total of 7–8 points indicated that the
participant had moderate fatigue; and 9–10 points indicated that the participant had severe
fatigue (sleepiness). In addition, the fatigue status of the participants in the video was
further determined using expert scoring. Since the appearance of early intoxication and
mild fatigue are similar, our algorithm does not distinguish between these behaviors and
divides the degree of fatigue into the following categories: mild-to-no fatigue, moderate
fatigue, and severe fatigue. These were validated with the mutual verification of the degree
of fatigue according to the subjective and objective aspects. The sleepiness table is shown
in Table 6.

Table 6. KSS Sleepiness Chart.

Score Degree of Sleepiness

1 Extremely alert
2 Very alert
3 Vigilance
4 A little alert
5 Neither alert nor drowsy
6 Has some signs of drowsiness
7 Drowsiness, but can stay awake
8 Drowsiness, requiring effort to stay awake

9 Very lethargic, requiring great effort to stay
awake, struggling to stay awake

10 Extreme drowsiness, inability to stay awake

5.3. Experimental Procedure

Normally, when the human body reaches a fatigued state, the blink frequency, the
f-value of PERCLOS, and the number of yawns significantly increase. However, if the cycle
of fatigue detection is too long, the fatigued state is difficult to identify within the time
parameters; if the cycle is too short, the fatigue detection error rate increases. In order to
ensure effective detection and efficiency, the fatigue detection period was set to 60 s, and
the video sampling frame rate was 30 fps. Therefore, the most recent 1800 frames of data
were used to calculate the values of various data and the dispatcher’s level of fatigue.

First, we input the collected video data into the RetinaFace model to locate the key
points of the face and obtain the positioning data of human eyes (12 points), mouth
(8 points), and nose tip (1 point), according to the facial key points of each frame of the
image. The key point representing the tip of the nose was calculated to obtain the eye
screenshot for the reference eye and extract the HOG feature, which was then input into the
PSO-SVM classifier to distinguish the eye open or closed state and calculate the PERCLOS
f-value of the latest 1800 frames.

Blinking is a process, and it takes about 0.1 s to blink one time. According to a video
frame rate of 30 fps, the sampling time of one frame is about 0.033 s. Without any occlusion,
at least two images could capture a single blink, so at least two consecutive pictures with
eyes closed were counted as one blink.
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According to the position data of the eight key points of the mouth, the mouth
aspect ratio (MAR) of each frame image was calculated, and a fixed threshold was used to
determine the occurrence of yawning; then, the number of yawning actions in the most
recent 1800 frames was also calculated. When collecting facial key points for calculation,
the video data were added to the Bi-LSTM-SVM adaptive enhancement model at the same
time, and the frequency of yawning, the number of sleep states (indicated by lying on the
table), etc., were calculated.

The hyper-parameters that affected the classification results of the artificial neural
network fatigue state classification model included the following: the number of network
layers, the number of neurons in each layer, and the number of iterations. At first, we
used an empirical equation to calculate the parameters and determined that the model had
the following: a total of 5 input neurons; a total of 150 iterations; and two hidden layers,
one with 20 neurons and the other with 30 neurons. However, this would have caused
overfitting. As a result, we adopted four methods to reduce and avoid overfitting.

(1) Appropriately reducing model complexity

By reducing the number of neurons in the two-layer network to 10 and 15, we can
reduce the amount of neuron computation and avoid overfitting.

(2) Using an optimizer and an appropriate learning rate

We used the Adam optimizer and selected an appropriate learning rate; we set
0.05 here.

(3) Early stopping

We divided the original training dataset into a training set and a validation set and
only trained using the training set. We calculated the error of the model on the validation
set in each cycle. When the error of the model on the validation set was worse than the
previous training result, we stopped training. After training, the training epoch was stable
at epoch 100. Therefore, 100 was chosen as the number of training epochs.

(4) The batch size cannot be set too large

When training the neural network, we set a smaller batch size, 10.
After the above debugging processes, the network effect was good, and the overfitting

phenomenon was avoided. The training results are shown in Figure 11.

Figure 11. Training history figure.

The data and classification are shown in Table 7.
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Table 7. Dataset Sampling Table.

Number PERCLOS
f -Value

Blink
Frequency

Yawn
Frequency

Bowed
Head/Asleep

Asleep on
a Table

Fatigued
State

1 0.009 3 0 0 0 0
2 0.073 20 0 0 0 0
3 0.340 18 4 0 0 1
4 0.354 20 0 0 0 1
5 0.531 27 20 0 0 2
6 0.728 20 13 0 0 2
7 0.890 20 5 0 0 3
8 0.300 21 2 0 1 3
9 0.800 10 4 2 0 3

5.4. Analysis of Results

In order to provide a clearer description of the effectiveness of our proposed algorithm,
we conducted ablation and comparison experiments on fatigue detection, facial detection,
and posture recognition. The results are as follows.

(1) Fatigue detection ablation test

Table 8 shows the prediction results of each fatigue state, and the confusion matrix of
the network model is shown in Figure 12.

Table 8. Model evaluation results on self-built dataset.

Fatigue State Accuracy Precision Recall F1-Score

Mild-to-no fatigue 1 0.9 1 0.95
Moderate fatigue 0.89 1 0.89 0.94

Severe fatigue 1 1 1 1
Overall status (weighting algorithm) 0.96 0.97 0.96 0.96

Figure 12. Confusion matrix.

In order to verify the effectiveness of multi-feature selection in this study, the accuracy
of fatigue classification under three different features was selected for comparative analysis:
the PERCLOS method, which is calculated by only using eye key points; only facial features
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(eye key points, mouth key points, etc.); and the algorithm in this paper (facial features and
behavioral features). The results are shown in Table 9.

Table 9. Comparison of results of different methods on self-built dataset.

Method Precision (%) Remark

PERCLOS method only 88.89

Disadvantages: Unable to
recognize facial occlusion

actions such as hand
occlusion, yawning, lying on

the table, etc.

Facial features only
(PERCLOS/Yawn) 92.59

Disadvantages: Unable to
recognize facial occlusion

actions such as hand
occlusion, yawning, lying on

the table, etc.
Multi-feature fusion method
(facial features + behavioral

features)
1

Fatigue can be identified
using both facial features

and body movements

(2) Multi-feature fusion fatigue detection method comparison

A comparison with the algorithms used in previous studies is shown in Table 10. In
this study, the fatigue detection algorithm using multi-feature fusion had better accuracy
than the other models, with a 3.71% higher rate than the next ranked model. The results
are shown in Table 10.

Table 10. Evaluation index results of different models on self-built dataset.

Cited Paper Method Precision (%)

[13] Multi-character 90.74
[15] Multi-character 92.59

Ours Multi-character 96.30
The methods in the cited papers were reimplemented on our own dataset.

In this comparison of the three methods, all were multi-feature fusion methods for
fatigue detection. In reference [12], PERCLOS, eye closure duration, and mouth opening
times are used as fatigue detection characteristics, and the fusion algorithm of the fatigue
decision-making level is a BP neural network. Due to the relatively small number of
features, the accuracy was the lowest among the three. In reference [16], five features, such
as the head, the eyes, and the mouth, are used for fusion, but the fusion method is weighted
with empirical values. The overall effect was better than that of the other three features.
Our algorithm had the best effect, because it uses five features and also considers body
posture characteristics, as shown in Table 11.

Table 11. Different model evaluation results on self-built dataset.

Algorithm Accuracy

BP 0.64
SVM 0.82

LSTM 0.88
Bi-LSTM-SVM adaptive enhancement

algorithm 0.96

We provide a different model of behavioral and facial fusion features for fatigue
state prediction. As shown in Table 8, the overall fatigue prediction effect of the model
is satisfactory, and the evaluation indexes of each fatigued state are above 96%. The
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model made an error in the classification of mild-to-no fatigue and moderate fatigue and
classified moderate fatigue as mild-to-no fatigue. The reason is that in two records, the
subjects did not display behavior changes, such as yawning or eye fatigue, making their
overall characteristics relatively similar. In future research, we will focus on optimizing the
scoring mechanism based on the degree of subjective sleepiness and improve the distinctive
characteristics of eye fatigue.

(3) Facial key point model ablation test

In order to verify the efficiency of the research method proposed in this paper, the
facial key point model was assessed with a testing set composed of a public and a hand-
crafted dataset, and the normalized mean error (NME) was used for evaluation, as NME is
a commonly used evaluation index for facial key point detection:

NME =
N

∑
k=1

||xk − yk||2
d

(11)

where x represents the true position of the key point, y represents the value predicted by
the network, and d represents the Euclidean distance between the two outer corners. The
smaller NME is, the better the prediction results of the model are.

In order to verify the validity of the classification model proposed in this paper, the
model was evaluated as a classification model, and the accuracy, recall, precision, and
F1-score values are introduced for model classification. The accuracy rate is the proportion
of accurately predicted samples out of all predicted samples; the recall rate reflects the
probability of predicting a positive sample among the actually positive samples; and the
precision rate is the accuracy of the model evaluation and prediction of positive samples.
The F1-score considers both the precision and the recall values of the classification model.
The equations for these calculations are the following:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1Score =
2× P× R

P + R
(15)

True positive (TP): The sample is positive, and the prediction result is positive.
False positive (FP): The sample is negative, but the prediction result is positive.
True negative (TN): The sample is negative, and the prediction result is negative.
False negative (FN): The sample is positive, but the prediction result is negative.
In this paper, the commonly used public dataset 300 W was used for the quality

assessment of facial key point detection. The environment for this experiment used a
camera (1280 × 720), a GPU NVIDIA Geforce GTX 1080Ti, and a graphics memory of 11 GB.
The training set of this dataset had a total of 3148 images, and the testing set contained
689 images. In this paper, 12 key points of the eyes, 1 key point of the tip of the nose, and
8 key points of the mouth were used.

We conducted a comparative experiment. We compared the prediction accuracy
(NME) of models with Gabor, without Gabor, and with LBPs. As the result show, the model
with Gabor showed better performance. The Gabor filter can extract rich texture features in
face images, making face feature classification and recognition more accurate, as shown in
Table 12.
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Table 12. NME comparison on 300 W dataset.

Method Common Subset Challeng Subset Full Subset

With LBFs 4.95 11.98 6.32
Without Gabor 3.22 5.80 3.73

With Gabor 3.19 5.17 3.58

(4) Facial key point model comparison

The NME results of RetinaFace-based facial key point recognition on the 300 W dataset
are shown in Table 13, and the prediction speeds of the single-frame pictures are shown in
Table 14.

Table 13. NME comparison on 300 W dataset.

Method Common Subset Challenge Subset Full Subset

CPMs (SBR) 3.28 7.58 4.10
Multi-feature fusion
method (facial key

points)
3.19 5.17 3.58

Table 14. Model size and prediction speed on self-built datasets.

Method Model Size (M) Prediction Speed (ms)

Multi-feature fusion method
(facial key points) 1.84 100

As shown in Table 13, RetinaFace-based facial key point recognition performed well
with the comparison algorithm on the 300 W dataset, and it demonstrated good prediction
accuracy on the common subset, challenge subset, and full subset. As shown in Table 14,
the volume of the model was very small, at only 1.84 M, and the prediction cost time was
only 0.1 s, which meets the efficiency requirements of effective and efficient dispatcher
fatigue detection.

(5) Behavioral classification model ablation test

To verify the effectiveness of our proposed algorithm for behavioral features, we
conducted comparative experiments. We compared the accuracy of behavioral posture us-
ing different methods, including LSTM, Bi-LSTM, Bi-LSTM-SVM, and enhanced adaptive
algorithms. As the results show, our algorithm improved the accuracy of posture detection.
The results are shown in Table 15.

Table 15. Evaluation index results of different models on self-built datasets.

Methods Accuracy

LSTM 0.78
Bi-LSTM 0.89

Bi-LSTM-SVM 0.93
Adaboost-Bi-LSTM-SVM 0.96

(6) Behavioral classification model comparison

In order to verify the superiority of model classification, comparison and verification
based on other neural networks were conducted on the same dataset. In this study, the
fatigue detection algorithm based on multi-feature fusion had a higher accuracy than other
models, as shown in Table 16.
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Table 16. Evaluation index results of different models on self-built datasets.

Algorithm Accuracy Precision Recall F1-Score

BP 0.71 0.65 0.71 0.66
SVM 0.78 0.83 0.77 0.76
LSTM 0.84 0.89 0.84 0.82

Bi-LSTM-SVM
adaptive

enhancement
algorithm

0.96 0.97 0.96 0.96

5.5. Discussion

In this study, we show a method for railway train dispatcher fatigue detection using the
multi-feature fusion of facial cues and body postures in a deep learning model. Considering
the unfavorable factors, such as facial occlusion and angle changes, that have limited single-
feature fatigue state detection methods, we developed our model based on the fusion of
body postures and facial features for better accuracy.

First and foremost, this study’s method detects the fatigue status not only by using fa-
cial features but also by using human postures when the face is blocked. The result of model
prediction accuracy was 96.3%, and recall was 96.3%, which indicates the effectiveness of
the model. Second, we used an optimized RetinaFace model to identify eye key points,
obtaining NME of 3.58 and prediction cost of 100 ms, ensuring its prediction accuracy and
speed. Third, we adopted the optimized Bi-LSTM to recognize human posture to identify
human fatigue posture, and the prediction accuracy was 0.96.

The comparison of the findings and those of other studies confirms that this study
presents an objective fatigue detection method that uses non-contact methods to detect
dispatchers’ fatigue status. At present, the features used in multi-feature fatigue detection
include eye closure duration, mouth movements during yawning, and vocal tonality. The
most prominent difference in our study is the use of behavioral actions as fatigue features.
Compared with previous research methods that are based on facial multiple features, the
prediction accuracy has been improved by 5.56% and 3.71%, respectively.

Our study focuses on the accuracy of fatigue state detection during the daily working
time of dispatchers; the fatigue state is a gradual process, and the fatigue state is not an
instantaneous state. Therefore, the real-time requirement for the detection of the fatigue
of dispatchers is not strong. In our experimental environment, we ran it three times,
and it took an average of 311 ms, which meets the research needs in dispatcher fatigue
detection. In order to improve the real-time performance of the algorithm, we will continue
to optimize the face key point recognition algorithm, human key point extraction algorithm,
and feature extraction algorithm. For example, we will continue optimizing the feature
extraction method for human posture, which can reduce the computational complexity of
the algorithm and improve real-time performance.

The generalizability of the results is limited by fatigue detection methods. This study
can add a more accurate technical method for identifying fatigue, such as EEG detection,
and then identify fatigue using multiple feature fusion methods. Due to the fixed-focus
camera used for the method in this study, if the face is far from the camera, it may not be
possible to capture the face, and relying solely on posture recognition is not sufficient to
fully detect fatigue. Therefore, it is more suitable for work positions where the relative
camera distance remains unchanged.

This is an important issue for future research. Fatigue detection can be conducted
on dispatchers to detect their fatigue status in advance, providing human fatigue data
support for railway regulations and operation management and further ensuring railway
operation safety.
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6. Conclusions

Given the complex features of face and body posture, it has been challenging to
accurately predict human fatigue levels at a low computational cost when using traditional
approaches that only consider a single feature. In this study, we developed a new method
by fusing five key point features that comprise the face, as well as identifying critical
changes in body posture.

The main conclusions of this paper are reported below.
The algorithm proposed in this paper uses the f-value of PERCLOS, blink frequency,

yawning frequency, stretching, the bowing of the head (that could indicate sleep state),
falling asleep on a table, and other behaviors as characteristics for determining fatigue.
It can determine fatigue not only by identifying key points of the face but also using
behavioral cues that indicate fatigue levels using feature fusion.

We collected a dataset for this study. There were a total of five volunteers in the dataset,
which included 192 samples of available data. We could control data quality better. By
confirming and verifying the integrity and accuracy of the data, the quality of the data
and the credibility of the study results can be improved. In future work following up on
this study, we will invite more volunteers for data collection and continuously expand
the dataset.

The experimental results on the hand-crafted dataset show that the detection accuracy
of our method reached 96.30%. Compared with the other methods using a single feature
for fatigue determination, our multi-feature fusion algorithm had better accuracy by 7.41%
and 3.71%. At the same time, the method proposed in this paper had higher accuracy than
other existing algorithms even without facial expression data; thus, the effectiveness of
dispatcher fatigue detection was verified.

This study’s method recognizes fatigue based on the facial and posture characteristics
of dispatchers, indicating its application potential. Our next research direction will focus
on improving our model by increasing the size of the experimental datasets and reducing
the complexity of the model. In addition, we expect to apply dropout and regularization
methods to optimize the model. Furthermore, additional research should be conducted to
include other fatigue features and indicators, such as tone of voice and the total amount of
continuous work hours, as integrating these could improve the model’s prediction effect.
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