
Citation: Zeng, F.; Sun, Y.; Li, Y.

MRLBot: Multi-Dimensional

Representation Learning for Social

Media Bot Detection. Electronics 2023,

12, 2298. https://doi.org/10.3390/

electronics12102298

Academic Editor: George A.

Tsihrintzis

Received: 8 May 2023

Accepted: 15 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

MRLBot: Multi-Dimensional Representation Learning for
Social Media Bot Detection
Fanrui Zeng, Yingjie Sun and Yizhou Li *

School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China;
zengfanrui@stu.scu.edu.cn (F.Z.)
* Correspondence: liyizhou@scu.edu.cn

Abstract: Social media bots pose potential threats to the online environment, and the continuously
evolving anti-detection technologies require bot detection methods to be more reliable and general.
Current detection methods encounter challenges, including limited generalization ability, susceptibil-
ity to evasion in traditional feature engineering, and insufficient exploration of user relationships. To
tackle these challenges, this paper proposes MRLBot, a social media bot detection framework based
on unsupervised representation learning. We design a behavior representation learning model that
utilizes Transformer and a CNN encoder–decoder to simultaneously extract global and local features
from behavioral information. Furthermore, a network representation learning model is proposed
that introduces intra- and outer-community-oriented random walks to learn structural features and
community connections from the relationship graph. Finally, the behavioral representation and
relationship representation learning models are combined to generate fused representations for bot
detection. The experimental results of four publicly available social network datasets demonstrate
that the proposed method has certain advantages over state-of-the-art detection methods in this field.

Keywords: social media bots; representation learning; encoder–decoder; graph embedding

1. Introduction

The advent of online social networks (OSNs) such as Twitter, Instagram, and Weibo
has brought revolutionary advancements in communication tools, providing users with
a novel means to create and disseminate personal content. With the growing influence
of social networks, an increasing number of individuals and organizations are utilizing
OSNs to accomplish their objectives. To fully leverage the power of social networks, it is
necessary to have sufficient influence on these platforms, leading to the emergence of social
media bots.

Social media bots (SMBs) are computer programs that generate content, engage in
social interactions, online discussions, and other activities, with the aim of imitating human
accounts. Research on SMBs has shown that a substantial proportion of English-speaking
users on Twitter, ranging from 9% to 15%, display bot-like behavior. The estimated total
number of bots on Twitter is approximately 8.5% of all users, equating to tens of millions [1].
SMBs can be categorized as benign, neutral, or malicious. Among these, malicious bots pose
a significant threat to OSNs. Attackers typically control and direct malicious bots, planning
and executing their attack behaviors. The presence and activities of malicious bots have
a significant impact on specific topics and public opinions on the Internet. For instance,
during the 2010 U.S. midterm elections, malicious bots infiltrated Twitter, promoting
specific candidates and spreading rumors and misinformation about others [2]. Similar
attacks were observed during the 2016 U.S. presidential election [3].

To mitigate the proliferation of malicious behaviors on OSNs, researchers have pro-
posed various techniques for detecting and banning bot accounts. Nevertheless, attackers
can reverse-engineer their bot accounts by exploiting existing detection methods to evade

Electronics 2023, 12, 2298. https://doi.org/10.3390/electronics12102298 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12102298
https://doi.org/10.3390/electronics12102298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12102298
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12102298?type=check_update&version=2

Electronics 2023, 12, 2298 2 of 24

filtering by the platform. This constant cat-and-mouse game has rendered this field dy-
namic, thereby increasing the demands for the enhanced reliability and universality of
new detection technologies. Currently, commonly used techniques for detecting SMBs are
typically classified into two main types: graph-based, and node-based [4]. However, there
are still several bottlenecks and challenges in this field, including the following:

1. The generalization ability of detection methods; existing detection models may
only be applicable to particular OSNs, and their performance on other OSNs may
be suboptimal,

2. Traditional feature engineering-based methods can be expensive and susceptible to
evasion; the manual extraction of distinctive features to discern between malicious
bots and legitimate users requires significant domain expertise and human resources.
Moreover, when malicious bots enhance their anti-detection capabilities, the originally
defined feature set may lose its effectiveness,

3. Insufficient exploration of user relationships; existing detection methods that rely
on user relationships demand substantial time and computational resources. Fur-
thermore, considering the privacy regulations of OSNs, potential features should
be extracted from a restricted and accessible set of user relationships to the fullest
extent feasible.

In order to tackle these challenges, this paper introduces a framework called MRLBot
for detecting malicious bots in social networks using representation learning. The frame-
work aims to model multi-dimensional information of user behaviors and relationships
through automated feature extraction and the high generalization capability of general
representation learning, ultimately accomplishing the detection task. The primary contri-
butions of this paper are summarized as follows:

• We propose a behavior representation learning model, DDTCN. The model abstracts
user activities on social networks to obtain behavior sequences, which are then encoded
using the contextual global feature extraction ability of Transformer for time series. A
CNN encoder–decoder is subsequently cascaded to extract local information from the
sequences. Additionally, the representation ability of the output vectors is enhanced
through the proposed Transformer dual decoder;

• This paper presents a network representation learning model, IB2V, based on latent
communities. Additionally, we propose an incremental learning strategy for large-
scale network graphs to reduce the time cost of generating representations for newly
added nodes, while maintaining the performance of the model. The model learns
the structural features of node neighborhoods through a novel random walk algo-
rithm, while also preserving the internal structure of communities and the correlations
between them;

• We design a generalized detection framework for various social network platforms,
achieved through unified input from multiple platforms. The framework integrates
components for behaviora; representation and relationship representation learning to
generate fused representations, thereby enhancing detection performance.

In the rest of this paper, we conduct a comprehensive review of the relevant liter-
ature in Section 2. Section 3 provides a detailed overview of the preliminaries of user
behaviors and relationships in social networks. Subsequently, in Section 4, we present the
proposed MRLBot. In Section 5, we present the experimental results and corresponding
analyses. Section 6 includes a review of the study’s findings, along with our directions for
future research.

2. Related Works
2.1. Graph-Based Detection Approaches

A graph, G, in mathematical terms is a collection of vertices, V(G), and edges, E(G), that
represent points connected in a plane or space. Graph structures are widely employed in
diverse fields to represent pairwise relationships between objects. Early graph-based mod-

Electronics 2023, 12, 2298 3 of 24

els for SMB detection were based on the architecture of the studied OSN and established
user relationships. Feng et al. [5] constructed an undirected graph using the bidirectional
follow relationship among target users, and then created a matrix of target users and their
related users based on the Jaccard coefficient. Subsequently, the probability of a user being
identified as a social bot was calculated based on the similarity between matrices. Dorri
et al. [6] proposed SocialBotHunter, which was based on the isomorphism of social network
graphs, where isomorphism suggests that two accounts may share similar attributes if they
are associated in the social network. This model detected bots on Twitter by analyzing
users’ social behaviors and interaction records. Abu-El-Rub et al. [7] employed a graph-
based approach to model geographical information and clustered accounts based on graph
structure and other collected information. Furthermore, Ahmad et al. [8] employed the
unsupervised machine learning method to cluster graphs for bot detection by modeling
social media data using a set of features and weighted graphs.

Extracting features from rich relational information in graph has long been a chal-
lenging problem. Recently, new research approaches have emerged, with a common
method involving the transformation of topological and relational information into low-
dimensional vectors, followed by training and inference using machine learning algorithms.
Pham et al. [9] proposed a community-based random walk strategy that generates low-
dimensional node representations while preserving local neighborhood relationships and
intra-community structure. Magelinski et al. [10] utilized the graph neural network to
extract latent local features of social network graphs by aggregating nodes along one-
dimensional slices of the feature space, and then performed classification based on gener-
ated multi-channel histograms. Feng et al. [11] introduced a framework called BotRGCN,
which constructs a relation-based heterogeneous graph and enhances the model’s ability
to detect bots disguised as normal users by using multimodal user semantics and profiles.
Building upon this, they considered varying relationship strengths between users in their
recent work [12], and constructed a heterogeneous network with users as nodes and diverse
relationships as edges.

However, in reality, OSNs are typically of massive scale, with some even having bil-
lions of user nodes. Consequently, most graph-based methods for detecting malicious SMBs
in OSNs demand substantial training times and significant computing resources. Moreover,
obtaining relationships for all users is highly challenging due to privacy constraints in
OSNs, which impedes the further development of graph-based methods in this field.

2.2. Node-Based Detection Approaches

Most graph-based methods focus solely on the relationships between nodes, disregard-
ing the valuable information contained within user nodes. Supervised machine learning is
the prevailing method for node-based detection. These methods employ machine learning
classifiers to detect malicious SMBs, treating the detection as binary classification and rely-
ing on a substantial amount of annotated data for training. Daouadi et al. [13] proposed an
augmented set of features that leverage the interaction volume between accounts, combined
with other features from previous research, to detect bot accounts on Twitter. Kudugunta
et al. [14] employed the content of individual tweets and six account features to identify
bots on Twitter. Wang et al. [15] hypothesized that tweets of social bots exhibit similarity
due to shared goals among attackers, and utilized tweet similarity for detecting social
bots on Twitter. Ping et al. [16] utilized CNN-LSTM to extract features from tweet content
and metadata. Wei et al. [17] used the bidirectional long short-term memory (BiLSTM)
network to capture features from tweets for classifying human and spam bots on Twitter.
Stanton et al. [18] introduced a method called spamGAN that utilizes generative adversarial
networks (GAN) to detect spam bots and enhance text classification accuracy in online
comments with limited labeled data.

In addition to supervised learning, unsupervised machine learning methods have
also been applied in this field. These methods do not rely on annotated data or unique
features of individual accounts for classification purposes. Cresci et al. [19,20] extracted and

Electronics 2023, 12, 2298 4 of 24

analyzed digital DNA sequences from users’ online behaviors, and applied standard DNA
analysis techniques to distinguish between legitimate accounts and spam accounts on the
platform. Mazza et al. [21] collected a dataset of 10 million retweets and developed a novel
visualization method to differentiate between benign and malicious retweet activities. They
proposed an unsupervised bot detection technique called Retweet-Buster (RTbust), which
utilizes feature extraction and clustering. Feng et al. [22] proposed a representation learning
framework called SATAR for the unsupervised identification of bot accounts on Twitter.
SATAR employs semantic, attribute, and neighborhood information about specific users
for unsupervised pretraining on a large number of user samples to achieve generalization
across different OSNs, and fine-tunes the model for adaptability to specific OSNs.

The majority of machine learning-based models for detecting malicious SMBs men-
tioned above focus on detecting at the user node, while disregarding the relationships
between users and the structural information of the social graph. Moreover, these models
are only applicable to OSNs with typical features. In different OSNs, users can perform
varied actions, access personal information, and form relationships with other users, mak-
ing it challenging to transfer feature sets or extraction methods proposed for a specific
OSN to another. Additionally, behavioral patterns of malicious SMBs demonstrate high
variability and diversity across different OSNs, which require increased demand for the
generalizability of detection methods.

3. Preliminaries

This section presents definitions for “behavior” and “relationship” in social networks,
and integrates input from various platforms to ensure the generalizability of the detection
framework across different OSNs.

3.1. User Behaviors in Social Networks

Generally, social networks are commonly used by individuals to fulfill various needs,
such as communication, information acquisition, and social interaction, among others. The
actions of users in different OSNs such as those depicted in Figure 1 can be considered
events that take place at different timestamps on a timeline, encompassing the diverse
actions and interactions carried out by users at each timestamp.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 24

memory (BiLSTM) network to capture features from tweets for classifying human and
spam bots on Twitter. Stanton et al. [18] introduced a method called spamGAN that uti-
lizes generative adversarial networks (GAN) to detect spam bots and enhance text classi-
fication accuracy in online comments with limited labeled data.

In addition to supervised learning, unsupervised machine learning methods have
also been applied in this field. These methods do not rely on annotated data or unique
features of individual accounts for classification purposes. Cresci et al. [19,20] extracted
and analyzed digital DNA sequences from users’ online behaviors, and applied standard
DNA analysis techniques to distinguish between legitimate accounts and spam accounts
on the platform. Mazza et al. [21] collected a dataset of 10 million retweets and developed
a novel visualization method to differentiate between benign and malicious retweet activ-
ities. They proposed an unsupervised bot detection technique called Retweet-Buster
(RTbust), which utilizes feature extraction and clustering. Feng et al. [22] proposed a rep-
resentation learning framework called SATAR for the unsupervised identification of bot
accounts on Twitter. SATAR employs semantic, attribute, and neighborhood information
about specific users for unsupervised pretraining on a large number of user samples to
achieve generalization across different OSNs, and fine-tunes the model for adaptability to
specific OSNs.

The majority of machine learning-based models for detecting malicious SMBs men-
tioned above focus on detecting at the user node, while disregarding the relationships
between users and the structural information of the social graph. Moreover, these models
are only applicable to OSNs with typical features. In different OSNs, users can perform
varied actions, access personal information, and form relationships with other users, mak-
ing it challenging to transfer feature sets or extraction methods proposed for a specific
OSN to another. Additionally, behavioral patterns of malicious SMBs demonstrate high
variability and diversity across different OSNs, which require increased demand for the
generalizability of detection methods.

3. Preliminaries
This section presents definitions for “behavior” and “relationship” in social net-

works, and integrates input from various platforms to ensure the generalizability of the
detection framework across different OSNs.

3.1. User Behaviors in Social Networks
Generally, social networks are commonly used by individuals to fulfill various needs,

such as communication, information acquisition, and social interaction, among others.
The actions of users in different OSNs such as those depicted in Figure 1 can be considered
events that take place at different timestamps on a timeline, encompassing the diverse
actions and interactions carried out by users at each timestamp.

Figure 1. The behavioral activities of a social network user from the past to the present. When
timestamp is 𝑡 , the user was posting. When timestamp is 𝑡 , the user liked a posted piece of con-
tent. When timestamp is 𝑡 , the user reposted posts. When timestamp is 𝑡 , the user was posting
another piece of content.

The data generated from these behaviors contain valuable information that reflects
the unique characteristics of users. Therefore, deep learning techniques can be utilized to
analyze and model user behaviors, generating representation vectors that capture the

Figure 1. The behavioral activities of a social network user from the past to the present. When
timestamp is t1, the user was posting. When timestamp is t3, the user liked a posted piece of content.
When timestamp is t5, the user reposted posts. When timestamp is t7, the user was posting another
piece of content.

The data generated from these behaviors contain valuable information that reflects
the unique characteristics of users. Therefore, deep learning techniques can be utilized
to analyze and model user behaviors, generating representation vectors that capture the
behavioral patterns of users. By comparing and analyzing these representation vectors, it is
possible to distinguish normal accounts from malicious SMBs.

We summarize the common actions performed by users in OSNs, including Post,
Follow, Like, and Repost. The behavior of a user, u, on a social network can be defined by

Electronics 2023, 12, 2298 5 of 24

the behavior type sequence, Bu, and the corresponding timestamp sequence, Tu, both of
which comprise a set number of operations.

Bu =
{

bu,1, bu,2, . . . , bu,i, . . . , bu,l−1, bu,l
}

(1)

Tu =
{

tu,1, tu,2, . . . , tu,i, . . . , tu,l−1, tu,l
}

(2)

Bu represents the behavior type sequence for user u’s l actions, where
bu,i ∈ {Post, Follow, Like, Repost} denotes the behavior type of the i-th action. Tu is
the timestamp sequence for each action of user u, where tu,i ∈ T represents the times-
tamp of the i-th action, and T represents the collection of all timestamps within the data
collection period. To account for the temporal characteristics of user behavior, Tu is ar-
ranged in an increasing sequence, with timestamps being sorted based on values, i.e.,
tu,i−1 ≤ tu,i ≤ tu,i+1 (1 ≤ i ≤ l − 1).

Posts or reposts generated by malicious SMBs often exhibit biased or directed char-
acteristics and differ from the content posted by regular users. Therefore, the semantic
features of these posts play a critical role in detecting malicious SMBs. Consequently, the
content of posts should be incorporated as part of the definition of user behavior sequences.
Specifically, the content sequence, Cu, can be defined as follows:

Cu =
{

cu,1, cu,2, . . . , cu,i, . . . , cu,l−1, cu,l
}

(3)

Cu represents the posts published by user u during l actions, where cu,i denotes the
content posted by user u in the i-th action. If no content is posted during a particular
operation, cu,i is recorded as empty.

3.2. User Relationships in Social Networks

Social relationships among users in social networks can be integrated to form a social
network graph. An OSN can be represented as a directed graph, G = (V, E), where V
and E denote sets of user nodes and relationship edges, respectively. However, due to the
existence of different types of relationships and varying interaction frequencies among
users, representing the relationship information among users in social networks with the
directed graph is inadequate. To more accurately represent the strength of relationships
between users, we propose assigning weights to the edges to create a directed weighted
graph, G = (V, E, W), where W denotes the set of edge weights. In this study, we categorize
the strength of relationships into five levels: very weak, weak, medium, strong, and very
strong. The allocation rules for relationship strength levels and corresponding weights, Wi,
are based on the assumption that relationship Ei occurs k times from user Vp to user Vq, as
shown in Table 1.

Table 1. The allocation rules for relationship strength levels and corresponding weights.

Relationship Strength Allocation Rule Weight (Wi)

Very Weak k = 1 1
Weak 2 ≤ k < 4 2

Medium 4 ≤ k < 6 3
Strong 6 ≤ k < 8 4

Very Strong k ≥ 8 5

4. MRLBot: Methodology

This paper proposes a malicious SMB detection framework called MRLBot based on
multi-dimensional representation learning, as depicted in Figure 2.

Electronics 2023, 12, 2298 6 of 24

Electronics 2023, 12, x FOR PEER REVIEW 6 of 24

4. MRLBot: Methodology
This paper proposes a malicious SMB detection framework called MRLBot based on

multi-dimensional representation learning, as depicted in Figure 2.

Figure 2. The architecture of MRLBot. DDTCN is the behavioral representation learning model.
IB2V is the relationship representation learning model. 𝑢 is the generated behavior representa-
tion, and 𝑢 is the generated relationship representation. 𝑢 is the multi-dimensional representa-
tion.

The framework consists of the following three steps:
1. Data restructuration and preprocessing; due to potential differences in structured

rules across diverse datasets, it is advisable to restructure the data for further prepro-
cessing and expansion. The rules for data restructuration are formulated based on
the user behaviors and relationships defined in Sections 3.1 and 3.2. Each record in
the table represents the behavior of each user or bot at a specific time point, including
the behavior type and posted content, as well as interaction relationships. Prepro-
cessing for the restructured data involves aggregating the records to generate user
behavior sequences (𝐵 , 𝐶 , 𝑇), and to build the social network relationship graph, 𝐺 = (𝑉, 𝐸, 𝑊), with a focus on each user and each relationship (source node and tar-
get node),

2. The generation and fusion of multi-dimensional user representations; the behavior
sequences are input into the behavior representation learning model, DDTCN, and
the directed weighted graph is input into the relationship representation learning
model, IB2V. Through unsupervised learning, optimizers are performed separately
to generate behavior representations and relationship representations that capture
each user’s characteristics. Then, these two types of representations are concatenated
to complete the fusion of multi-dimensional representations,

3. The training and detection of the deep learning classifier; a fully connected neural
network is employed to construct the classifier, with the fused representations serv-
ing as input, to achieve an accurate detection framework. During the training process
of the detection framework, hyperparameters are adjusted to ensure optimal perfor-
mance. Additionally, a labeled dataset is utilized to train the classifier, facilitating the
effective judgment and identification of malicious SMBs based on different user rep-
resentations.

4.1. DDTCN: Behavioral Representation Learning Model
Traditional RNN structures are capable of analyzing high-frequency and uniform

behavior information and exhibit limitations in handling low-frequency and un-uniform

Figure 2. The architecture of MRLBot. DDTCN is the behavioral representation learning model. IB2V
is the relationship representation learning model. ũb is the generated behavior representation, and ũg

is the generated relationship representation. ũ is the multi-dimensional representation.

The framework consists of the following three steps:

1. Data restructuration and preprocessing; due to potential differences in structured
rules across diverse datasets, it is advisable to restructure the data for further prepro-
cessing and expansion. The rules for data restructuration are formulated based on
the user behaviors and relationships defined in Sections 3.1 and 3.2. Each record in
the table represents the behavior of each user or bot at a specific time point, including
the behavior type and posted content, as well as interaction relationships. Prepro-
cessing for the restructured data involves aggregating the records to generate user
behavior sequences (Bu, Cu, Tu), and to build the social network relationship graph,
G = (V, E, W), with a focus on each user and each relationship (source node and
target node),

2. The generation and fusion of multi-dimensional user representations; the behavior
sequences are input into the behavior representation learning model, DDTCN, and
the directed weighted graph is input into the relationship representation learning
model, IB2V. Through unsupervised learning, optimizers are performed separately to
generate behavior representations and relationship representations that capture each
user’s characteristics. Then, these two types of representations are concatenated to
complete the fusion of multi-dimensional representations,

3. The training and detection of the deep learning classifier; a fully connected neu-
ral network is employed to construct the classifier, with the fused representations
serving as input, to achieve an accurate detection framework. During the training
process of the detection framework, hyperparameters are adjusted to ensure optimal
performance. Additionally, a labeled dataset is utilized to train the classifier, facilitat-
ing the effective judgment and identification of malicious SMBs based on different
user representations.

4.1. DDTCN: Behavioral Representation Learning Model

Traditional RNN structures are capable of analyzing high-frequency and uniform
behavior information and exhibit limitations in handling low-frequency and un-uniform
behaviors that evolve over time [23]. In contrast, Transformer structures have been shown to
effectively model multiple sequences and generate meaningful contextual representations in
temporal interaction data [24]. Inspired by this, we propose a Transformer-based behavioral
representation learning model, named DDTCN, for modeling user behavior in social
networks. The architecture of DDTCN is illustrated in Figure 3.

Electronics 2023, 12, 2298 7 of 24

Electronics 2023, 12, x FOR PEER REVIEW 7 of 24

behaviors that evolve over time [23]. In contrast, Transformer structures have been shown
to effectively model multiple sequences and generate meaningful contextual representa-
tions in temporal interaction data [24]. Inspired by this, we propose a Transformer-based
behavioral representation learning model, named DDTCN, for modeling user behavior in
social networks. The architecture of DDTCN is illustrated in Figure 3.

Figure 3. The architecture of DDTCN.

When considering behavior sequences in social networks, relying solely on Trans-
former may present limitations. To address this, DDTCN incorporates two optimizations
based on Transformer:
1. Incorporating a CNN encoder–decoder concatenated with Transformer to capture

both local and global information of user behavior simultaneously;
2. Adding a parallel decoder on top of Transformer to retain diverse information and

further mitigate information loss during the generation of user behavior representa-
tions.
DDTCN encodes different types of sequences at the input layer and merges them

together. The original input sequences are encoded using embedding layers, including a
behavior type-embedding matrix, 𝑀 ∈ ℝ| |× , and time-embedding matrix, 𝑀 ∈ ℝ| |× ,
where d is the dimension of the projection vectors, |𝐵| denotes the number of behavior
types, and |𝑇| is the number of timestamps. By performing a look-up table, input embed-
dings for 𝐵 and 𝑇 are obtained, denoted as 𝐸 ∈ ℝ × and 𝐸 ∈ ℝ × , respectively: 𝐸 = 𝑒 ,1, 𝑒 ,2, … , 𝑒 , , … , 𝑒 , 1, 𝑒 , (4)𝐸 = 𝑒 ,1, 𝑒 ,2, … , 𝑒 , , … , 𝑒 , 1, 𝑒 , (5)

where 𝑒 , ∈ ℝ is the embedding of 𝑏 , , and 𝑒 , ∈ ℝ is the embedding of 𝑡 , .
As the length of each content in the content sequence, 𝐶 , may be different, it is nec-

essary to encode each text to align its dimension with the embeddings of other sequences

Figure 3. The architecture of DDTCN.

When considering behavior sequences in social networks, relying solely on Trans-
former may present limitations. To address this, DDTCN incorporates two optimizations
based on Transformer:

1. Incorporating a CNN encoder–decoder concatenated with Transformer to capture
both local and global information of user behavior simultaneously;

2. Adding a parallel decoder on top of Transformer to retain diverse information and
further mitigate information loss during the generation of user behavior representations.

DDTCN encodes different types of sequences at the input layer and merges them
together. The original input sequences are encoded using embedding layers, including a
behavior type-embedding matrix, Mb ∈ R|B|×d, and time-embedding matrix, Mt ∈ R|T|×d,
where d is the dimension of the projection vectors, |B| denotes the number of behavior types,
and |T| is the number of timestamps. By performing a look-up table, input embeddings for
Bu and Tu are obtained, denoted as Ẽb ∈ Rl×d and Ẽt ∈ Rl×d, respectively:

Ẽb = (eb,1, eb,2, . . . , eb,i, . . . , eb,l−1, eb,l) (4)

Ẽt = (et,1, et,2, . . . , et,i, . . . , et,l−1, et,l) (5)

where eb,i ∈ Rd is the embedding of bu,i, and et,i ∈ Rd is the embedding of tu,i.
As the length of each content in the content sequence, Cu, may be different, it is

necessary to encode each text to align its dimension with the embeddings of other sequences
(Ẽa and Ẽt), while preserving its semantic features. To achieve this, we utilize the pre-trained
BERT [25] model to encode Cu and obtain the content embeddings Ẽc ∈ Rl×d:

Ẽc = (ec,1, ec,2, . . . , ec,i, . . . , ec,l−1, ec,l) (6)

Electronics 2023, 12, 2298 8 of 24

where ec,i ∈ Rd is the embedding of cu,i after encoding with BERT.
Based on the embeddings defined above, the input of the Transformer encoder can be

defined as ẼI ∈ Rl×d:
ẼI = Ẽb + Ẽc + Ẽt (7)

4.1.1. Transformer Encoder

The Transformer encoder is the key component of our model, responsible for fusing
and compressing different types of information. The Transformer encoder is composed of
two components: the multi-headed self-attention mechanism (MHSA) and the feedforward
network (FFN). The MHSA can capture valid information from a variety of subspaces,
while the MHSA is defined explicitly as follows:

MHSA(Xn) = Concat(head1, head2, . . . , headh)WO (8)

headi = Attention
(

XnWQ
i , XnWK

i , XnWV
i

)
(9)

where Xn is the input to n-th layer of the Transformer encoder, i.e., X1 = ẼI when n = 1.
The projection matrices WQ

i ∈ Rd×d/h, WK
i ∈ Rd×d/h, WV

i ∈ Rd×d/h, and WO ∈ Rd×d

represent the parameters that can be learned in each attention head in the MHSA. In this
paper, the scaled dot product is used as the formula for attention, defined as follows:

Attention(Q, K, V) = so f tmax

(
QK>√

d/h

)
V (10)

where Q = XnWQ
i , K = XnWK

i , and V = XnWV
i . Additionally,

√
d/h is the scaling factor

that prevents the inner product (QK>) from becoming excessively large.
Additionally, we provide MHSA with the nonlinear characteristic using a feedforward

network, which is defined as follows:

FN
(

X̃n
)
= LeakyReLU

(
X̃nWF

1 + bF
1

)
WF

2 + bF
2 (11)

where WF
1 , WF

2 , bF
1 , and bF

2 are all trainable parameters in FFN, and LeakyReLU is the
activation function.

Through the residual structure, the final output at the n-th layer of the Transformer
encoder is Xn+1 ∈ Rl×d:

Xn+1 = LayerNorm
(

FFN
(

X̃n
)
+ X̃n

)
(12)

4.1.2. CNN Encoder–Decoder

Peng et al. [26] proposed that the cascaded multi-head self-attention (MHSA) in
Transformer can capture long-range feature dependencies. However, it may suffer from
the loss of local feature information. In contrast, CNN convolutional operation excels at
extracting local features but struggles to capture global features simultaneously. Rely-
ing solely on MHSA to focus on global user behavior representations may overlook the
active state during specific periods. Therefore, taking these factors into consideration,
we design a cascaded CNN encoder–decoder to capture important local information in
behavior sequences.

Based on TextCNN [27], we have developed a CNN encoder–decoder that consists
of a CNN encoder and a CNN decoder. The CNN encoder comprises a two-dimensional
convolutional layer, a one-dimensional max pooling layer, and a fully connected layer. The
size of the convolutional kernel, [kw, ke], can be adjusted to capture specific lengths of
continuous information. Meanwhile, to ensure coverage of the sequence embeddings, the
dimension of the convolutional kernel is set to be the same as the embedding dimension,

Electronics 2023, 12, 2298 9 of 24

i.e., ke = d. The dimension of the max pooling layer is also set to match the feature map
generated by the convolutional kernel, which reduces the model parameter size through
downsampling to alleviate the overfitting. Finally, the fully connected layer compresses the
feature map and generates the user behavior representation, ũb. The definition of the CNN
encoder is as follows:

ũb = Maxpool(ConvNet(Xu; [kw, ke], Θ))WCE + bCE (13)

where Xu is the output of the Transformer encoder, [kw, ke] and Θ represent the parameters
of the CNN encoder, and WCE and bCE are the parameters of the linear layer.

In the CNN decoder, ũb is used to reconstruct the input, Xu, of the CNN encoder, in
preparation for the reconstruction task in the Transformer decoder. Corresponding to the
encoder, the CNN decoder begins with a fully connected layer, followed by an upsampling
layer to recover information lost due to max pooling. Finally, a two-dimensional transposed
convolutional layer is connected to restore the convolutional operation of the encoder. The
definition of the CNN decoder is as follows:

X′u = ConvTransNet
(

Upsample
(

WCDũb + bCE
))

(14)

where WCD and bCD are the parameters of the linear layer.

4.1.3. Transformer Dual Decoder

Typically, research involving the encoder–decoder structure (autoencoder) employs
only one unsupervised reconstruction task to train the model. To minimize information loss
during the compression, our method incorporates parallel reconstruction tasks. Specifically,
Ẽb and Ẽc are used as the Query to reconstruct the timestamp embeddings, Ẽt, in addition
to reconstructing Ẽc for retaining the feature of contents. The parallel reconstruction tasks
endow the generated representations with the ability to recover diverse types of data,
thereby enhancing the feature extraction capability of the autoencoder.

As the conventional Transformer decoder lacks the capability to perform parallel
reconstruction tasks, we design the Transformer dual decoder (TDD) with two decoders:
TDDc, which reconstructs Ẽc, and TDDt, which reconstructs Ẽt. Considering model com-
plexity and computation time, we do not reconstruct Ẽb. The reconstructions of Ẽc and Ẽt
are defined as follows in the formulas:

D̃c
n = LayerNorm(MHATDDc(Dn

c) + Dn
c) (15)

D̃t
n = LayerNorm(MHATDDt(Dn

t) + Dn
t) (16)

Ẽ′c = LayerNorm
(

FFNTDDc

(
D̃c

n
)
+ D̃c

n
)

(17)

Ẽ′t = LayerNorm
(

FFNTDDt

(
D̃t

n
)
+ D̃t

n
)

(18)

where MHA and FFN represent the formulas for the multi-head attention mechanism and
feedforward network in Transformer. Dn

c is the input to the n-th layer of TDDc, and when
n = 1, D1

c = Ẽb + Ẽt. Dn
t denotes the input to the n-th layer of TDDt, and when n = 1,

D1
t = Ẽb + Ẽc. Lastly, Ẽ′c and Ẽ′t serve as the final outputs of the dual decoders, which

are the reconstructions of the content embeddings, Ẽc, and the timestamp embeddings,
Ẽt, respectively.

To minimize information loss and enhance feature extraction performance, the restora-
tion of Ẽc and Ẽt to Cu and Tu is considered. Since Tu is encoded using a lookup table in
the embedding layer, the changing weights of the embedding layer during training may
cause loss of information in Ẽt. If only the differences between Ẽt and Ẽ′t are compared,

Electronics 2023, 12, 2298 10 of 24

the reconstructed information may not match the original sequence. Therefore, the most
probable time-reconstructed sequence, T′u, can be calculated by reverse computation using
Mt and the softmax layer:

T′u = so f tmax
(

Ẽ′t M>t
)

(19)

In contrast, Cu is encoded using the pre-trained BERT model. Additionally, to retain
its semantic features, the parameters in BERT are fixed during training, meaning that the
embedding vectors in Ẽc remain unchanged. Hence, the differences between Ẽc and Ẽ′c can
be directly calculated to assess the model’s ability to reconstruct contents.

4.1.4. Optimization Objectives

The DDTCN model adopts a multi-task joint training strategy. Specifically, the model
uses two reconstruction tasks to achieve unsupervised training of the encoder–decoder
structure, as outlined in Algorithm 1.

Algorithm 1: Training algorithm of DDTCN

1. Input: Behavior type sequences,{Bu}u∈U , timestamp sequences, {Tu}u∈U , content
sequences, {Cu}u∈U , the length of user behavior sequences, l, the dimension of embeddings,
d, and the dimension of user behavior representations, e, for the users in U.

2. Output: The learned user behavioral representations, {ũb}u∈U .
3. Randomly initialize the parameters in DDTCN;
4. For u = 1→ |U| carry out
5. Project the input series, obtain behavior type embeddings, Ẽb, time embeddings, Ẽt and

content embeddings, Ẽc;
6. Set input embeddings, ẼI , through Equation (7);
7. Learn the user behavioral representation, ũb, from the Transformer and CNN

encoder–decoder;
8. Learn the content sequence reconstruction, Ẽ′c, and the time sequence reconstruction, T′u,

using Equations (17) and (19);
9. Perform SGD based on Equation (24) to reduce the error in the reconstruction and improve

the behavioral representation’s performance;
10. End

Following the reconstruction tasks described in Section 4.1.2, the Softmax cross-entropy
(SCE) loss function is employed to calculate Ltime for time sequence reconstruction. Addi-
tionally, the mean squared error (MSE) loss function is employed to calculate Lcontent for
content sequence reconstruction:

LSCE(ŷ, y) = −1y
> log[softmax(ŷ)] (20)

LMSE(ŷ, y) =
1
n

n

∑
i=0

(ŷi − yi)
2 (21)

Ltime = LSCE
(
T′u, Tu

)
(22)

Lcontent =
1
l

l

∑
k=1
LMSE(ˆec,k, ec,k) (23)

where LSCE is the calculation formula for SCE, 1y denotes the one-hot encoding of the
true label y, and ŷ is the predicted value. LMSE is the calculation formula for MSE. When
calculating Lcontent, since the dimensions of Ẽ and Ẽ′c are both Rl×d, the specific calculation
method for the loss value is to compute the mean squared error for each embedding vector,
and then to take the average of the losses for all embedding vectors. The loss function of

Electronics 2023, 12, 2298 11 of 24

the entire model encompasses both Ltime and Lcontent, and they are combined by summing
up the loss values to define Lmain as follows:

Lmain = Ltime + Lcontent (24)

where Lmain serves as the loss function for the entire model, accounting for the losses
incurred in both the time reconstruction and content reconstruction.

4.2. IB2V: Relationship Representation Learning Model

According to the research by Pham et al. [9] (Bot2Vec), in various OSNs, normal users
or bots tend to interact with other users who belong to their shared social circles. Typically,
botnets managed by attackers establish relationships with each other and maintain interac-
tion frequency to disguise themselves as normal users for evading detection. These social
circles can be considered potential communities within the network graph, and by utilizing
community information and its internal structural features, it is possible to differentiate
between normal users and bots.

Based on prior work on network representation learning and Bot2Vec, we have devel-
oped a novel relationship network representation learning model called IB2V (Incremental
Bot2Vec), as shown in Figure 4. The main focus of IB2V is to characterize the relationships
among users and embed the user nodes from the network graph into low-dimensional
vectors using unsupervised learning. Once potential communities are identified in the
graph, we employ a strategy that combines breadth-first sampling and depth-first sam-
pling to generate context neighborhoods for each node. Meanwhile, in order to preserve
the internal structure of each community, transfer probabilities are designed to restrict
the neighborhood set to remain within the community. By acquiring the neighborhood
relationships of user nodes and preserving the internal structure of communities, node
representations are generated. In order to enhance the performance and usability of the
model, IB2V introduces two optimizations:

1. Outer-community association. During the random walk process, in case of cross-
community movement, dummy nodes related to the communities are added between
the nodes and participate in the similarity calculation of context neighborhoods;

2. An incremental learning strategy. This strategy aims to learn representation vectors
of newly added nodes while maintaining model performance as much as possible,
avoiding the retraining of the entire graph structure and reducing time costs.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 24

function of the entire model encompasses both ℒ and ℒ , and they are com-
bined by summing up the loss values to define ℒ as follows: ℒ = ℒ + ℒ (24)

where ℒ serves as the loss function for the entire model, accounting for the losses
incurred in both the time reconstruction and content reconstruction.

4.2. IB2V: Relationship Representation Learning Model
According to the research by Pham et al. [9] (Bot2Vec), in various OSNs, normal users

or bots tend to interact with other users who belong to their shared social circles. Typi-
cally, botnets managed by attackers establish relationships with each other and maintain
interaction frequency to disguise themselves as normal users for evading detection. These
social circles can be considered potential communities within the network graph, and by
utilizing community information and its internal structural features, it is possible to dif-
ferentiate between normal users and bots.

Based on prior work on network representation learning and Bot2Vec, we have de-
veloped a novel relationship network representation learning model called IB2V (Incre-
mental Bot2Vec), as shown in Figure 4. The main focus of IB2V is to characterize the rela-
tionships among users and embed the user nodes from the network graph into low-di-
mensional vectors using unsupervised learning. Once potential communities are identi-
fied in the graph, we employ a strategy that combines breadth-first sampling and depth-
first sampling to generate context neighborhoods for each node. Meanwhile, in order to
preserve the internal structure of each community, transfer probabilities are designed to
restrict the neighborhood set to remain within the community. By acquiring the neighbor-
hood relationships of user nodes and preserving the internal structure of communities,
node representations are generated. In order to enhance the performance and usability of
the model, IB2V introduces two optimizations:
1. Outer-community association. During the random walk process, in case of cross-

community movement, dummy nodes related to the communities are added between
the nodes and participate in the similarity calculation of context neighborhoods;

2. An incremental learning strategy. This strategy aims to learn representation vectors
of newly added nodes while maintaining model performance as much as possible,
avoiding the retraining of the entire graph structure and reducing time costs.

Figure 4. The architecture of IB2V.

4.2.1. Intra- and Outer-Community-Oriented Random Walks
Initially, the Louvain community detection algorithm [28] is used to determine the

community to which the node belongs. Subsequently, leveraging the community infor-
mation, the graph-based structure of OSN is converted into a Skip-gram model using a
walk strategy.

In a random walk process, the length of the random walk is set to 𝑙, the starting point
is 𝑠 = 𝑣 , 𝑖 steps have been taken, and the walker is at node 𝑣 . 𝑣 is a node in the
social graph, and the transition probability from 𝑣 to 𝑣 is defined as 𝜋(𝑣 →𝑣 , 𝐶(𝑣)), as shown in the following formula:

Figure 4. The architecture of IB2V.

4.2.1. Intra- and Outer-Community-Oriented Random Walks

Initially, the Louvain community detection algorithm [28] is used to determine the
community to which the node belongs. Subsequently, leveraging the community infor-
mation, the graph-based structure of OSN is converted into a Skip-gram model using a
walk strategy.

In a random walk process, the length of the random walk is set to l, the starting point
is s = v0, i steps have been taken, and the walker is at node vi. vi+1 is a node in the social

Electronics 2023, 12, 2298 12 of 24

graph, and the transition probability from vi to vi+1 is defined as π
(
vi → vi+1, C

(
vi)), as

shown in the following formula:

π
(

vi → vi+1
)
=

w
(vi ,vi+1) ·α(vi ,vi+1)

λ , i f
(
vi, vi+1) ∈ E and vi+1 ∈ C

(
vi)

w
(vi ,vi+1) ·β(vi ,vi+1)

λ , i f
(
vi, vi+1) ∈ E and vi+1 /∈ C

(
vi)

0, otherwise

(25)

where E is the set of directed edges (relationships) in the graph. α(vi ,vi+1) is the non-
normalized transition probability from vi to vi+1 within the community when vi and vi+1

belong to the same community, C
(
vi). β(vi ,vi+1) is the non-normalized transition probability

across communities from vi to vi+1 when vi and vi+1 do not belong to the same community.
w(vi ,vi+1) is the weight of the directed edge between vi and vi+1. λ is the global normalization
constant, which is calculated by summing up all the non-normalized transition probabilities
of node vi.

The random walk strategy in Bot2Vec sets the transition probabilities α(vi ,vi+1) and
β(vi ,vi+1) within and outside the community as follows:

α(vi ,vi+1) =

1
p , i f spd

(
vi−1, vi+1) = 0

1, i f spd
(
vi−1, vi+1) = 1

1
q , i f spd

(
vi−1, vi+1) = 2

(26)

β(vi ,vi+1) = α(vi ,vi+1)·
1

r
∣∣C(vi

)∣∣ (27)

where vi−1 represents the previous node of vi. spd
(
vi−1, vi+1) is the shortest path dis-

tance from vi−1 to vi+1. Since it takes at most two steps from vi−1 to vi+1, the value of
spd
(
vi−1, vi+1) can only be selected from {0, 1, 2}.

∣∣C(vi)∣∣ is the number of nodes in the
community to which vi belongs. Meanwhile, p, q, and r are hyperparameters. r

∣∣C(vi)∣∣ is
the penalty value.

Figure 5 shows the random walk process of our model. The in–out parameter q can
control the distance of the random walk. When q < 1, the walk is more likely to choose
nodes farther away from vi−1. When q > 1, the walk is more likely to visit nodes closer to
vi−1; that is, nodes around vi−1. By setting q, the random walk process can be controlled
to explore outward from the source node or to explore the surroundings. In addition, the
return parameter p can control the probability of the random walk revisiting the previous
node; that is, vi+1 = vi−1. Increasing the value of p helps reduce the likelihood of sampling
the same node in the random walk process. The penalty value r

∣∣C(vi)∣∣ is used for cross-
community sampling to control the movement of the random walker, either to the outside
or staying within the current community, when starting from the current node. Thus,
changing the value of r can guide the random walker in capturing the local structure of
each user node.

In addition, to preserve cross-community information during the sampling process,
IB2V introduces dummy community nodes between each community, as depicted in
Figure 5. Let us assume a dummy node, Dk ∈ D, where D is the set of all dummy nodes,
and Dk is positioned between different communities, C

(
vk
)

and C
(

vk+1
)

. When the

random walker moves across communities, from vk to vk+1, we include the dummy node
Dk in the sampled context, forming vk → Dk → vk+1 . By performing these operations,
the generated node context during random walk sampling includes community dummy
nodes, which takes into account the association between different communities and cross-
community information.

Electronics 2023, 12, 2298 13 of 24Electronics 2023, 12, x FOR PEER REVIEW 13 of 24

Figure 5. Intra- and outer-community-oriented random walks.

In addition, to preserve cross-community information during the sampling process,
IB2V introduces dummy community nodes between each community, as depicted in Fig-
ure 5. Let us assume a dummy node, 𝐷 ∈ 𝐷, where 𝐷 is the set of all dummy nodes,
and 𝐷 is positioned between different communities, 𝐶(𝑣) and 𝐶(𝑣 1) . When the
random walker moves across communities, from 𝑣 to 𝑣 1 , we include the dummy
node 𝐷 in the sampled context, forming 𝑣 → 𝐷 → 𝑣 1. By performing these opera-
tions, the generated node context during random walk sampling includes community
dummy nodes, which takes into account the association between different communities
and cross-community information.

4.2.2. Node Representation Learning and Optimization Objectives
The primary objective of the model is to acquire the latent node representation 𝑢

with a dimensionality of 𝑒. Skip-gram model and Word2Vec are used to learn the repre-
sentation of each node by sampling context neighborhoods through random walks. For a
node 𝑣 in a social network, the optimization objective of IB2V is to maximize the proba-
bility of its neighboring nodes appearing, as shown in the following equation: 𝑚𝑎𝑥 𝑙𝑜𝑔𝑃𝑟(𝑐|𝑣; 𝜃)∈ () (28)

where 𝑁(𝑣) represents the set of neighboring nodes of 𝑣 obtained through sampling
strategies. Additionally, given node 𝑣 , 𝑙𝑜𝑔𝑃𝑟(𝑐|𝑣; 𝜃) is the conditional probability of
node 𝑐 occurring, which can be represented by the following equation: 𝑙𝑜𝑔𝑃𝑟(𝑐|𝑣; 𝜃) = exp(𝑢 · 𝑢)∑ exp(𝑢 · 𝑢)∈ (29)

where 𝑢 and 𝑢 are the representation vectors of 𝑐 and 𝑣, respectively. To reduce the
computational cost of model parameter updates, the network embedding process adopts
a negative sampling technique, which randomly selects a subset of neurons for updates.
Negative sampling has been proven to be effective at training large-scale datasets, such as
text corpora and information networks. In a more detailed implementation process, for
each positive training sample, a set of 𝐾 negative samples is randomly selected from the
given node set 𝑉 according to the noise distribution, 𝑃(𝑢) . The optimization function
with the negative sampling strategy is 𝐿 :

𝐿 = 𝑙𝑜𝑔 𝜎(𝑢 · 𝑢) + 𝔼 ~ ()[𝑙𝑜𝑔 𝜎 −𝑢 · 𝑢] (30)

Figure 5. Intra- and outer-community-oriented random walks.

4.2.2. Node Representation Learning and Optimization Objectives

The primary objective of the model is to acquire the latent node representation ũg with
a dimensionality of e. Skip-gram model and Word2Vec are used to learn the representation
of each node by sampling context neighborhoods through random walks. For a node v in
a social network, the optimization objective of IB2V is to maximize the probability of its
neighboring nodes appearing, as shown in the following equation:

max
θ

∑c∈N(v) logPr(c|v; θ) (28)

where N(v) represents the set of neighboring nodes of v obtained through sampling
strategies. Additionally, given node v, logPr(c|v; θ) is the conditional probability of node c
occurring, which can be represented by the following equation:

logPr(c|v; θ) =
exp(ũc·ũv)

∑u∈V exp(ũu·ũv)
(29)

where ũc and ũv are the representation vectors of c and v, respectively. To reduce the
computational cost of model parameter updates, the network embedding process adopts
a negative sampling technique, which randomly selects a subset of neurons for updates.
Negative sampling has been proven to be effective at training large-scale datasets, such as
text corpora and information networks. In a more detailed implementation process, for
each positive training sample, a set of K negative samples is randomly selected from the
given node set V according to the noise distribution, P(u). The optimization function with
the negative sampling strategy is Lθ :

Lθ = log σ(ũc·ũv) +
K

∑
k=1

Euk∼P(u)[log σ(−ũuk ·ũv)] (30)

where σ is the sigmoid activation function, P(u) is the noise distribution for randomly
selecting K negative-sample nodes from the given node set, and uk is the user node selected
through negative sampling.

4.2.3. Incremental Learning Strategy

OSNs in the real world are typically characterized by a large scale, with some networks
having hundreds of millions of user nodes. When new nodes and relationships are added,
incremental training on the existing social graph must be considered. However, reloading
the complete social graph, resampling, and relearning representations for each node can
consume a large amount of time and computational resources.

Electronics 2023, 12, 2298 14 of 24

Therefore, this paper proposes an incremental learning strategy for IB2V that aims to
reduce the time cost of model continuation training as much as possible, while minimizing
performance degradation. The specific process is illustrated in Figure 6.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 24

where 𝜎 is the sigmoid activation function, 𝑃(𝑢) is the noise distribution for randomly
selecting 𝐾 negative-sample nodes from the given node set, and 𝑢 is the user node se-
lected through negative sampling.

4.2.3. Incremental Learning Strategy
OSNs in the real world are typically characterized by a large scale, with some net-

works having hundreds of millions of user nodes. When new nodes and relationships are
added, incremental training on the existing social graph must be considered. However,
reloading the complete social graph, resampling, and relearning representations for each
node can consume a large amount of time and computational resources.

Therefore, this paper proposes an incremental learning strategy for IB2V that aims to
reduce the time cost of model continuation training as much as possible, while minimizing
performance degradation. The specific process is illustrated in Figure 6.

Figure 6. Incremental learning strategy for IB2V.

To improve the efficiency of model training, the incremental learning strategy adopts
various methods, including avoiding redundant community detection, reducing sam-
pling frequency, and fixing the weights of old nodes, as follows:
1. Specifically, the model first conducts community detection and saves the community

membership for each node;
2. Then, the original social graph is converted into a community graph, where nodes

are represented as communities. Based on the saved community information and
structure, newly added nodes are integrated into the community graph and undergo
a new round of community detection to determine their community membership;

3. Then, the newly added nodes are used as the starting point for the random walk pro-
cess, which generates context sequences after sampling from the new social graph;

4. In the final step, the representations of old nodes are fixed, and the Skip-gram model
is used to learn the representations for all new nodes.

Figure 6. Incremental learning strategy for IB2V.

To improve the efficiency of model training, the incremental learning strategy adopts
various methods, including avoiding redundant community detection, reducing sampling
frequency, and fixing the weights of old nodes, as follows:

1. Specifically, the model first conducts community detection and saves the community
membership for each node;

2. Then, the original social graph is converted into a community graph, where nodes
are represented as communities. Based on the saved community information and
structure, newly added nodes are integrated into the community graph and undergo
a new round of community detection to determine their community membership;

3. Then, the newly added nodes are used as the starting point for the random walk
process, which generates context sequences after sampling from the new social graph;

4. In the final step, the representations of old nodes are fixed, and the Skip-gram model
is used to learn the representations for all new nodes.

5. Experiments and Discussions
5.1. Datasets and Evaluation Metrics

In order to assess and evaluate the performance of the detection framework and its
generalization ability across different OSNs, this study utilizes four publicly available
datasets from distinct OSNs:

1. Cresci-2015 [29] (Twitter). The statistical information of the dataset is presented
in Table 2, comprising 5301 users, out of which 3351 accounts are labeled as bots,
accounting for 63% of all users. This dataset includes tweet records and user pro-
files of relevant users, and consists of five sub-datasets: TFP, E13, FSF, INT, and
TWT. All sub-datasets have label information, with users annotated as either bots or
normal users.

2. Social-Spammer [30] (Tagged). This dataset is collected from the Tagged social net-
working website and contains a large labeled dataset of bots. It encompasses a total
of 5,607,454 accounts with their profiles, 912,280,409 relationship records between

Electronics 2023, 12, 2298 15 of 24

accounts, and timestamps of interactions. This dataset forms a heterogeneous network
with seven different types of relationships between users (“Message”, “Pet Game”,
“Meet-Me Game”, “Add Friend”, “Give A Gift”, “Report Abuse”, and “View Pro-
file”). Among these, 221,305 accounts are labeled as bots, which constitutes 3.9% of
all accounts.

3. MicroblogPCU [31] (Weibo). This dataset is collected by researchers for spam detection
in Weibo, and includes basic attribute of users, as well as the content they posted and
corresponding timestamps. It contains a total of 48,848 Weibo posts and 781 accounts.
Among all the accounts, the number of labeled normal users is 113, and the number
of malicious bots is 66.

4. TwiBot-22 [32] (Twitter), a comprehensive graph-based Twitter bot detection bench-
mark that presents the largest dataset to date. The dataset contains 1,000,000 users
(39,943 accounts are labeled as bots), 86,764,167 tweets, and 170,185,937 edges
between users.

Table 2. Details of the Cresci-2015 dataset.

Sub-Datasets Accounts Tweets Friend Relationships Follow Relationships

TFP 469 563,693 241,710 258,494
E13 1481 2,068,037 667,225 1,526,944
FSF 1169 22,910 253,026 11,893
INT 1337 58,925 517,485 23,173
TWT 845 114,192 729,839 28,588

Total number of accounts 5301
Number of bots 3351 (63%)

According to the methods of re-structuring and pre-processing, the four datasets
mentioned above are processed. For the experiments, all datasets are divided into training
set, validation set, and test set in a ratio of 7:1:2, respectively. To test the model’s gener-
alization ability and its applicability to new users, MRLBot is trained on the training set
in an unsupervised manner to generate user representations. The deep learning classifier
is trained using a supervised task of predicting malicious SMBs, and the performance of
the detection framework is evaluated using the test set. Additionally, to prevent model
overfitting, the training quality is evaluated using the validation set. Table 3 presents the
evaluation metrics used in this study.

Table 3. Evaluation metrics.

Metrics Formula Description

Accuracy (ACC) TP+TN
ALL

Classification accuracy is the percentage of all categories
identified correctly.

Precision TP
TP+FP

The ratio of the number of correctly identified malicious
SMBs to the total number of identified samples.

Recall TP
FN+TP

The ratio of the number of correctly identified malicious
SMBs to the number of samples that should be identified.

F1 score 2∗TP
2∗TP+FP+FN

F1 score is a statistical metric to measure model accuracy.
Both accuracy and recall are considered in the metric.

In Table 3, TP, TN, FP, and FN represent true positive, true negative, false positive, and
false negative, respectively. The primary focus of this study is the detection of malicious
SMBs, with bots being considered positive samples and normal users being considered
negative samples. Therefore, accuracy is employed as a measure of the overall classification
performance. In cases where the dataset has a significant imbalance between positive and
negative samples (e.g., in the Social-Spammer dataset where bots account for only 3.9% of
all accounts), evaluation metrics that emphasize positive samples, such as precision, recall,
and F1 score, should be given priority.

Electronics 2023, 12, 2298 16 of 24

5.2. Experimental Setups

Based on the PyTorch deep learning framework (version 1.11.0), we constructed
MRLBot. The hyperparameter settings are provided in Table 4. In the experimental
discussion section of Section 5.4, significant hyperparameters will be adjusted to assess
their impact on the model’s performance.

Table 4. Hyperparameter settings of the proposed detection framework.

Hyperparameters Settings

User behavior sequence length (l) 64
Embedding dimension (d) 128

Representation dimension (e) 128
Transformer Encoder layers (ne) 2

Transformer dual-decoder layers (nd) 1
Convolution kernel size ([kw, ke]) [8, d]

Skip-gram sliding window size (sw) 7
Negative sampling sample size (K) 5

Random walk distance (l) 30
Number of random walks per node (w) 20

Return parameter (p) 1
In–out parameter (q) 1

Out-community parameter (r) 1
DNN Layers 3
Dropout rate 0.1
Learning rate 1 × 10−4

To demonstrate MRLBot’s ability to detect malicious SMBs, we compared it against
the following baseline methods:

1. AdaBoost [14]. This method uses a 10-dimensional feature set based on user profiles
and employs AdaBoost for bot classification. The feature “favorite_counts” is present
in the Cresci-2015 dataset. but it is not available in the other two datasets, and thus is
not used in experiments involving these datasets.

2. DeeProBot [33]. This method uses metadata from user profiles and replaces the
descriptive text in the metadata with pre-trained global word embeddings. The
model consists of LSTM and fully connected layers to handle mixed types of features,
including numerical, binary, and text. As the datasets used in this paper lack “Senti-
ment” and “Timing” features; these features are not taken into consideration during
input construction.

3. BotRGCN [11]. The authors constructed a heterogeneous graph from the follower
relationships, embedding multimodal user semantics and attribute information into
the graph, and applied graph convolutional network for detecting bots. Since the
dataset used in this paper do not include account avatars, this feature is not considered
when constructing inputs.

4. SATAR [22]. This method is an unsupervised Twitter user representation learning
framework that jointly utilizes semantic, attribute, and neighborhood information,
and employs a co-influence module to aggregate this information.

The above methods have corresponding implementations in publicly available code
repositories, and hyperparameters from the published papers are referred to for
optimal performance.

5.3. Experimental Results

This section discusses the comparative experiments that were conducted on the pro-
posed MRLBot, utilizing datasets from three distinct social networks, along with the use of
the baseline methods mentioned in Section 5.2. Table 5 presents the experimental results of
all detection frameworks on Cresci-2015 and TwiBot-22.

Electronics 2023, 12, 2298 17 of 24

Table 5. Detection results on Cresci-2015 and TwiBot-22.

Methods
Cresci-2015 TwiBot-22

ACC Precision Recall F1 ACC Precision Recall F1

AdaBoost [14] 0.7533 0.9982 0.6095 0.7574 0.7650 0.8000 0.1499 0.2474
DeeProBot [33] 0.8427 0.9296 0.7931 0.8559 0.6587 0.4431 0.6198 0.5167
BotRGCN [11] 0.9652 0.9551 0.9917 0.9731 0.7966 0.7481 0.4680 0.5750

SATAR [22] 0.9342 0.9066 0.9988 0.9505 0.7822 0.7270 0.4510 0.5567

MRLBot 0.9725 0.9654 0.9920 0.9785 0.8025 0.7845 0.5050 0.6145

MRLBot demonstrated superior performance in terms of accuracy and the F1 score
compared to other bot detection frameworks, achieving 97.25% accuracy and a 97.85% F1
score. Despite achieving the highest precision, AdaBoost generated a significant number
of false positives in bot identification, mistakenly classifying numerous bot samples as
normal users. SATAR, although achieving the highest recall, also misclassified some normal
users as bots. Overall, MRLBot achieved the best detection performance on the Cresci-2015
dataset. Similarly, MRLBot achieved the best performance on TwiBot-22.

The detection performance on Social-Spammer and MicroblogPCU is shown in Table 6.

Table 6. Detection results on Social-Spammer and MicroblogPCU.

Methods
Social-Spammer MicroblogPCU

ACC Precision Recall F1 ACC Precision Recall F1

AdaBoost [14] 0.9655 0.5456 0.7529 0.6327 0.8991 0.8571 0.8322 0.8445
DeeProBot [33] 0.9633 0.5248 0.7412 0.6145 0.9052 0.8507 0.8655 0.8580
BotRGCN [11] 0.9967 0.9429 0.9755 0.9589 0.9108 0.8636 0.8767 0.8701

SATAR [22] 0.9960 0.9319 0.9695 0.9503 0.9121 0.8529 0.8856 0.8689

MRLBot 0.9962 0.9325 0.9742 0.9529 0.9254 0.8806 0.9088 0.8945

On the Social-Spammer dataset, which contains richer relational information, BotRGCN
achieved the highest detection performance. This is attributed to the utilization of graph
convolutional networks in BotRGCN, which capture the global contextual information of
the social graph and define it as a heterogeneous graph, taking into account the diverse
types of relationships among users. Our proposed MRLBot outperformed other methods
except BotRGCN, indicating that the integration of multi-dimensional features can enhance
the detection performance and accomplish the performance of graph neural network in
supervised tasks.

On the MicroblogPCU dataset with a small sample size, MRLBot outperformed SATAR,
which is also an unsupervised framework, and achieved the best performance among all
the compared frameworks. This indicates that the fusion of multi-dimensional information
improved the detection performance of user representations.

In light of the experimental results and the analysis presented above, we can draw
the following conclusions: MRLBot demonstrated effective detection results on diverse
datasets, showcasing its ability to generalize across various OSNs. Furthermore, on the
four publicly available datasets, the detection performance of MRLBot surpassed that of
state-of-the-art baseline frameworks in this field, validating the efficacy of our approach in
integrating multi-dimensional representations.

5.4. Discussions
5.4.1. Ablation Study

This paper presents various structures and components aimed at optimizing the detec-
tion performance and generalization ability. In this section, we evaluate the contribution
of each component to MRLBot. Variants of the framework are generated by selectively
reducing techniques and components, while maintaining consistent hyperparameters. Ab-

Electronics 2023, 12, 2298 18 of 24

lation experiments were performed on the Cresci-2015 dataset. The control groups for the
experiments are as follows:

1. Timestamp sequence. The model variants consist of TCN and TCNpos. TCN (Trans-
former Convolutional Network) is the structure of DDTCN in MRLBot without the
dual decoder, reconstructing only the published content in the decoder part. TCNpos
replaces time embedding with position embedding in the input layer.

2. Community dummy nodes. The control groups are IB2V and Bot2Vec.
3. CNN encoder–decoder. The control groups are DDTCN and DDTN, with DDTN

being a variant of our model that does not utilize CNN autoencoder.
4. Transformer dual decoder. The control groups are DDTCN and TCN.

Figure 7 presents the accuracy and F1 score of each control group in comparison to
all the optimization components. The results of the ablation experiments indicate that the
proposed components achieved significant optimization effects.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 24

Figure 7. Results of the ablation study (Cresci-2015 dataset).

To illustrate the significance of timestamp sequences for the model, ablation experi-
ments were conducted to compare the performance of TCN with timestamp sequences,
against that of TCNpos without timestamp sequences. The model’s performance improve-
ment with timestamp sequences is evident in terms of the accuracy and F1 score. This is
because, although Transformer is capable of capturing contextual relationships in se-
quences, it lacks information about the timing of user behavior. Moreover, the Trans-
former dual decoder demonstrated a notable improvement of 1.47% in the F1 score com-
pared to the other components in the control group. We posit that the parallel decoder,
through the reconstruction of timestamp sequence, enhances the temporal features of user
representations. This facilitates the more accurate identification of samples that were pre-
viously challenging to determine, thereby resulting in a more balanced detection perfor-
mance.

5.4.2. Efficiency of Incremental Learning Strategy
In the comparative experiment, a graph of all nodes and relationships from the da-

taset was constructed to learn user representations. MRLBot was trained on a per-user-
node basis, using 50% of the nodes from the Social-Spammer dataset as the initial training
set. Subsequently, the percentage of nodes was incrementally increased from 50% to 100%
to simulate the scenario of adding new users.

In the absence of the incremental learning strategy described in Section 4.2.3, the rep-
resentations of all nodes must be relearned following the algorithmic flow of IB2V, and
the classifier needs to be retrained using the newly added 10% nodes as the test set to
validate the classification performance. The effectiveness of this strategy was verified by
comparing the time taken and detection performance of generating representation vectors
for newly added nodes with and without using the incremental learning strategy.

Based on the findings in Tables 7 and 8, the incremental learning strategy can greatly
decrease the time cost of learning representations for newly added nodes. However, the
strategy may result in a trade-off between time cost and detection performance. This is
because this strategy does not re-sample and generate context sequences for all nodes,
resulting in the loss of structural information of some nodes in the graph. Additionally,
the performance of the generated representations for new nodes may also be affected due
to the fixed representation of old nodes and the loss of structure features. As the number
of nodes grows, the loss of detection performance caused by the incremental learning
strategy becomes more severe. Therefore, it is recommended to use the incremental learn-
ing strategy to generate representation vectors for a certain amount of newly added nodes
to reduce training time costs. However, when a large number of new users are added to

Figure 7. Results of the ablation study (Cresci-2015 dataset).

To illustrate the significance of timestamp sequences for the model, ablation experi-
ments were conducted to compare the performance of TCN with timestamp sequences,
against that of TCNpos without timestamp sequences. The model’s performance improve-
ment with timestamp sequences is evident in terms of the accuracy and F1 score. This
is because, although Transformer is capable of capturing contextual relationships in se-
quences, it lacks information about the timing of user behavior. Moreover, the Transformer
dual decoder demonstrated a notable improvement of 1.47% in the F1 score compared to
the other components in the control group. We posit that the parallel decoder, through the
reconstruction of timestamp sequence, enhances the temporal features of user represen-
tations. This facilitates the more accurate identification of samples that were previously
challenging to determine, thereby resulting in a more balanced detection performance.

5.4.2. Efficiency of Incremental Learning Strategy

In the comparative experiment, a graph of all nodes and relationships from the dataset
was constructed to learn user representations. MRLBot was trained on a per-user-node
basis, using 50% of the nodes from the Social-Spammer dataset as the initial training set.
Subsequently, the percentage of nodes was incrementally increased from 50% to 100% to
simulate the scenario of adding new users.

In the absence of the incremental learning strategy described in Section 4.2.3, the
representations of all nodes must be relearned following the algorithmic flow of IB2V, and
the classifier needs to be retrained using the newly added 10% nodes as the test set to
validate the classification performance. The effectiveness of this strategy was verified by

Electronics 2023, 12, 2298 19 of 24

comparing the time taken and detection performance of generating representation vectors
for newly added nodes with and without using the incremental learning strategy.

Based on the findings in Tables 7 and 8, the incremental learning strategy can greatly
decrease the time cost of learning representations for newly added nodes. However, the
strategy may result in a trade-off between time cost and detection performance. This is
because this strategy does not re-sample and generate context sequences for all nodes,
resulting in the loss of structural information of some nodes in the graph. Additionally, the
performance of the generated representations for new nodes may also be affected due to
the fixed representation of old nodes and the loss of structure features. As the number of
nodes grows, the loss of detection performance caused by the incremental learning strategy
becomes more severe. Therefore, it is recommended to use the incremental learning strategy
to generate representation vectors for a certain amount of newly added nodes to reduce
training time costs. However, when a large number of new users are added to the social
network over a period of time, in order to ensure detection performance, it is recommended
to re-sample the new social graph structure and refresh the representation vectors of
all nodes.

Table 7. Detection F1 score with different learning strategies (Social-Spammer dataset).

Strategies
Dataset Size

60% 70% 80% 90% 100%

Original learning 0.9431 0.9744 0.9782 0.9521 0.9529
Incremental learning 0.9210 0.9352 0.9288 0.9035 0.8975

Table 8. Time consumption (seconds) for representation learning with different learning schemes
(Social-Spammer dataset).

Strategies
Dataset Size

60% 70% 80% 90% 100%

Original learning 23,752 28,502 35,253 38,003 42,454
Incremental learning 15,500 19,681 23,922 26,832 31,269

5.4.3. Validity of Relationship Strength

In Section 4.1.1, the user’s social network was defined as a directed weighted graph,
and the relationship strength among users was divided. We tested the variation in MRLBot’s
detection performance on the Social-Spammer dataset when the input of IB2V was a
directed unweighted graph and a directed weighted graph.

Based on the findings in Table 9, the detection performance of MRLBot was enhanced
when the relationship strength among users was considered. We defined the relationship
strength based on the number of interactions among users and quantified it using the
weight of edges in the relationship graph. The experimental results indicate that this
optimization scheme enables the network representation learning method to capture more
relationship features from the social graph, leading to the improved performance of node
representation in bot detection tasks.

Table 9. Detection results of MRLBot before and after adding the relationship strength (Social-
Spammer dataset).

Graph Type
Social-Spammer Dataset

ACC Precision Recall F1

Directed unweighted graph 0.9951 0.9176 0.9622 0.9394
Directed weighted graph 0.9954 0.9204 0.9671 0.9432

Electronics 2023, 12, 2298 20 of 24

5.4.4. Parameter Sensitivity of the Model

The primary objective of selecting suitable hyperparameters for the model is to achieve
optimal performance within the constraints of time and computational resources. This
section investigates the impact of different hyperparameters on the model’s performance,
in order to evaluate the robustness of our model using the Cresci-2015 dataset.

In our model, MRLBot, the behavior representation part is based on the Transformer
encoder–decoder structure. The number of layers in the Transformer encoder and de-
coder may affect the model’s performance. Without changing other hyperparameters, we
recorded the results of the detection framework in terms of accuracy and the F1 score by
varying the number of layers in the Transformer encoder and dual decoder in DDTCN, as
shown in Figures 8 and 9.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 24

Figure 8. Performance of the detection framework with different Transformer encoder layers
(Cresci-2015 dataset).

Figure 9. Performance of the detection framework with different Transformer dual-decoder layers
(Cresci-2015 dataset).

The detection performance was optimized when the number of layers in the Trans-
former dual decoder was set to 1 and the number of layers in the Transformer encoder
was set to 2. Thus, the depth of our model is not the determining factor of performance,
as increasing the depth would raise the computational cost and model complexity.

To extract local information from the behavior sequence, we used a CNN autoen-
coder. The size of the convolutional kernel can affect the final performance of the model.
We set the size of the convolutional kernel as two-dimensional [𝑘 , 𝑘], where 𝑘 is the
same as the embedding dimension of the model, i.e., 𝑘 = 𝑑. By varying 𝑘 in the set {2, 4, 8, 16, 32, 64}, we recorded the performance change of the detection framework with
the change in the convolutional kernel size, as shown in Figure 10.

Figure 10. Performance of the detection framework with different convolutional kernel sizes (Cresci-
2015 dataset).

This can be attributed to the fact that larger convolutional kernels result in longer
sequence lengths being calculated within each kernel, causing the model to focus more on

Figure 8. Performance of the detection framework with different Transformer encoder layers (Cresci-
2015 dataset).

Electronics 2023, 12, x FOR PEER REVIEW 21 of 24

Figure 8. Performance of the detection framework with different Transformer encoder layers
(Cresci-2015 dataset).

Figure 9. Performance of the detection framework with different Transformer dual-decoder layers
(Cresci-2015 dataset).

The detection performance was optimized when the number of layers in the Trans-
former dual decoder was set to 1 and the number of layers in the Transformer encoder
was set to 2. Thus, the depth of our model is not the determining factor of performance,
as increasing the depth would raise the computational cost and model complexity.

To extract local information from the behavior sequence, we used a CNN autoen-
coder. The size of the convolutional kernel can affect the final performance of the model.
We set the size of the convolutional kernel as two-dimensional [𝑘 , 𝑘], where 𝑘 is the
same as the embedding dimension of the model, i.e., 𝑘 = 𝑑. By varying 𝑘 in the set {2, 4, 8, 16, 32, 64}, we recorded the performance change of the detection framework with
the change in the convolutional kernel size, as shown in Figure 10.

Figure 10. Performance of the detection framework with different convolutional kernel sizes (Cresci-
2015 dataset).

This can be attributed to the fact that larger convolutional kernels result in longer
sequence lengths being calculated within each kernel, causing the model to focus more on

Figure 9. Performance of the detection framework with different Transformer dual-decoder layers
(Cresci-2015 dataset).

The detection performance was optimized when the number of layers in the Trans-
former dual decoder was set to 1 and the number of layers in the Transformer encoder was
set to 2. Thus, the depth of our model is not the determining factor of performance, as
increasing the depth would raise the computational cost and model complexity.

To extract local information from the behavior sequence, we used a CNN autoencoder.
The size of the convolutional kernel can affect the final performance of the model. We set the
size of the convolutional kernel as two-dimensional [kw, ke], where ke is the same as the em-
bedding dimension of the model, i.e., ke = d. By varying kw in the set {2, 4, 8, 16, 32, 64},
we recorded the performance change of the detection framework with the change in the
convolutional kernel size, as shown in Figure 10.

Electronics 2023, 12, 2298 21 of 24

Electronics 2023, 12, x FOR PEER REVIEW 21 of 24

Figure 8. Performance of the detection framework with different Transformer encoder layers
(Cresci-2015 dataset).

Figure 9. Performance of the detection framework with different Transformer dual-decoder layers
(Cresci-2015 dataset).

The detection performance was optimized when the number of layers in the Trans-
former dual decoder was set to 1 and the number of layers in the Transformer encoder
was set to 2. Thus, the depth of our model is not the determining factor of performance,
as increasing the depth would raise the computational cost and model complexity.

To extract local information from the behavior sequence, we used a CNN autoen-
coder. The size of the convolutional kernel can affect the final performance of the model.
We set the size of the convolutional kernel as two-dimensional [𝑘 , 𝑘], where 𝑘 is the
same as the embedding dimension of the model, i.e., 𝑘 = 𝑑. By varying 𝑘 in the set {2, 4, 8, 16, 32, 64}, we recorded the performance change of the detection framework with
the change in the convolutional kernel size, as shown in Figure 10.

Figure 10. Performance of the detection framework with different convolutional kernel sizes (Cresci-
2015 dataset).

This can be attributed to the fact that larger convolutional kernels result in longer
sequence lengths being calculated within each kernel, causing the model to focus more on

Figure 10. Performance of the detection framework with different convolutional kernel sizes
(Cresci-2015 dataset).

This can be attributed to the fact that larger convolutional kernels result in longer
sequence lengths being calculated within each kernel, causing the model to focus more
on textual content and temporal information. As a consequence, the ratio of important
local information to unimportant information decreases, leading to diminishing returns
in model performance. Furthermore, projecting high-dimensional information into a low-
dimensional space does not increase the amount of effective information in the user vectors
as the convolutional kernel size increases. As a result, the accuracy and F1 score plateaus,
with no further improvement observed beyond a kernel size of eight.

Most network representation learning techniques are highly sensitive to changes in
hyperparameters, such as the number of random walks per node (w) and the length of each
walk (l). Based on the results depicted in in Figure 11, stability and optimal performance in
bot classification tasks were achieved with w > 18 and l = 30 ∼ 50. This can be attributed
to the fact that increasing the values of w and l results in an increased number of contextual
nodes for each user node. Therefore, these parameters should be carefully chosen, taking
into consideration the size of the network, in order to generate sufficient training samples
for the network’s representation learning. Finally, sensitivity experiments on parameters
indicate that, considering the balance between time, computational resources, and model
performance, parameter settings of w = 20 and l = 30 ∼ 50 can be adopted.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 24

textual content and temporal information. As a consequence, the ratio of important local
information to unimportant information decreases, leading to diminishing returns in
model performance. Furthermore, projecting high-dimensional information into a low-
dimensional space does not increase the amount of effective information in the user vec-
tors as the convolutional kernel size increases. As a result, the accuracy and F1 score plat-
eaus, with no further improvement observed beyond a kernel size of eight.

Most network representation learning techniques are highly sensitive to changes in
hyperparameters, such as the number of random walks per node (𝑤) and the length of
each walk (𝑙). Based on the results depicted in in Figure 11, stability and optimal perfor-
mance in bot classification tasks were achieved with 𝑤 > 18 and 𝑙 = 30~50. This can be
attributed to the fact that increasing the values of 𝑤 and 𝑙 results in an increased num-
ber of contextual nodes for each user node. Therefore, these parameters should be care-
fully chosen, taking into consideration the size of the network, in order to generate suffi-
cient training samples for the network’s representation learning. Finally, sensitivity ex-
periments on parameters indicate that, considering the balance between time, computa-
tional resources, and model performance, parameter settings of 𝑤 = 20 and 𝑙 = 30 ∼50 can be adopted.

Figure 11. Performance of the detection framework with different IB2V parameters (Cresci-2015 da-
taset); (a) performance of the detection framework with different number of random walks per node;
(b) performance of the detection framework with different random walk distances.

5.4.5. Limitations
Our proposed method has the following limitations:

• Limitations of research hypotheses. In Section 3, we simplified user behaviors and
relationships in social networks, which is a critical weakness and a simplification of
the research work. In actual social networks, user behaviors and relationships are
more complex and have more variables. Furthermore, the hypothesis method we em-
ployed is based solely on past research and historical experience, without taking into
account future changes. There are two main limitations to this approach. Firstly, due
to the reduction in variables considered, the detection performance may decrease in
the real environment, even though the rationality of the research is guaranteed. Sec-
ondly, attackers may bypass the detection methods we proposed by disguising soft-
ware robots as real users based on these assumptions.

• Limitations of technical methods. During the representation fusion stage, we concat-
enated representations of different dimensions, which has the potential to affect the
final performance.

• Limitations of experimental scenarios. All experiments in this paper were conducted
using publicly available datasets and did not involve actual online environments.
These datasets were collected by researchers in the past, and the performance on
these datasets can indicate whether or not the detection method was effective in the
past time period. However, it is also important to consider the timeliness of the

Figure 11. Performance of the detection framework with different IB2V parameters (Cresci-2015
dataset); (a) performance of the detection framework with different number of random walks per
node; (b) performance of the detection framework with different random walk distances.

5.4.5. Limitations

Our proposed method has the following limitations:

• Limitations of research hypotheses. In Section 3, we simplified user behaviors and
relationships in social networks, which is a critical weakness and a simplification of

Electronics 2023, 12, 2298 22 of 24

the research work. In actual social networks, user behaviors and relationships are
more complex and have more variables. Furthermore, the hypothesis method we
employed is based solely on past research and historical experience, without taking
into account future changes. There are two main limitations to this approach. Firstly,
due to the reduction in variables considered, the detection performance may decrease
in the real environment, even though the rationality of the research is guaranteed.
Secondly, attackers may bypass the detection methods we proposed by disguising
software robots as real users based on these assumptions.

• Limitations of technical methods. During the representation fusion stage, we concate-
nated representations of different dimensions, which has the potential to affect the
final performance.

• Limitations of experimental scenarios. All experiments in this paper were conducted
using publicly available datasets and did not involve actual online environments.
These datasets were collected by researchers in the past, and the performance on these
datasets can indicate whether or not the detection method was effective in the past
time period. However, it is also important to consider the timeliness of the detection
method; that is, whether or not it is effective in the latest time period. Real-time
monitoring in online environments requires more complex engineering work and will
be the focus of our future research.

6. Conclusions

This paper presents a novel method for detecting malicious SMBs based on multi-
dimensional representation learning. Detection methods relying on a single feature, such as
behavior or relationship, may perform poorly when that feature is missing in a social net-
work platform. To address this limitation, this study proposes a framework that combines
behavior representation and relationship representation learning models to generate fused
representations. By unifying the input from multiple platforms, the framework achieves
generalization across different social network platforms. Specifically, an unsupervised
representation learning model, DDTCN, based on user behavior, is proposed, along with
different optimization components to enhance the model’s output vectors for users. Addi-
tionally, a network representation learning model, IB2V, is proposed, which incorporates an
incremental learning strategy for large-scale social network graphs to reduce the time cost
of generating representations for newly added nodes while maintaining performance. This
model captures not only the structural features of node neighborhoods, but also the internal
structure of communities and the correlations between communities. The experimental
results demonstrate the effectiveness of the framework, with good detection performance
being achieved on all datasets.

Author Contributions: Conceptualization, F.Z. and Y.L.; methodology, F.Z.; software, F.Z.; validation,
F.Z., Y.L. and Y.S.; formal analysis, F.Z.; investigation, F.Z.; resources, F.Z.; data curation, F.Z.; writing—
original draft preparation, F.Z.; writing—review and editing, Y.L.; visualization, F.Z.; supervision,
F.Z.; project administration, Y.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This work receives no external funding.

Data Availability Statement: The source code can be obtained by contacting the authors via the
emails provided.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Subrahmanian, V.S.; Azaria, A.; Durst, S.; Kagan, V.; Galstyan, A.; Lerman, K.; Zhu, L.; Ferrara, E.; Flammini, A.; Menczer, F. The

DARPA Twitter Bot Challenge. Computer 2016, 49, 38–46. [CrossRef]
2. Ratkiewicz, J.; Conover, M.; Meiss, M.; Gonçalves, B.; Flammini, A.; Menczer, F. Detecting and tracking political abuse in social

media. In Proceedings of the International AAAI Conference on Web and Social Media, Barcelona, Spain, 17–21 July 2011;
pp. 297–304.

https://doi.org/10.1109/MC.2016.183

Electronics 2023, 12, 2298 23 of 24

3. Bessi, A.; Ferrara, E. Social bots distort the 2016 US Presidential election online discussion. First Monday 2016, 21, 11.
4. Orabi, M.; Mouheb, D.; Al Aghbari, Z.; Kamel, I. Detection of bots in social media: A systematic review. Inf. Process. Manag. 2020,

57, 102250. [CrossRef]
5. Feng, B.; Li, Q.; Pan, X.; Zhang, J.; Guo, D. Groupfound: An effective approach to detect suspicious accounts in online social

networks. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717722499. [CrossRef]
6. Dorri, A.; Abadi, M.; Dadfarnia, M. Socialbothunter: Botnet detection in twitter-like social networking services using semi-

supervised collective classification. In Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic
and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on
Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech),
Athens, Greece, 12–15 August 2018; pp. 496–503.

7. Abu-El-Rub, N.; Mueen, A. Botcamp: Bot-driven interactions in social campaigns. In Proceedings of the The World Wide Web
conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2529–2535.

8. Yu, Z.; Lian, J.; Mahmoody, A.; Liu, G.; Xie, X. Adaptive User Modeling with Long and Short-Term Preferences for Personalized
Recommendation. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; pp. 4213–4219.

9. Pham, P.; Nguyen, L.T.; Vo, B.; Yun, U. Bot2Vec: A general approach of intra-community oriented representation learning for bot
detection in different types of social networks. Inf. Syst. 2022, 103, 101771. [CrossRef]

10. Magelinski, T.; Beskow, D.; Carley, K.M. Graph-hist: Graph classification from latent feature histograms with application to
bot detection. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
pp. 5134–5141.

11. Feng, S.; Wan, H.; Wang, N.; Luo, M. BotRGCN: Twitter bot detection with relational graph convolutional networks. In
Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Virtual, The
Netherlands, 8–11 November 2021; pp. 236–239.

12. Feng, S.; Tan, Z.; Li, R.; Luo, M. Heterogeneity-aware twitter bot detection with relational graph transformers. In Proceedings of
the AAAI Conference on Artificial Intelligence, Virtual, 30 July 2022; pp. 3977–3985.

13. Daouadi, K.E.; Rebaï, R.Z.; Amous, I. Bot detection on online social networks using deep forest. In Artificial Intelligence Methods in
Intelligent Algorithms, Proceedings of 8th Computer Science Online Conference, Volume 2, Online, 24–27 April 2019; Springer: Cham,
Switzerland, 2019; pp. 307–315.

14. Kudugunta, S.; Ferrara, E. Deep neural networks for bot detection. Inf. Sci. 2018, 467, 312–322. [CrossRef]
15. Wang, B.; Zhang, L.; Gong, N.Z. Sybilblind: Detecting fake users in online social networks without manual labels. In Proceedings

of the Research in Attacks, Intrusions, and Defenses: 21st International Symposium, RAID 2018, Heraklion, Crete, Greece, 10–12
September 2018; pp. 228–249.

16. Ping, H.; Qin, S. A social bots detection model based on deep learning algorithm. In Proceedings of the 2018 IEEE 18th
International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018; pp. 1435–1439.

17. Wei, F.; Nguyen, U.T. Twitter bot detection using bidirectional long short-term memory neural networks and word embeddings. In
Proceedings of the 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications
(TPS-ISA), Los Angeles, CA, USA, 12–14 December 2019; pp. 101–109.

18. Stanton, G.; Irissappane, A.A. GANs for semi-supervised opinion spam detection. arXiv 2019, arXiv:1903.08289.
19. Cresci, S.; Di Pietro, R.; Petrocchi, M.; Spognardi, A.; Tesconi, M. DNA-inspired online behavioral modeling and its application to

spambot detection. IEEE Intell. Syst. 2016, 31, 58–64. [CrossRef]
20. Cresci, S.; Di Pietro, R.; Petrocchi, M.; Spognardi, A.; Tesconi, M. Social fingerprinting: Detection of spambot groups through

DNA-inspired behavioral modeling. IEEE Trans. Dependable Secur. Comput. 2017, 15, 561–576. [CrossRef]
21. Mazza, M.; Cresci, S.; Avvenuti, M.; Quattrociocchi, W.; Tesconi, M. Rtbust: Exploiting temporal patterns for botnet detection on

twitter. In Proceedings of the 10th ACM Conference on Web Science, Boston, MA, USA, 30 June–3 July 2019; pp. 183–192.
22. Feng, S.; Wan, H.; Wang, N.; Li, J.; Luo, M. Satar: A self-supervised approach to twitter account representation learning and its

application in bot detection. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management,
Virtual, 1–5 November 2021; pp. 3808–3817.

23. Bach, N.X.; Long, D.H.; Phuong, T.M. Recurrent convolutional networks for session-based recommendations. Neurocomputing
2020, 411, 247–258. [CrossRef]

24. Zhang, J.; Bai, B.; Lin, Y.; Liang, J.; Bai, K.; Wang, F. General-Purpose User Embeddings based on Mobile App Usage. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Electr
Network, Virtual, 23–27 August 2020; pp. 2831–2840.

25. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

26. Peng, Z.; Huang, W.; Gu, S.; Xie, L.; Wang, Y.; Jiao, J.; Ye, Q. Conformer: Local features coupling global representations for visual
recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 17 October
2021; pp. 367–376.

27. Chen, Y. Convolutional Neural Network for Sentence Classification. Master′s Thesis, University of Waterloo, Waterloo, ON,
Canada, August 2015.

https://doi.org/10.1016/j.ipm.2020.102250
https://doi.org/10.1177/1550147717722499
https://doi.org/10.1016/j.is.2021.101771
https://doi.org/10.1016/j.ins.2018.08.019
https://doi.org/10.1109/MIS.2016.29
https://doi.org/10.1109/TDSC.2017.2681672
https://doi.org/10.1016/j.neucom.2020.06.077

Electronics 2023, 12, 2298 24 of 24

28. De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. Generalized louvain method for community detection in large networks. In
Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications, Cordoba, Spain, 22–24
November 2011; pp. 88–93.

29. Cresci, S.; Di Pietro, R.; Petrocchi, M.; Spognardi, A.; Tesconi, M. Fame for sale: Efficient detection of fake Twitter followers. Decis.
Support Syst. 2015, 80, 56–71. [CrossRef]

30. Fakhraei, S.; Foulds, J.; Shashanka, M.; Getoor, L. Collective spammer detection in evolving multi-relational social networks. In
Proceedings of the 21st Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, Sydney, Australia,
10–13 August 2015; pp. 1769–1778.

31. Gu, B.; Zhai, Z.; Li, X.; Huang, H. Towards Fairer Classifier via True Fairness Score Path. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17–21 October 2022; pp. 3113–3121.

32. Feng, S.; Tan, Z.; Wan, H.; Wang, N.; Chen, Z.; Zhang, B.; Zheng, Q.; Zhang, W.; Lei, Z.; Yang, S. TwiBot-22: Towards graph-based
Twitter bot detection. arXiv 2022, arXiv:2206.04564.

33. Hayawi, K.; Mathew, S.; Venugopal, N.; Masud, M.M.; Ho, P.-H. DeeProBot: A hybrid deep neural network model for social bot
detection based on user profile data. Soc. Netw. Anal. Min. 2022, 12, 43. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.dss.2015.09.003
https://doi.org/10.1007/s13278-022-00869-w
https://www.ncbi.nlm.nih.gov/pubmed/35309873

	Introduction
	Related Works
	Graph-Based Detection Approaches
	Node-Based Detection Approaches

	Preliminaries
	User Behaviors in Social Networks
	User Relationships in Social Networks

	MRLBot: Methodology
	DDTCN: Behavioral Representation Learning Model
	Transformer Encoder
	CNN Encoder–Decoder
	Transformer Dual Decoder
	Optimization Objectives

	IB2V: Relationship Representation Learning Model
	Intra- and Outer-Community-Oriented Random Walks
	Node Representation Learning and Optimization Objectives
	Incremental Learning Strategy

	Experiments and Discussions
	Datasets and Evaluation Metrics
	Experimental Setups
	Experimental Results
	Discussions
	Ablation Study
	Efficiency of Incremental Learning Strategy
	Validity of Relationship Strength
	Parameter Sensitivity of the Model
	Limitations

	Conclusions
	References

