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Abstract: Point cloud data obtained by laser scanning can be used for object shape modeling and
analysis, including forest inventory. One of the inventory tasks is individual tree extraction and
measurement. However, individual tree segmentation, especially tree crown segmentation, is chal-
lenging. In this paper, we present a novel soft segmentation algorithm to segment tree crowns in
point clouds automatically and reconstruct the tree crown surface from the segmented crown point
cloud. The soft segmentation algorithm mainly processes the overlapping region of the tree crown.
The experimental results showed that the segmented crown was accurate, and the reconstructed
crown looked natural. The reconstruction algorithm was highly efficient in calculating the time
and memory cost aspects since the number of the extracted boundary points was small. With the
reconstructed crown geometry, the crown attributes, including the width, height, superficial area,
projecting ground area, and volume, could be estimated. The algorithm presented here is effective for
tree crown segmentation.

Keywords: tree crown segmentation; soft segmentation; tree crown reconstruction; tree crown shape;
point cloud; laser scanning data

1. Introduction

The forest is closely related to human life and is an essential element of the metaverse
and other virtual spaces, including three-dimensional (3D) computer games and movies.
Whether studying forestry or modeling geometrical tree shapes, it is necessary to obtain
forest data. A convenient and efficient way to obtain forest data is to use remote sensing
technology, such as terrestrial fixed-point or airborne LiDAR, to scan a forest. These kind of
data consist of a large number of discrete points in 3D space, called point clouds. In point
cloud data, each point is recorded as 3D coordinates (x, y, z). Compared to 2D image data,
it has accurate three-dimensional position information without scaling or deformation.
As pointed out in previous studies, the successful detection and delineation of individual
trees from forest point cloud is critical, allowing for studies of individual tree demography,
growth modeling, and more precise measures of biomass [1]. However, the segmentation
of an individual tree, especially tree crown segmentation, is not easy. Apart from the
coordinates of the points, we should estimate other information, such as the connection
relationship and neighborhood relationship of these points.

As for the individual trees and the crown segmentation from LiDAR data, many
methods have been presented in the past ten years. These existing methods can be roughly
divided into three categories.

The first category method is based on treetop detection. When the tree spacing at
the upper lever is large, exploiting the spacing between the tops of trees is effective to
identify and group points into a single individual tree [2]. After a treetop has been detected,
the tree climbing method can be applied to identify the individual tree, and then a donut
expanding and sliding method tree can be used to detect the crown boundary and isolate
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the individual trees [3]. Another way is that after the treetop has been detected, it is
consecutively connected and accumulated by vertically traversing the point layers, which
results in the individual tree delineation [4]. The canopy height model can be used for
coarse segmentation, and the segmented results can be refined using a multi-direction 3D
profile analysis and K-mean clustering [5]. In addition, tree segmentation can be practiced
by combining the local maxima (treetop) with the growing region algorithm or Voronoi
tessellation method. However, in some cases, these combination methods do not provide
better results than the tree relative distance algorithm [6].

The second category is based on horizontally cut clusters. A representative method
is layer stacking, which slices the entire forest point cloud at 1-m height intervals and
isolates the trees in each layer. Then, merging the results from all the layers produces the
representative tree profiles [7]. A simpler method than layer stacking is the projection
algorithm, which projects the point cloud onto the xOy plane and employs the hybrid
clustering technique, including a combination of DBSCAN and K-means, to segment the
individual trees from the forest point cloud [8]. It has been observed that the point density
decreases with an increasing distance from the trajectory. A distance-dependent algorithm
that considers the inhomogeneities in point density was developed for the segmentation of
the forest point clouds [9]. To overcome the limitation of the method that takes the highest
point in a filtering window as the tree position, H. Liu et al. used the cluster center of the
higher points to detect the tree position [10].

The third category method is based on the fusion of multiple algorithms. Given the
complexity of forest point cloud segmentation, a processing chain consisting of the stand
delineation, canopy height model, characterization, and point clustering with an adaptive
mean shift was proposed [11]. For terrestrial backpack LiDAR data, the individual trees
were extracted based on DBSCAN clustering and a cylinder voxelization of the volume,
which showed a high detection rate for the tree locations [12]. To improve the results
of the individual tree detection algorithms, M. Lisiewicz et al. proposed a three-step
approach to correct the segmentation errors [13]. Recently, the structure and geometry
shape were considered for improving the segmentation effect. For example, for individual
tree crown segmentation from laser data that focuses on overstory and understory trees,
a framework that combines the detection of the symmetrical structure of the trees and
mean shift clustering was proposed [14]. With branch–trunk constraints, a hierarchical
clustering method was proposed to extract street trees from mobile laser scanning (MLS)
point clouds [15]. Using the shape of the scanline and circle fitting, an individual tree can
be segmented, and the stem attributes can be estimated [16]. In addition, the application of
a convolutional neural network to perform the tree crown detection and delineation has
also been developed [17].

The reconstruction of a tree and a tree crown is a direct follow-up to point cloud
segmentation, which measures tree properties more accurately and conveniently. The
reconstructed geometrical models also show reality and can be used in virtual scenes in the
virtual community, 3D computer games, movies, etc. In the past decades, much literature
has proposed methods for reconstructing trees and tree crowns. Here, we only investigate
some of the typical existing methods published in recent years.

Most of the reconstruction algorithms consist of the following four steps: (i) the
segmentation of a TLS tree point cloud separating the wooden parts from foliage, (ii) the
reconstruction of the trunk and branches, (iii) the distribution of the foliage within the tree
crown using the points of the foliage cloud as the attractors, and (iv) the generation of a 3D
representation [18]. The points from the leaves and branches can be segmented based on the
convergence of the local principal curvature directions and the region growing method [19].
The tree trunk and branch geometries and topological structures are constructed based on
skeleton extraction and then fitted with cylinders [20,21]. Therefore, the structural analysis
and optimization of the extracted skeleton are often emphasized [22].

Tree crown segmentation and reconstruction is one of the key points in tree segmenta-
tion, which has received more and more attention. Although terrestrial laser scan point
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clouds can provide precise feature observation of vegetation architecture and improve
agricultural monitoring and management [23], the incompleteness that stems from the
branch or leaf occlusion impairs the detection accuracy of the tree attributes. Reconstructing
the tree crown geometry from the point clouds can compensate for this incompleteness for
a better tree attribute estimation.

For the tree crown reconstruction, the crown points should be detected first from
the point cloud. The distribution of the foliage within the tree crown uses the points of
the foliage cloud as the attractors [18]. Paris et al. [24] presented a data fusion approach
to extract the crown structures by exploiting the complementary perspective of airborne
laser scanning. Cici et al. [25] delineated the tree crowns from the airborne laser scanning
data using a Delaunay triangulation. The early crown reconstruction methods mainly
employ surface fitting with a cylinder or paraboloid fitting surfaces [26]. Kato et al. [27]
used radial basis functions (RBFs) to reconstruct the implicit surfaces approximating the
individual tree crown shapes, and the tree crown formation was captured through the
implicit surface reconstruction [28]. Lin et al. [29] provided a new method by combining the
mobile mapping mode and a multi-echo-recording laser scanner to enhance the integrity of
the individual tree crown reconstruction.

The other typical methods for reconstructing the tree crown geometry include the
α-shape method [30], the region-based level set method [31], and a voxel-based method to
add leaves to a reconstructed 3D branch structure [32].

The direct surface fitting method for the crown surface reconstruction is short on
details, and current other methods have a relatively high time cost for the computation.
However, in some cases, the time efficiency of the reconstruction algorithm must be consid-
ered. For example, in vehicle [33] and airborne [34] laser scanning, the fast reconstruction
of objects is very important for real-time monitoring and analyzing the scene [9,35]. The
existing experiment results showed that crown segmentation in a multi-layered closed
canopy forest could be improved using 3D segmentation methods rather than primarily
relying on the canopy surface model [36].

The above methods were effective for tree counting and single tree separation. How-
ever, most of the methods did not pay attention to the crown shape, especially the overlap-
ping of adjacent tree crowns, causing the shape and size of the crown to be overlooked and
the shape reconstruction effect to lack realism. The former is essential for forest inventory,
and the latter is important for digital model construction.

In this paper, we propose a new tree crown segmentation and reconstruction method
based on terrestrial laser scan point clouds to obtain accurate tree crown segmented point
clouds and their realistic geometrical reconstruction. Furthermore, our method can enhance
the visual effects of reconstructed crowns with improved surface shape accuracy and
enhance the reconstruction process.

The main highlights of this work include the following.

(1) Construct an algorithm for segmenting and reconstructing tree crowns from laser
scanning data, which can be applied to the forest inventory.

(2) Propose a soft segmentation algorithm for making the reconstructed tree crown more
natural and accurate.

(3) Propose a fast reconstruction algorithm that fuses down-sampling and constructs a
kd-tree.

The rest of this article is organized as follows. Section 2 describes the data we used
and the proposed method in detail. Section 3 discusses the experimental results and the
analysis for evaluating the proposed method. In the last section, Section 4, we conclude
and list several limitations.

2. Data and Methods

Figure 1 illustrates the overview of our method’s framework. The input data consisted
of a raw point cloud. Only 3D coordinates of all the points were used. After segmenting the
crown points from the branch points using the principal curvature direction distribution
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method, the proposed soft segmentation algorithm was used to obtain the individual tree
points. Then, the 3D silhouette surface was reconstructed. Finally, the tree geometry and
the other attributes were estimated using the reconstructed trees.
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Figure 1. The framework of the proposed method.

2.1. Data

The point cloud of the two pine trees used in our experiment was captured using
a Cyrax or RIGEL scanner on the Peking University campus. The number of points in
each scan was approximately 269,366 and 487,555, respectively. Each point was repre-
sented by 3D coordinates (x, y, z). The length (unit: meter) in directions x, y, and z were
8.47/11.19/11.12 and 10.19/9.31/11.94 in the two scans, respectively. The information is
listed in detail under the tree images, as shown in Figure 2.
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For testing the proposed soft segmentation algorithm, we combined two point clouds
(Figure 2a,b) to form a large point cloud (Figure 2c). The experimental purpose of combining
two trees at different intervals for segmentation was twofold. Firstly, it was done to obtain
the simulated data of the overlapping tree crowns. On the other hand, it was used to study
whether the accuracy of the proposed method was affected by the two trees with different
degrees of overlap.

The second set of experimental data was street trees extracted from the Oakland point
cloud data (Figure 3a). The Oakland point cloud data were collected around the Carnegie
Mellon University (CMU) campus in Oakland, using Navlab11 equipped with side looking
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SICK LMS laser scanners, and were opened by D. Munoz et al. [37]. The distance between
two adjacent trees on the roadside was manually planned, and the distance between
them was relatively large. Most of the adjacent trees had no intersecting areas between
their crowns, resulting in accurate individual trees isolated using most of the existing
methods, such as region growth or clustering. Therefore, we only chose two trees with
overlapping crowns, as shown in Figure 3b, and named OaklandTrees to test our proposed
soft segmentation algorithm.
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labeled with a purple square in Subfigure (a).

Another set of experimental data was three pair of trees, which were extracted from
RUSH07, as shown in Figure 4a. The point cloud data were acquired in the native Eucalypt
open forest (dry sclerophyll box-ironbark forest) [38] in Victoria, Australia. Please refer to
the introduction of this database for the geographic information and the data composition
of the scanned plot.
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Three pair of trees were selected as the experimental data because our main inter-
est was in the segmentation of trees with overlapping crowns. The data, RUSH07, was
segmented into several groups, and there were no overlapping areas between the tree
crowns of the groups. Although there were more than three pair of groups with over-
lapping tree crowns, the three selected pairs, named RUSH07treesA, RUSH07treesB, and
RUSH07treesC, as shown in Figure 4b–d, respectively, were representative. The difficulty of
segmenting the three pair of trees was different. RUSH07treesA consisted of two trees with
the same height. RUSH07treesB displayed an interlocking phenomenon between adjacent
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tree crowns. RUSH07treesC was composed of two trees with different heights, which were
relatively close together. The information about those three pair of trees can be found in
Figure 4b–d.

2.2. Soft Segmentation

The proposed soft segmentation (SoftSeg) algorithm mainly deals with the crown
points from two adjacent trees. SoftSeg consists of four steps: the crown points extraction;
the crown layers partition; the vertical partition; and the layer contour extraction and
refinement.

2.2.1. Crown Points Extraction

This step segments the crown points ΩC from the trunk and branch points ΩB in the
point cloud Ω, which consists of two trees, as shown in Figure 2c, for example.

Ω = ΩC ∪ΩB (1)

The segmentation algorithm for the branch and leaf separation can be any one of
the existing approaches. We employed the principal curvature direction-based method
proposed in the literature [19]. Based on the key assumption that the neighbor points from
the branches usually have similar principal directions and the neighbor points from the
leaves do not have this feature, the curvature direction-based algorithm consists of several
steps. However, the first three steps can be used to the separate trunk and branch points
from the leaf points. The first step is to estimate the principal directions and the principal
curvatures of each point. The second step is to build the axis distribution of each point.
The last step is to discriminate the point from a branch or a leaf by employing a threshold.
Figure 5 shows the segmented crown points from Figure 2c.
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As shown in Figure 5b, the top view of the segmented crown highlights the density of
the point cloud in different regions of the extracted crown. The non-uniformity of the point
cloud was potentially caused by unilateral laser scanning and self-occlusion, resulting in
an unstable distance threshold value when the 3D surface was reconstructed.

We used the down-sampling method to overcome the influence of the non-uniformity
of the point cloud density, similar to the voxel-based method [32]. Then, the sparse and
uniform crown part points Ω(s)

C were obtained from ΩC. Figure 6a (6176 points) shows the
s down-sample visual effect from Figure 5a (708,504 points).

In this way, the number of sampling points was dramatically reduced. Only 0.872% of
the points were used for the crown segmentation and reconstruction. The shape of the tree
crown point cloud after down-sampling was, in general, consistent with its original figure.

2.2.2. Vertical Partition

According to the segmentation results of the branch and leaf point cloud (Section 2.2.1),
the tree roots (C1 and C2) and the trunk top positions were detected. Therefore, we used the
minimum cut plane to construct the coarse segmentation of the two tree point clouds. The
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approach consisted of three steps: partitioning the points into slices, finding the optimal
dividing line, and obtaining the initial segmentation of the point cloud.
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each slice was 0.2 m, then the number of slices was the quotient obtained by dividing the
distance between C1 and C2 by ∆vb, as shown in Formula (2).

Nvb =
|C1C2|

∆vb
(2)

Figure 7 illustrates the method for generating slices along the line C1 to C2. Note that the

partition was performed in 3D space, and the local coordinate system
[

C1;
−→

C1C2

o
,
−→
C1Y,

−→
C1Z

]
was not the same as that of the laser scanner, where only the direction of the z-axis was the

same.
−→

C1C2

o
is a unit vector parallel to

−→
C1C2. Let C1(xc, yc, zc), then any point pi(xi, yi, zi)

belongs to the ith slice Bi, if i =

⌊√
(xi−xc)

2+(yi−yc)
2

∆vb

⌋
. In this way, all the points in Ω(s)

C were

partitioned into m slices.
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The second step was to find the optimal dividing line, which was defined by the
minimum cut plane and could be obtained using the solution of the minimum–maximum
optimal problem, as shown in Formula (3).

i∗ = argmin
i

max
j

{
zj
∣∣∀pj

(
zj, zj, zj

)
∈ Bi} (3)
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The last step was to segment the points into three categories: the unlabeled set, the
point set from the first tree, and the point set from the second tree, labeled as 0, 1, and 2,
respectively.

The label L(pi) of a point pi(xi, yi, zi) was determined by a partitioning rule. If pi ∈ Bj,
then

L(pi) =


0, otherwise
1, j < i∗ − ε
2, j > i∗ + ε

(4)

where ε ∈ N, known as the overlap width, is a parameter specified by the user and related to
the overlap level of two crowns. The vertical partition result is shown in Figure 6a, where
ε = 1. If the unlabeled case is deleted, Formula (4) is transformed into the following.

l(pi) =

{
1, j ≤ i∗

2, j > i∗
(5)

Formula (5) defines a kind of hard vertical partitioning, known as the hard segmentation
method (HS), which segments the point cloud (Figure 6) into Figure 8b. From the subfigure,
it can be found that after segmenting, the shape between the two segmented crowns was a
straight line, which is generally not a natural shape since the adjacent tree crowns often
overlap.
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To improve the visual effect of the crown shape, Formula (4) was employed in our
soft segmentation algorithm. The point in the intersection region was classified into the
unlabeled point set, which was processed in the following subsections.

2.2.3. Crown Layers Partition

Unlike the methods that project 3D points on the ground or use an xOy plane to achieve
the biggest crown contour, we used a method similar to the layer stacking method [7]. In
this way, the shape of each layer of the crown contour was tighter.

For the crown point set Ω(s)
C , the layer bins δi(i = 1, 2, · · · , k) were generated from

horizontal slices. Figure 9 shows the partitioning effect.
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Let k be the number of bins.

Ω(s)
C = δ1 ∪ δ2 ∪ · · · ∪ δk (6)

The cutting was uniform in the upward direction, and the thickness ∆b of each bin
was calculated using Formula (7).

∆b =
1
k
(Zmax − Zmin) (7)

where Zmax = max{z|∀P(x, y, z) ∈ Ω(s)
C } and Zmin = min{z|∀P(x, y, z) ∈ Ω(s)

C }. The num-
ber of bins k is a parameter whose value depends on the laser scanning resolution. If the
value of k is appropriate, each bin δi is neither too thick nor too thin. In our experiment,
the thickness ∆b of each bin was set to approx. 0.5 m, and the parameter k = 20, specified
according to the experiment data that the height of the trees used in our experiments were
approx. 10 m. In this way, all the points were partitioned into these bins.

2.2.4. Layer Contour Extraction and Refinement

The unlabeled points in the intersection region were processed, as shown in Figure 10.
This problem was similar to recovering the missing part of the crown. By referring to an
idea that repairs the missing points based on their shape and structure [39], we also fully
used the point cloud contour and optimized the shape of each layer bin.

The contour of each layer bin was extracted by projecting the points in the bin onto the
horizontal cross-section in the middle of the bin and employing the two-dimensional (2D)
contour extraction algorithm. The 2D contour was obtained sequentially, connecting the
farthest projection point in each direction. For example, as shown in Figure 10, the farthest
projection point in angle ∠A1OA2 was A1. The number of directions (m = 9, 18 or 36) was
specified by the experimental test.
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Figure 10. The 2D contour extraction of the points.

Using the 2D contour extraction approach, we obtained the contour of each layer tree
by tree, L(pi) = 1 or 2, as shown in Figure 11a. Figure 11c provides an example of a layer
where the contours of the two trees did not overlap, and the unlabeled (red) points were
not determined as to which tree they belonged to.

For an unlabeled point p, L(p) = 0, we inferred its new label, according to the contour
shape, distance, and randomized assignment. We first calculated d1 and d2, which were the
distances from p to the contours of Tree 1 and Tree 2, respectively. Then we used the Monte
Carlo method to label p as one or two, according to the probability.

Plabel = e−d2/d1 (8)

The idea behind this formula was that the farther away from the contour of one tree,
the lower the probability of belonging to this tree. Figure 11b,d show the effect of the
updated segmentation and the refined contour.
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Since our algorithm included a random classification strategy for the overlap region
points, its effect achieved the simulation of the intersection of the crown contour. The
algorithm was called the soft segmentation (SoftSeg) algorithm.

2.3. Reconstruction

After the terrestrial laser scan point clouds have been soft segmented, the points of a
tree are taken as the input for crown surface reconstruction. The input data, denoted as Ω,
include N points, and each point Pi(i = 1, 2, . . . , N) were represented only by its position
coordinates (x, y, z), without regard to other information that laser scanners may generate
besides the position coordinates. The direction of the z-axis is upward, which will guide
the horizontal cutting of our method.

After inputting the laser scan point cloud of a tree, we first segment crown points
(denoted as C) out from branches, then reconstruct the crown as following steps.

2.3.1. Detecting Boundary Points of Bins

For each layer bin, the boundary points were detected based on a 2D α-shape. The
classical α-shape method was introduced by H. Edelsbrunner in 1983 [40], and Bernardini
et al. [41] improved it to probe the boundary of a point set by setting α = r2, in which
r is the radius of a disc in a 2D plane or a ball in 3D space. In our case, we projected all
the points of a bin onto a horizontal plane xOy, as shown in Figure 10, and obtained the
boundary points of each original bin based on Bernardini’s method [41].

2.3.2. Building the Crown Surface

After obtaining the boundary points of each bin, the crown surface geometry was
constructed based on a 3D α-shape [42]. Let Λ be the set of all the boundary points Qj (j = 1,
2, . . . , nb) of the crown. We constructed a kd-tree data structure [43] on Λ to speed up the
procedure of constructing the surface. The Algorithm 1 known as the “Building Crown
Surface with Boundary Points” (or BCSwBPs) was given in pseudocode as follows.
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Algorithm 1: BCSwBPs.

Input: Λ,α
Output: crown surface geometry
S1: construct a kd-tree with all points in the set Λ
S2: for ∀Qi, Qj, Qk ∈ Λ
S3: calculate two centers C1, C2 of two balls B1, B2. Note that Qi, Qj, Qk are on Bm and
|CmQn| = α, m = 1, 2; n = i, j, k.
S4: Find a nearest neighbor Qd1 of C1
S5: Find a nearest neighbor Qd2 of C2
S6: if Qd1 /∈ B1 or Qd2 /∈ B2, then
S7: ∆QiQjQk is a boundary triangle for output
S8: end if
S9: end for

2.3.3. Estimating the Attributes

With the reconstructed crown surface, several crown attributes, including the width,
height, superficial area, and projecting ground area, were estimated.

The width Wcrown of a tree crown was estimated according to Formula (9).

Wcrown = max
{∣∣∣P′i P′j , ∀P′i , P′j ∈ Γ

∣∣∣} (9)

where Γ is the boundary of the projection points set that vertically mapped Λ onto the xOy
plane.

The height Hcrown of the crown was estimated using the laser scanning point data.

Hcrown = Zmax − Zmin (10)

where Zmax and Zmin are the maximum and minimum z-coordinates of the crown.
The superficial area of the crown was the sum of the areas of all the triangles on the

surface of the crown. In the traditional α-shape method, the triangles in the crown were
turned into boundary triangles if the radius r of the probing ball was too small. This led
to a bigger superficial area than the real case. If the r was set too large, the reconstructed
crown would become a convex hull, which would also induce a significant error. As our
method only used the boundary points to build the crown surface, the superficial area only
consisted of the boundary triangles, making the error small.

For calculating the projecting ground area, all the points of Λ were projected onto the
xOy plane, and a polygon P was built on these projected points by employing a 2D α-shape
method. Note that the polygon P may not always be convex, and the built P based on
projecting C or Λ onto the xOy plane is the same.

For calculating the reconstructed tree crown volume, the geometrical information of
each layer bin could be used again. The volume was estimated using Formula (11).

Vtree =
1
3

∆b

k−1

∑
i=0

(
Si + Si+1 +

√
SiSi+1

)
(11)

where Si is the cross-sectional area of the ith layer bin.

3. Results

We demonstrated the effectiveness of the SoftSeg and BCSwBPs algorithms based on
the point cloud segmentation and reconstruction experiments. Our algorithm was written
in C++ language with the support of OpenGL for visualization. The experiments were
conducted on a laptop with an Intel(R) Core(TM) i7-4710MQ CPU@2.5GHz and a 4 GB
RAM.
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3.1. Segmentation of the Tree Crown with Different Overlap Degrees

A pair of trees composed of the same two trees, if their distances are different, means
that the degree of overlap between tree crowns is also different. The experiment was to test
the segmentation effect of the point cloud from two trees at different distances. As shown
in the first column of Figure 12, the distance between two tree roots was 6.464, 6.962, 7.46,
7.959, 8.457, 8.956, and 9.455 m, respectively. These seven point clouds were segmented
using our SoftSeg algorithm, and the result of each step is displayed in Figure 12. It can be
found that the overlap region was classified in the view of the crown shape, which showed
a realistic silhouette.

For quantitatively evaluating the effect of the segmentation of our method, we com-
puted the accuracy (Ac) and precision (Pre) and compared our results to those from the
hard segmentation (Formula (5)).

The accuracy was calculated using Formula (12).

Ac = (m11 + m22)/N (12)

The sensitivity was calculated using Formula (13).

Pre = m11/(m11 + m21) (13)

where m11 is the number of points correctly classified to Tree 1; m22 is the number of points
correctly classified to Tree 2; m21 is the number of points wrongly classified to Tree 1; and
N is the total number of points of the input data.

We compared the results obtained by the proposed soft segmentation method (SS,
or SoftSeg) to the results obtained by the hard segmentation method (HS, Formula (5) in
Section 2.2.2). The quantitative results are listed in Table 1. In the table, the number of
points in Tree 1 and Tree 2 were 3253 and 2923, respectively.

Table 1. The confusion matrixes of the hard segmentation and soft segmentation methods. Each
matrix was 2 × 2, and the elements on the diagonal of a matrix represent the correct number of
segmentation points or the corresponding ratio of points.

SN Class HS.T1 HS.T2 HS.T1p HS.T2p SS.T1 SS.T2 SS.T1p SS.T2p

Row1
Tru.T1 3092 161 0.9505 0.0495 3078 175 0.9462 0.0538
Tru.T2 238 2685 0.0814 0.9186 227 2696 0.0777 0.9223

Row2
Tru.T1 3250 3 0.9991 0.0009 3242 11 0.9966 0.0034
Tru.T2 365 2558 0.1249 0.8751 341 2582 0.1167 0.8833

Row3
Tru.T1 3253 0 1 0 3251 2 0.9994 0.0006
Tru.T2 280 2643 0.0958 0.9042 270 2653 0.0924 0.9076

Row4
Tru.T1 3253 0 1 0 3251 2 0.9994 0.0006
Tru.T2 180 2743 0.0616 0.9384 162 2761 0.0554 0.9446

Row5
Tru.T1 3253 0 1 0 3253 0 1 0
Tru.T2 285 2638 0.0975 0.9025 279 2644 0.0954 0.9046

Row6
Tru.T1 3253 0 1 0 3253 0 1 0
Tru.T2 52 2871 0.0178 0.9822 42 2881 0.0144 0.9856

Row7
Tru.T1 3253 0 1 0 3253 0 1 0
Tru.T2 22 2901 0.0075 0.9925 18 2905 0.0062 0.9938
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classified into Tree 1 using the hard segmentation method. HS.T1p is the ratio of HS.T1 to 

Figure 12. The segmentation of two trees pieced together at different distances. From top to bottom,
the distance between the two tree roots was 6.464, 6.962, 7.46, 7.959, 8.457, 8.956, and 9.455 m,
respectively. From left to right: the input, layer bins, initial segmentation, initial contours of layer
bins, refined segmentation, and contours.

As for the symbols in the table in the first column (series number, SN) of the table,
Rowi (i = 1, 2, · · · , 7) consisted of the point cloud data from the ith row in Figure 12. Tru.T1
is the number of points that belongs to Tree 1. HS.T1 means that those points are classified
into Tree 1 using the hard segmentation method. HS.T1p is the ratio of HS.T1 to the number
of points from Tree 1. “SS” is the abbreviation of “SoftSeg”. Similarly, we defined the other
symbols, including HS.T2, HS.T2p, SS.T1, SS.T1p, SS.T2, and SS.T2p.

Using the data listed in Table 1 and with Formulas (12) and (13), the values of the
Ac and Pre were calculated and are displayed in Figure 13. From the line charts, we
can conclude that as the overlapping area of the two trees decreased, the accuracy of
segmentation continued to increase. Both line charts showed that compared to the HS
algorithm, the SS algorithm improved slightly in both the accuracy and precision. Due
to the small proportion of the points in the overlapping part of the crown of the two
trees to the total number of points, the segmentation accuracy and precision seemed to
improve only slightly. However, in view of the sum of misclassification points in Table 1,
the misclassification rate of the SS is approx. 4% lower than that of the HS.

3.2. Segmentation and Comparison

Four pair of trees, OaklandTrees (Figure 3b), RUSH07treesA (Figure 4b), RUSH07treesB
(Figure 4c), and RUSH07treesC (Figure 4d), were used for testing the performance of our
proposed method (SoftSeg).
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Figure 13. Comparison of the Ac and Pre of the segmentation using the hard segmentation (HS)
method and the soft segmentation (SS) method. (a) The accuracy (Ac) of the segment results of the
HS and SS methods. (b) The precision (Pre) of the segment results of the HS and SS methods.

The experimental results of our method were compared to those of three representative
methods: trunk guided crown segmentation (TrnGui10) [44], DBSCAN-based clustering
(Clust21) [8], and the water expansion method (WaterE21) [45]. The segmentation results
of the four point clouds after down-sampling are shown in Figure 14.

By comparing the segmented results to the ground truth (the second column in
Figure 14), it can be found that when there was an apparent valley between the adjacent
trees, WaterE21 showed the best performance in the view of the visual effect. Our method
achieved the best performance among the four listed methods when RUSH07treesC was
segmented.

For the quantitative comparison, the confusion matrixes of the four pair of trees
segmented using the four methods are listed in Table 2. In the table, “Pts.N” means the
number of points of the corresponding point cloud data. The bold confusion matrixes
achieved the best results among the four methods. This table showed that both the WaterE21
and our methods achieved the best segmentation results since the diagonal elements in
their confusion matrix were relatively large.
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Table 2. The confusion matrixes of the four pair of trees segmented using the four methods.

Name Pts.N TrnGui10 Clust21 WaterE21 Ours

OaklandTrees
1370 1351 19 1319 51 1370 0 1370 0
834 0 834 0 834 0 834 0 834

RUSH07TreesA
33,424 27,505 5919 29,072 4352 33,278 146 30,812 2612
43,286 0 43,286 0 43,286 76 43,210 23 43,263

RUSH07TreesB
33,849 32,592 1257 33,524 325 33,849 0 33,709 140
27,065 0 27,065 1 27,064 7 27,058 48 27,017

RUSH07TreesC
34,053 23,255 10,798 25,063 8990 22,831 11,222 30,906 3147
24,057 2106 21,951 0 24,057 105 23,952 1506 22,551

According to the confusion matrixes and Formula (11), the accuracy (Ac) of the
segmentation results could be calculated. The values of the segmentation accuracy of the
four pair point clouds segmented using the four methods are displayed as line chart in
Figure 15. From the perspective of the segmentation accuracy, these four segmentation
methods accurately segmented the three point cloud data, OaklandTrees, RUSH07treesA,
and RUSH07treesB, and the segmentation accuracies were all greater than 90%. However,
for the segmentation of RUSH07treesC, only our method had a segmentation accuracy
exceeding 90%, showing an optimal robustness.

The average accuracies of the four segmentation results were 91.79%, 94.00%, 95.05%,
and 97.06%, obtained by the four methods, TrnGui10, Clust21, WaterE21, and ours, respec-
tively. This means that in the experiment of segmenting these four point cloud data, our
algorithm achieved the best performance.

3.3. Reconstruction Results

For the two pine trees, we used our method to construct each tree crown, respectively,
as shown in Figure 16.
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Figure 15. The accuracy (Ac) comparison of the four pair of trees which were segmented using the
four methods.
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Figure 16. Crown reconstruction process illustrated with pine trees denoted as Pine 1 and Pine 2.
Each row shows the tree crown reconstruction results. The first column is a photo of the tree. The
second column is the laser scan point cloud The third points from branches, the fourth the points
from the crown, and the fifth shows the reconstructed crown silhouette surface, which was merged
with the crown points. The last column shows the reconstructed crown merged with the branch
points.

The related attributes are listed in Table 3, with ”SN” denoting the serial number of the
tree, “N.Pts” the number of scanning points, “H.Tree” the height (m) of the tree, “W.Tree”
the width (m) of the tree, “A.Sup” the superficial area (m2) of the reconstructed crown, and
“A.proj” the projection area (m2) of the reconstructed crown.

Table 3. Attributes of the two pine trees (Figure 16).

SN N.Pts H.Tree W.Tree A.Sup A.proj

Tree1 487,555 11.9 10.1 292.5 71.7
Tree2 269,366 11.1 11.1 303.3 73.1

For the point cloud, Oaklandtrees (Figure 3), after the segmentation with our SoftSeg
method, all the tree shape silhouette meshes were reconstructed, as illustrated in Figure 17.
The attributes of all the trees are listed in Table 4. In this table, the volume was calculated
using Formula (11), and its unit was m3. As shown in Table 4, the point cloud of each
segmented tree was very sparse, and the accuracy of the calculated attribute values needs
further verification in future research.
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Figure 17. Crown reconstruction results using the Oakland data.

Table 4. Attributes of the segmented 17 trees (Figure 17).

Tree SN N.Pts H.Tree W.Tree A.Sup Volume

1 977 7.138 6.515 113.109 64.803
2 435 6.747 3.334 46.002 12.153
3 978 6.654 6.454 108.756 48.789
4 1527 8.745 7.293 176.111 123.144
5 1370 8.601 7.687 158.965 108.512
6 834 7.540 5.727 112.835 54.985
7 1267 10.064 7.283 185.166 121.502
8 1427 9.610 9.353 220.818 153.500
9 1319 9.003 8.101 176.291 115.188
10 1042 9.816 7.222 172.671 108.886
11 1083 9.157 8.454 168.591 109.401
12 1333 9.507 9.000 273.591 174.541
13 1024 8.858 7.363 182.162 98.426
14 777 7.880 5.909 112.269 49.672
15 677 8.055 4.576 96.327 37.486
16 834 7.437 6.111 130.311 65.083
17 122 4.265 1.394 13.499 1.379

For the three point clouds of the three pair of trees, as shown in Figure 4, after the
segmentation using the SoftSeg method, the reconstructed mesh models of the individual
trees are displayed in Figure 18. To enhance the visual differentiation, the different pair
trees models used different colors. Visually, these silhouette mesh models have a more
natural appearance.
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Figure 18. The reconstructed tree silhouette mesh model from the point clouds after using the soft
segmentation method.

3.4. Discussion
3.4.1. Time Efficiency with Down-Sampling

A down-sampling step was employed to improve the time efficiency of the individual
tree segmentation processing. The time (seconds) of the segmentation of RUSH07TreesA
is recorded in Table 5. In the table, “DS” means the down-sampling step. From the table,
we can safely conclude that the down-sampling step significantly improved the algorithm
efficiency because the time cost of the method without the DS step was approx. 28 times of
the efficiency with the DS step.
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Table 5. The running time (s) of each step of the algorithm for segmenting RUSH07TreesA.

Method DS Roots
Detect

Layer Bin
Build

Vertical
Partitioning

Contour
Build

Segmentation
Refine

Total
Time

With DS 0.068 0.3446 0.0189 0.0107 0.0119 0.0023 0.4564
Without DS 0 12.4051 0.2433 0.1549 0.2651 0.0215 13.0899

3.4.2. Error Caused by Down-Sampling

As for the implications of down-sampling, it is possible to cause minor errors when
the attributes, including the volume and surface area of the tree crowns, are estimated.
However, the impact of down-sampling on the silhouette shape of the tree crowns is
relatively tiny. We used one tree extracted from RUSH07TreesC to check the implications.
In this experiment, the layer number k was set to 38 (different from the value used in
Figure 18), about 0.5 m thick. The reconstructed silhouette surface mesh is illustrated
in Figure 19. The reconstructed mesh consisted of 1369 vertices and 2700 triangles. The
average length of the triangle edge was 0.8481 m, and the average area of all the triangles
was 0.202 m2.
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Figure 19. The reconstructed mesh models used point clouds with/without down-sampling (DS). A
subfigure at the bottom right of each figure is the top view of the reconstructed model.

With the reconstructed shape, the attributes were estimated and are listed in Table 6.
The table shows that the relative error was very small (less than 1.6%), even though the
number of the model points was compressed by 93%. Therefore, the down-sampling step
can be introduced into the algorithm process to improve the algorithm efficiency.

Table 6. Attributes of one tree from RUSH07TreesC (Figure 18).

Method N.Pts N.Polygon H.Tree W.Tree A.Sup Volume

With DS 34,053 2700 23.176 13.333 545.831 532.967
Without DS 536,461 2700 23.318 13.412 549.142 525.064

Error −93.65% 0.00% −0.61% −0.59% −0.60% 1.51%

3.4.3. Visual Effect of the Reconstructed Crown

In addition, the proposed SoftSeg method had an advantage over the hard segmen-
tation methods, for example, TrnGui10 [44], in that the visual effect of the crown shape
that was reconstructed using the point cloud segmented by SoftSeg was often better than
that of the hard segmentation method. Figure 20 illustrates the visual effect by comparing
our method to the reconstructed crown from the segmented point cloud using TrnGui10
method. The points were ground truth. The purple silhouette surface was the recon-
structed tree shape. Obviously, the hard segmentation method often caused the vertical
segmentation plane, decreasing the visual reality.
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Figure 20. Visual comparison of the reconstructed tree silhouette mesh models from the point cloud
RUSH07TreesC using the TrnGui10 and our SoftSeg methods.

3.4.4. Segmentation Using the Deep Learning Method

We did not consider deep learning methods as a comparative method but rather
part of the discussion. This was primarily because we did not have enough labeled data
for the training set. We adopted the Pointnet++ [46] to segment the trees. The test set
consisted of one point cloud in Figure 12 and four point clouds in Figure 14. The training
set consisted of six point clouds in Figure 12 and one point cloud in Figure 14. After setting
the parameters, batch_size = 2, decay_rate = 0.0001, epoch = 20, learning_rate = 0.001,
lr_decay = 0.5, optimizer = ‘Adam’, step_size = 20, the line charted the training accuracy,
the test accuracy, and the class average mIOU in the training and the testing processes are
displayed in Figure 21. The last test accuracy was approx. 90.0%, which was far less than
the segmentation accuracy of our method. However, with the establishment of labeled
datasets for forest segmentation in the future, deep learning methods will provide excellent
performance.
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effectively segment the different overlapping degrees of the crown of two trees. Compared
to hard segmentation, it could improve the segmentation accuracy, over 90%, and reduce
the misclassification point. The crown silhouette shape reconstructed from the points
segmented by SoftSeg was more realistic than that obtained using the hard segmentation
method. In addition, to improve the algorithm efficiency, two strategies, down-sampling
and kd-tree, were used in the proposed method. In practical applications, if it was necessary
to study the distribution characteristics of the branches and leaves in the overlapping area
of the tree crowns, the proposed method could be an alternative solution.

Our algorithm had several limitations. First, the reconstructed mesh quality should be
given more attention, which could be improved by employing an existing mesh optimal
algorithm. Second, when the point cloud was severely missing, down-sampling could
not supplement enough missing information, so the reconstructed crown shape was also
incomplete. Solving the reconstruction of the severely missing point cloud data could also
be a challenging task. Another limitation was that the segmentation results had apparent
errors, and further improvement is needed in the future.
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