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Abstract: Accurate estimation of fuel consumption and emissions is crucial for assessing the impact
of materials and stringent emission control techniques on climate change, particularly in the trans-
portation industry, which accounts for a significant portion of global greenhouse gases and hazardous
pollutants emissions. To address these concerns, the government of Canada has collected a large
sensor-based dataset containing detailed information on 7384 light-duty vehicles from 2017 to 2021,
with the goal of reducing CO2 emissions by 40–45% by 2030. To this end, various researchers world-
wide have developed vehicle emissions and consumption models to comply with these targets and
achieve the Canadian government’s ambitious objectives. In this work, we propose the development
of boosting and other regression models to predict carbon dioxide emissions for light-duty vehicle
designs, with the aim of creating ensemble learning models that leverage vehicle specifications to
forecast emissions. Our proposed boosting model is capable of accurately predicting CO2 emissions,
even with only one car attribute as input. Moreover, our regression models, in conjunction with the
boosting algorithm, can effectively make predictions from various vehicle inputs. Our proposed
technique, categorical boosting (Catboost), provides critical insights into transportation-generated air
pollution, offering valuable recommendations for both vehicle users and manufacturers. Importantly,
Catboost performs data processing in less time and with less memory than other algorithms proposed
in the literature. Future research efforts should focus on developing higher performance models and
expanding datasets to further improve the accuracy of predictions.

Keywords: light-duty vehicle; carbon dioxide emission; machine learning; boosting algorithm;
Catboost

1. Introduction

Environmental challenges created by transportation have become more complicated
with the fast rise in urbanization because of significant changes in climatic conditions
all over the world [1]. Seventy-five per cent of all carbon dioxide emissions come from
passenger cars, which are also liable for 20 to 30 per cent of all global greenhouse gas (GHG)
emissions [2]. Despite rigorous GHG and fuel standards, the quantity of used cars has also
increased [3,4]. The increase in vehicles, vehicle miles and travelled (VMT) has resulted
in high air pollutant emissions and natural resource consumption from old cars [5]. The
transportation industry is a crucial component of many daily activities, including passenger
movement and the sustainable supply of goods. However, the industry has maintained
sustainability by using internal combustion engines to consume fossil fuels [6].

The transportation industry consumes more than half of the world’s oil production,
which hastens the depletion of fossil fuel sources. Fuel costs have gradually increased be-
cause of the transportation industry [7]. The world has seen increases in the transportation
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sector. As a result, the transport sector is liable for around a quarter of all anthropogenic
CO2 emanations worldwide. The transportation segment includes light-duty vehicles.
A light-duty vehicle is any mobile device with a gross vehicle weight rating of less than or
equal to 10,000 pounds primarily used to transport people and goods. Examples include
automobiles, vans, SUVs, and pickup trucks. In the modern world, it is more evident
how the carbon footprint affects human health and how energy use affects the growth of a
country’s economy. Therefore, national economic issues have been the main problem for
federal policymakers during the past few decades [8].

There has been an increase in energy demand with social and economic advancements.
Every country’s socioeconomic development, urbanization, and population growth are
all expanding quickly [9]. Carbon emissions impact human health in two ways, that is,
directly and indirectly [10]. High carbon emissions immediately affect people’s respiratory
systems. The respiratory system health issues will result in shortness of breath, headaches,
dizziness, weakness, and delirium. The indirect impact of carbon on humans is contributes
to significant global problems, including global warming, climate change, and acid rain [11].
In addition to carbon emissions, the transportation industry produces considerable amounts
of PM2.5, PM10, SO2, N2O, etc., so these issues are significant to the environment and
people [12]. The best way of solving this problem is by controlling the release of carbon
and by lessening the effect of carbon.

Calculating the cost of energy and air pollution caused by vehicles depends on esti-
mating and visualizing fuel consumption and carbon emissions [13]. Forecasting models of
CO2 emissions and automobile fuel consumption are becoming more critical as climate vari-
ation has become a major problem over the past ten years. Because of this, researchers and
engineers worldwide are more interested in data analytics and machine learning techniques
for creating a sustainable environment [14]. Researchers have developed machine-learning
models and methodologies for estimating carbon dioxide emissions [15,16]. Comparing
various vehicle types and their environmental impact is essential for the car market. Such
research offers a profound understanding of the effects of vehicles on the environment. The
proposed work will fill the highlighted gap through meticulous data analyses and machine
learning by providing a vision of vehicle petroleum utilization and carbon dioxide emission.

The study analyzes current trends in CO2 releases by various vehicle brands and
models. This paper represents a complete systematic review of fuel usage and carbon
dioxide emissions for the latest light-duty automobiles. The data preparation process of the
dataset is also discussed in this paper. An analytical and predictive study using 7384 light-
duty vehicles spotted from 2017 to 2021 from the government of Canada dataset has been
performed to execute and address the specified research objectives. Two statistical means
of data analysis are used in this study: (1) a descriptive statistical analysis to evaluate the
fuel efficiency and CO2 emissions of light-duty automobiles and (2) an inferential statistical
analysis based on various properties of vehicles to determine the relationship between all
dataset attributes. The main goal is to create machine learning models that predict carbon
dioxide emissions and fuel consumption based on vehicle characteristics data.

2. Related Works

Vehicle emissions can be divided into two main groups: the ones that are harmful to the
environment and human health and the ones that accelerate climate change. Carbon dioxide
(CO2) emissions, which account for the majority of greenhouse gas (GHG) emissions, are the
ones that have the most significant impact on climate change. In the European Union, road
traffic contributes to one-fifth of all carbon dioxide emissions, with passenger automobiles
accounting for 75% of these emissions [17]. Furthermore, there is a clear and significant
correlation between gasoline usage and CO2. The average fleet emission limitations in
the European Union (EU) are given in terms of CO2 emissions, expressed in grammes per
kilometer. Similar methods have been employed in North America, but with restrictions
on fuel economy [18]. The decarbonization of the transportation sector must start with
electric automobiles. However, according to the International Energy Agency, to keep
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global warming below 2 ◦C by 2030, at least 20–25% of all highway transport vehicles must
be motorized by electric energy (approximately 300 million cars) [19]. To prevent the worst
effects of climate change, the government of Canada has likewise committed to attaining
net-zero emissions by 2050. It has set the goal of lowering emissions by 40–45% by 2030.
Therefore, numerous academics worldwide have suggested that various vehicle emissions
and consumption models satisfy those CO2 limit criteria and meet such high statutory
standards [20].

Researchers have developed several models for estimating car emissions during the
past few decades. A micro-scale model called CORSIM is constructed using tables to
estimate emissions based on dynamometer data. The CORSIM technique affects default
release rates per one second depending on the acceleration and speed of each vehicle that
travels on the specified link to calculate the total emissions of each link [21]. The EMIT
model uses a regression equation with acceleration and speed to estimate CO2, CO, and
nitro oxide emissions and is based on dynamometer data from 344 light-duty vehicles. In
2010, a US government agency developed the MOVES model for project- or region-level
greenhouse gas emissions calculations, including carbon oxide, nitro oxide, VOCs and PM
from light-duty automobiles. A model for calculating CO2 emissions using instantaneous
vehicle power by factoring in elements, including total resistance force, vehicle mass, speed,
and driveline performance, is developed [22].

The Georgia Institute of Technology’s “MEASURE” illustrates the use of data-intensive
parameters. It computes the carbon oxide, nitro oxide, and VOC emissions from all automo-
bile operating modes, such as deceleration, cruise control, acceleration, and idle. Despite
having more than 30 features as inputs, this model must account for CO2 estimation [23].
The European Environment Agency (EEA) created another well-known framework called
COPART, which has since become one of the normative approaches for road conveyance
emission records in EEA member nations [24]. Constructing the links between national
natural energy consumption and release patterns is a significant area of research. Addi-
tionally, several recent authors have used machine learning and deep learning techniques
for predicting car CO2 emissions. A model that forecasts the NOx and CO2 emissions
from heavy-duty trucks using artificial neural networks was proposed by using the U.S.
environmental protection agency (EPA) dataset. Although the result is favorable, CO2 has
yet to be considered, and the model is suitable for gasoline-powered cars [25]. After testing
70 diesel automobiles under real-world driving situations, a team of researchers used a
machine learning model to predict emissions along with vehicle performance. For instan-
taneous NOx forecasts, look-up tables, non-linear regression (NLR), and neural network
multilayer perceptron (MLP) models are accordingly used. Although the model considers
the vehicle’s acceleration and speed, its outputs are limited to NOx estimation, and CO2 is
left out [26]. Traditional ANN does not draw conclusions about the subsequent information
based on prior knowledge. Recurrent neural networks (RNNs), which contain loops that
permit data to persist, address this problem. Since the backpropagation method was used
to train RNN, it was possible that the gradient would approach 0 or infinity when the
networks were deep. Special RNNs called long short-term memory networks (LSTMs)
are used to solve gradient vanishing and clipping issues [27]. A proposed methodology
that tested the prediction accuracy of different machine learning models on CO2 emissions
and Gaussian process regression (GPR) and obtained good results was carried out on real
driving emission (RDE) data collected from hybrid electric vehicles. Additionally, it has
been discovered that the CO2 emissions of hybrid electric cars are not directly proportional
to their acceleration and speed [28].

Numerous techniques, such as different algorithms and scientific models, have been
investigated in the pertinent literature for trailing trends, modelling, and estimating CO2
emissions. Overall, the research involved in the forecasting of CO2 emissions and energy
demand for Canada and other nations has primarily concentrated on the appropriate
countries’ overall natural energy utilization dataset. Although the quantity of this research
is relatively small, it is nevertheless feasible to discover a few papers that forecast Turkey’s
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CO2 and other GHG emissions using transportation information. Table 1 thoroughly
describes earlier research on projecting CO2 and energy consumption.

Table 1. An overview of the research on CO2 emissions or energy usage.

Reference
and Year Technique Dataset Period Country Input Prediction

Output
Performance

Metric

[9] and 2021 Deep learning 1990 to 2018 Turkey
Energy and

vehicle
parameters

CO2 and energy
demand

RMSE, MBE,
RMSE, R2,
and MAPE

[11] and 2021 ANN, DNN 2000 to 2018 Turkey
GDP, population,

vehicle
parameters

CO2
MAPE, RMSE,

MAE

[25] and 2016 ANN 1994 to 1999 U.S. (EPA)
Energy and

vehicle
parameters

NO2, CO2
R2, slope, and
interception

[26] and 2020 NLR, MLP 2012 to 2016 U.K. Vehicle
parameters NO2, CO2

Fractional bias,
normalized MSE

[27] and 2020 LSTM 2012 to 2017 Germany Energy
parameters CO2

RMSE, R2,
and MAPE

[28] and 2021
Regression

models,
neural net

2001 to 2013 California
Energy and

vehicle
parameters

CO2 and fuel
consumption

RMSE, R2,
and MAPE

[29] and 2017 Grey model 1965 to 2014 Turkey Energy
parameters CO2

MAPE, MSE, and
RMSE

[30] and 2021 Grey model 1978 to 2014 G-6 Countries Vehicle
parameters CO2

MAE, MAPE, C
C = error ratio

[31] and 2019 Regression
models 1995 to 2016 Turkey GDP, population,

and energy CO2 R2

[32] and 2017 Regression
models 1970 to 2015 Iran

GDP, population,
previous CO2

emission

CO2 and energy
request

R2, MAPE, MAE,
Standard
deviation,

[33] and 2020 ANN 2005 to 2018 China GDP, population,
and energy CO2

MAPE, RMSE,
MAE

[34] and 2019 ANN 1975 to 2016 Turkey
Population, GDP,

oil price,
vehicle km

CO2 and energy
request

R2, MAE, MAPE,
RMSE, MSE

Current paper
Regression

and boosting
models

2017 to 2021 Canada Vehicle
parameters CO2

R2, RMSE, MAE,
Standard
deviation

The literature shows that various methods have been commonly used to accurately
forecast energy consumption and CO2 emissions. According to the pertinent papers, there
is a significant relationship between the energy demand and CO2 emissions for the relevant
regions and nations and the people, automobile kilometer, energy import and export,
gross household product, oil amount, annual vehicle kilometer, historical CO2, passenger
kilometer, and chronological energy trends.

3. Materials and Methods

The government of Canada gathered the dataset in this analysis to undertake analytical
and predictive research on car carbon dioxide releases. For this study, a data analytics life
phase has been used. This life phase has four levels, typical for data science and big data
analytics. Figure 1 demonstrates the life cycle of predicting CO2 emission.
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Figure 1. The life cycle of predicting CO2 emission.

The life cycle is divided into four levels. Level 1 is discovering the issue and goals,
which is the first step in this process. This research aims to provide a comparative analysis
of carbon dioxide releases among various vehicle models and vehicle brands, make sugges-
tions supported by the available data, and build a model that can predict changes in future
emission rates. Level 2 is data acquisition and preparation. The dataset utilized in this
analysis is drawn from the government of Canada’s “Fuel consumption rating” databases,
which include measured CO2 emissions and fuel consumption rankings for 7384 samples of
light-duty cars in Canada. The information was initially obtained from vehicle manufactur-
ers using standardized, controlled laboratory testing and analytical techniques to generate
the CO2 rating data. The method also includes testing for driving on city and highways in
cold weather, while utilizing air conditioning, and at higher speeds with more aggressive
acceleration and braking. Finally, the dataset is cleaned up by removing the missing and
duplicate values and condensed into a single data frame. By narrowing the scope of the
research analysis, information on light-duty vehicles was combined, aggregated, and given
new names. The dataset is examined and displayed using data analytics techniques in level
3—model planning and building, including statistical analysis and inferential analysis. In
model building, machine learning, regression, and boosting methodologies are used to
build the predictive models. Finally, level 4 will perform the feature engineering and model
evaluation, where model training and assessment will occur. In the following Section 4,
specific categories of all algorithms are covered. In Section 5, on results and discussion,
relevant outcomes on machine learning analytics and forecasts are explained and given in
depth in relation to (σ).

3.1. Dataset Analysis

This section includes statistical and inferential data analysis methods. Statistical
analysis includes fundamental calculations such as mean, median, and mode and dispersal
statistics such as variance (σ), standard deviation (SD), and range. A gradient of comparison
statistics provides an overview of the CO2 emissions of various vehicle kinds and brands.
Descriptive statistical analyses have been performed for each numerical column in the
dataset to assess the data distribution. Descriptive statistics provide a statistical knowledge
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of the dataset’s characteristics. Table 2 demonstrates that the average CO2 releases of all
automobiles are 250.58 g/km, with an SD of 58.85 g/km. The standard deviation of CO2
emission is 58.512 g/km. For all the analyses, engine size is considered significant. SD and
σ dispersion statistics also show that the expected value distribution scope is sufficiently
accurate for the forecast.

Table 2. Statistical analysis of the dataset of size N = 7385.

Engine
Size (L) Cylinders Fuel Consumption

in City (L/100 km)
Fuel Consumption on
Highway (L/100 km)

Total Fuel Consumption
(L/100 km)

CO2 Emission
(g/km)

Mean 3.2 5.6 12.6 9.0 11 250.6
Standard
Deviation 1.4 1.8 3.5 2.2 2.9 58.5

Minimum 0.9 3.0 4.2 4.0 4.1 96.0
Maximum 8.4 16.0 30.6 20.6 26.1 522.0

Inferential statistics assist in drawing inferences and making predictions based on data,
whereas descriptive statistics provide data summaries. It is possible to define inferential
statistics as a subfield of statistics that employs analytical techniques to derive conclusions
from the dataset. Following the descriptive statistical analysis, three bar chart types
illustrate the average CO2 emissions based on various brands, vehicle types, and fuel types,
as shown in Figure 2.

According to Figure 2a, BMW and Honda appear to be the greenest brands, emitting
the least CO2 (136 g/km and 193 g/km, respectively). Hyundai, Mini, and Cadillac continue
to do poorly in this category, with the highest CO2 emissions in terms of environmental
sustainability (359 g/km). Figure 2b shows that a different vehicle class shows different
levels of CO2 emission. Passenger vans and medium-sized station wagons produce a high
amount of carbon dioxide, at 359 g/km. Compact vehicle type generates less amount of
carbon dioxide.

Similarly, different types of fuel are consumed in the light-duty vehicle. The different
fuel types will also contribute to producing higher and fewer amounts of carbon dioxide, as
shown in Figure 2c. In Figure 2c, the x-axis denotes fuel types where x is regular gasoline,
Z is premium gasoline, E is ethanol, and D and N are diesel and natural gas, respectively.
A correlation graph shows that the degree of two features in the dataset is related. The
correlation graph illustrates the relationship between various vehicles’ emissions and fuel
consumption and their engine size, model, vehicle class, brand, cylinder, fuel type and
gearbox. The heat map of correlation coefficients is displayed to demonstrate a linear
correlation’s course and intensity, including vehicle characters. The goal of the statistics
in this study is to identify which parameter has the strongest correlation with the total
CO2 emission.

All correlation coefficients determined from the heat map are shown in Figure 3.
Furthermore, Figure 3 depicts the correlation between respective parameters, mainly the
parameters on the left and at the bottom. The warmer the shade colour, the stronger the
correlation coefficient.

Proposed Methodology

Our proposed work concentrates on creating a prediction model capable of anticipat-
ing CO2 emissions based on several light-duty vehicle data. An overview of the framework
used in this predictive model is shown in Figure 4. In this paper, a system for forecasting
CO2 emissions was developed using an ensemble learning strategy and a boosting algo-
rithm. In the boosting technique approach, a regression tree’s inner leaves are divided, and
samples, which are a randomly selected subset, are used to build a collection of regression
trees. The model was then developed using the collected data. The proposed method was
developed by splitting the whole model into two processes, model learning and prediction,
as shown in Figure 4.
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Figure 3. Correlation graph between all parameters.
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Figure 4. Framework for the carbon dioxide emissions’ prediction model.

The initial process of the predictive model is model learning. In this model learning,
the light-duty vehicles dataset will be collected and split into two subsets: testing data and
training data. The dataset is divided into two parts: one part is composed of 80% of the
data and is used to train the model; and the second part is composed of 20% of the data and
is used for testing the model. After training the model, the model is optimized using the
Adam optimizer, which will help to enhance the accuracy of the predictive model. Once
the model is completed trained, the model validation is then completed. The following
process is model prediction. Once the model is thoroughly trained to make a prediction,
new light-duty data are used to predict the estimated CO2 emissions.

Figure 4 shows the complete working process of the predictive model which helps to
forecast the carbon dioxide released by vehicles. The complete framework is divided into
two processes.
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4. Machine Learning Models

Machine learning algorithms can predict future reactions based on past reactions and
the dynamics conversion from related predictors. Distinctive types of models are functional
in this study to predict the carbon dioxide produced by vehicles. The ensemble learning
boosting model is used as a predictive model. An overview of the development of an
intelligent CO2 prediction model is presented in Figure 5. In ensemble learning, several
base models—often referred to as “weak learners”—are integrated and trained to address
the same issue. This approach is based on the idea that weak learners execute tasks poorly
on their own, but when coupled with other weak learners, they become strong learners
who, in this case, develop more accurate ensemble models. Mostly, all the advance boosting
techniques employ the idea of a gradient descent to reduce prediction error. The general
steps of the boosting method are used to avoid “weak learners” from making a significant
contribution to the final result. It builds the next learner based on cases where the model
made the most errors (where it was incorrect). The following steps are taken to create and
execute ensemble learning model. First, make predictions on the dataset using a weak
learner. Second, list the samples that it correctly and incorrectly predicted. Third, determine
the accuracy of each forecast by calculating the residuals for each data point, then add the
residuals to determine the overall loss. To transform the weak learner into a strong learner,
train the following tree once more using the gradients and the loss as predictors. Sequential
and parallel ensemble methods are two categories of ensemble learning techniques. In
this approach, the methods for a sequential ensemble involve base learners that rely on
the outcomes of the preceding base learners. Every basic model that follows it fixes the
mistakes in the prediction made by the one before it. Hence, increasing the weight of earlier
labels can improve overall performance.
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Figure 5. Ensemble learning-based model for carbon dioxide emission prediction.

Figure 5 shows the functional architecture of the advanced ensemble learning model.
Methods for parallel ensemble: this approach executes all base learners simultaneously
without requiring any dependencies between them, and the final outputs of all base
models are pooled (using averaging for regression and voting for classification problems).
A parallel ensemble learning technique called bagging or bootstrapping is used to lower the
variance in the final prediction. The main distinction between the bagging and intermediate
processes is in using random subsamples of the original dataset for bagging, which trains
the same or different models before combining the predictions. The same dataset is typically
used to train models. Because it combines both bootstrapping (or sampling of data) and
aggregation to create an ensemble model, the technique is known as bootstrap aggregation.
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The boosting algorithms are used for predictions on structural data. Boosting algorithms
are preferred, among which include XGBoost (extreme gradient boost), LightGBM (light
gradient boosting machine), and the Catboost algorithm, which is best chosen when the
data are of multiple datatypes. Catboost is one of the gradient boosting algorithms which
works sequentially, generating a new tree at a time, without altering the existing trees.
Catboost builds symmetric trees, and at every split, the lowest loss is selected and applied
for all nodes. Due to this, the algorithm produces CPU efficacy, reduces the prediction
time, and also overcomes overfitting, whereas the classic boosting algorithms are prone to
overfitting on small data. As Catboost uses a permutation-driven model technique to train
the model and calculates residual error on some random subsets, the overfitting issue is
prevented. Based on these merits, the proposed work implemented Catboost algorithm for
predicting CO2 emissions based on the features of vehicle and fuel consumption.

Categorical Boosting Model

An ensemble machine learning approach called gradient boosting is frequently em-
ployed to address classification and regression issues. It is simple to use, handles hetero-
geneous data well, and even handles relatively tiny data. In essence, it makes a strong
learner out of a group of numerous poor ones. In addition to regression and classification,
categorical boosting (Catboost) is helpful in ranking, recommendation systems, forecasting,
and even personal assistants. Gradient boosting adopts an additive form in which, when
given a loss function L

(
Yi, Ft), iteratively constructs a series of approximations Ft greedily.

In this case, researchers want to underline that the loss function has two inputs: the i-th
estimated output value (Yi) and the i-th function (Ft) that estimates Yi. A further function
used is Ft = Ft−1 + α.ht, where alpha is a scaling factor. Function ht shown in Equation (1)
is a base predictor selected from a domestic of functions, H, to minimize the expected loss
and is also used to improve the estimations of Yi:

ht = argmin
h∈H

EL (Y,Ft−1+h
)

(1)

The negative gradient boosting is shown in Equation (2). A dataset D with n samples,
of which each sample has a real-valued target, y, and m sets of features in a vector, x, are
shown in Equation (3):

ht= argmin
h∈H

E (
δLY

δFt−1−h)2 ≈argmin
h∈H

1
n
(
δLY

δFt−1 − h)2 (2)

Dataset D = Xk, Yk(|D|= n,Xk ∈ Rm, Yk ∈ R) (3)

There are numerous methods for handling categorical features in boosted trees which
are frequently present in datasets. Catboost automatically takes categorical features in con-
trast to other gradient boosting techniques (which need numeric input). One-hot encoding
is one of the most popular methods for dealing with categorical data. However, it could
be more practical for many characteristics. Target statistics are used to categorize features
to address this (estimate target value for each category). There are several techniques to
calculate the target statistics: greedy, hold out, leave one out, and ordered. Target statistics
are collected in Catboost. The target estimate of the k-th element of D’s i-th categorical
variable can be expressed mathematically as shown in Equation (4):

X̂ i
k =

∑xj∈Dk
1

xi
k=x

j.Yj+ap

k

∑xj∈Dk
1

xi
k=xj+a

k

; i f Dk =
{

xj : σ(j) < σ(i)
}

: Where a > 0 (4)

When the i-th component of Catboost’s input vector xj is identical to the i-th compo-
nent of the input vector xk, the indicator function 1

xi
k=xj

k
takes on the value 1. Here, we use

k to denote the k-th element in the order we applied to D using the random permutation σ
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and i to denote the integer values 1 through k − 1. The parameters a and p (prior) prevent
the equation from underflowing. When encoding the value xi

k, the if condition ensures that
the value of yk is excluded from the computation of values for xi. This method also guar-
antees that all the historical data are used to generate the target statistics for each sample,
encoding the categorical variables. The complete algorithm of Catboost is explained below
in Algorithm 1.

Algorithm 1: Catboost

Input: training set {(xi,Yi)}n
i=1, a differentiated loss function L

(
Yi, Ft), total number of

iteration M.

Algorithm:

1. The initializing model with the constant data:

F0(x) = arg min
r

∑n
i=1 L(Yi, γ).

2. For m = 1 to M:

1. rim = −
[

∂L(Yi ,Fxi))
∂Fxi

]
F(x)=Fm−1(x)

for i = 1, . . . , n.

2. Fit the base learner hm(x) to pseudo set i.e., train the model by using the training set
{(xi, rim)}n

i=1.
3. Calculate the by using 1D optimization:

γm = argmin
γ

∑n
i=1 L(Yi, Fm−1(x i) + γhm(xi)).

4. Constantly updating the model:

Fm(x) = Fm−1(x i) + γhm(xi)

Outcome FM(x)

Figure 6 shows the algorithmic flowchart of categorical boosting. Each step has its
significance. Regardless of preprocessing, categorical features are dealt with during training.
Catboost permits the usage of the entire training dataset. A very effective technique for
handling categorical features with the least amount of information loss is target statistics
(TS). Catboost randomly permutes the dataset for each example and then calculates the
average label value with the same category value positioned before the provided one in
the permutation. In a feature combination step, new feature is created by combining all
the category features. Catboost utilizes a greedy approach to consider the combinations
when building a new split for the tree. No variety is considered for the first split of the tree;
however, Catboost mixes every blend preset with every definite feature in the dataset for
the second and subsequent divisions. All splits chosen in the tree are viewed as a category
with two values, and combined.

Categorical characteristics and unbiased boosting of the distribution will deviate from
the original distribution when employing the TS method to transform categorical data
into numerical values. This distribution divergence will lead to a solution deviation, an
unavoidable issue for standard GBDT approaches. Random permutations of the training
data are created in Catboost. By selecting a random permutation and collecting gradients
based on it, many permutations will increase the algorithm’s robustness. The permutations
used for computing statistics for categorical characteristics are the same ones here. Different
permutations will be used to train other models. Therefore, using many permutations
will not result in overfitting. Catboost uses oblivious trees as base predictors, where each
tree level is split using the same splitting criterion. These trees are more symmetrical and
resistant to overfitting. Each leaf index in an ignorant tree is represented as a binary vector
with a length equal to the depth of the tree. Since all binaries use float, statistics, and
one-hot encoded features, this technique is frequently used in Catboost model evaluators
to calculate model predictions.
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5. Results and Discussion

This study investigated the capabilities of various machine learning approaches, i.e.,
Catboost, histogram boosting, support vector regression, and ridge regression for predicting
carbon dioxide emissions for upcoming vehicle designs. Data from the government of
Canada’s “Fuel consumption rating” databases, which include measured CO2 emissions
and fuel consumption rankings for 7384 samples of light-duty cars in Canada, were used
to create the dataset for this analysis. The implementations of the various models were
compared and evaluated using a variety of evaluation metrics, including mean square error
(MSE), r-square, root mean square error (RMSE), and mean absolute error (MAE), to find
the optimum CO2 emission forecast model.

5.1. Performance Parameters
5.1.1. Mean Square Error

The average of the squares of the mistakes, or the average squared difference between
the estimated values and the actual value, is measured by the mean square error (MSE) of
a model (of a process for evaluating an unobserved variable). MSE, which corresponds
to the expected value of the squared error loss, is a risk function. A model’s performance
is evaluated using the MSE. For example, suppose a least-square fit produces a vector of
v predictions from a sample of v data points on all variables, where v is the number of
forecasts, and o is the vector of observed values of the predicted variable. In that case, the
within-sample MSE of the predictor is calculated as follows in Equation (5):

MSE =
1
v

v

∑
i=1

(
oi − ôi)

2 (5)
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In other words, the MSE is the mean 1
v ∑v

i=1 of the squares of the errors
(
oi − ôi)

2 ,
where n is the number of data points, oi is the i-th measurement, and ôi is its correspond-
ing prediction.

5.1.2. R-Squared

The percentage of the dependent variable’s variation, which can be predicted from the
independent variable, is known as the coefficient of determination in statistics (s). R-squared
(R2) is a statistical measure that shows how much of a dependent variable’s variance is
explained by one or more independent variables in a regression model. R-squared measures
how well the variation of one variable accounts for the variance of the second, as opposed
to correlation, which describes the strength of the relationship between independent and
dependent variables. Therefore, if a model’s R2 is 0.50, its inputs can account for around half
of the observed variation. A mathematical formulation of R2 is explained in Equation (6):

R2 = 1− ∑i(oi − ôi)
2

∑i (oi −
_
o)2 (6)

where oi is the i-th measurement, ôi is its corresponding prediction, and
_
o is the average of

actual data points.
_
o value of 1 indicates an improved model performance.

5.1.3. Root Mean Square Error

One of the methods most frequently used to assess the accuracy of forecasts is the root
mean square error, also known as root mean square deviation. It illustrates the Euclidean
distance between measured actual values and forecasts. The residual (difference between
prediction and truth) is calculated for each data point and its norm, mean, and square
root to determine the root mean square error (RMSE). Since it requires and uses actual
measurements at each projected data point, RMSE is frequently utilized in supervised
learning applications. The formula for calculating the RMSE is given in Equation (7):

RMSE =

√
∑n

i=1(oi − ôi)2

n
(7)

where n is the number of data points, oi is the i-th measurement, and ôi is its correspond-
ing prediction.

5.1.4. Mean Absolute Error

An estimate of errors among paired observations reflecting the same phenomena
in statistics is called mean absolute error (MAE). Comparisons of expected data against
observed data, subsequent time against initial time, and one measuring technique against
an alternate measuring technique are a few examples of Y vs. X. The MAE is determined
by dividing the total absolute errors by the sample size. The formula for calculating the
RMSE is given in Equation (8):

MAE =
∑n

i=1|ôi − oi|
n

=
∑n

i=1|ei|
n

(8)

Consequently, it is a mathematical average of all the absolute errors, as indicated by
|ei| = |ôi − oi|. Where n is the number of data points, oi is the i-th measurement, ôi is its
corresponding prediction, and ei is the total error.

5.2. Performance Comparison

To validate the performance of the proposed Catboost predictive model, its perfor-
mance is compared with other machine learning models. The machine learning model
includes another boosting model, histogram boosting (Histboost), and regressor models as
support vector regression (SVR) and ridge regression. Statistical measures such as mean
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squared error (MSE), R-squared (RS), root mean square error (RMSE), and mean absolute
error (MAE) are used to evaluate the experimental results of the Catboost.

Figure 7 shows the comparison between Catboost and other proposed models.
Figure 7a displays a performance comparison of mean square error. The calculated MSE of
Catboost is 3.83, whereas other models such as Histboost, SVR, and ridge are 4.04, 4.14, and
5.66, respectively. Thus, MSE comparison shows that Catboost performs well as the lower
the value of MSE, improving the model’s performance. Figure 7b shows a performance
comparison of the R-square. The estimated R-square of the proposed model is near 1, which
states that the model is performing with the best outcomes. The R-square achieved by the
proposed model is 99.6, whereas other models presented 99.5, 99.4, and 99.1. Similarly,
Figure 7c,d represent root mean square error and mean absolute error, respectively. The
RMSE generated by Catboost was 1.9, whereas that by Histboost, SVR, and ridge were 2.01,
2.03, and 2.37. The estimated MAEs for the Catboost, Histboost, SVR, and ridge were 2.41,
2.67, 2.64, and 3.47, respectively. The results generated by the proposed models showed the
best performance compared to the other two models.
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The formal assessment of the model is performed by utilizing a descriptive analysis
measure called a confidence interval (CI), calculated on mean CO2 emersions by the models
as a point estimate, as shown in Table 3. The 95% CI for the coefficient of determination is a
range of values above and below the point estimate containing the actual value. The size of
sample population considered is 200, the sample mean, lower, and upper bounds for the
calculated confidence interval is illustrated. The confidence interval is estimated using a z
distribution critical value of 1.96, sample standard deviation, and square root of sample
population size. The result shows that the mean estimated emission value lies inside the
confident intervals, thus validating the models. The model with a wider confidence interval
is considered to have significant standard error. For the real value, the confidence level
of 95% comes out as 8.24, whereas for the proposed Catboost model, it came to around



Electronics 2023, 12, 2288 15 of 17

8.96. Similarly, CI for SVR, Histboost, and ridge is 9.26, 10.5, and 11.82, respectively. The
observations show that the Catboost with a smaller interval is desirable than the other
models as the model with a narrow interval produces accurate estimations.

Table 3. Formal assessment of the model using confidence interval of 95%.

Mean Point Confidence of
CO2 Emission (g/km)

Lower Limit
(g/km)

Upper Limit
(g/km)

Confidence
Interval

Real data 252.67 293.65 317.35 8.24
Catboost 309.59 297.74 321.44 8.96

SVR 310.82 299.15 322.49 9.26
Histboost 312.37 299.94 323.06 10.5

Ridge 314.77 301.5 326.5 11.82

6. Conclusions

In this paper, using sensor-based data from the government of Canada, which com-
prises 7384 light-duty cars observed between 2017 and 2021, an observational and prediction
study has been carried out to provide a comparative picture of different brands and vehicle
types with regard to fuel consumption and CO2 emissions. This research studies various
vehicle types and brands using vehicle measurements to better understand the car market
and its environmental consequences. The proposed study’s advised vehicle attributes and
prediction models can guide users and vehicle manufacturers to take appropriate action to
lessen their environmental impacts. Additionally, many boosting and regressor models for
CO2 emission prediction have been developed throughout this research. The performance
of the predictive models was compared with the Histboost, SVR, and ridge regression mod-
els. The evaluation metrics, namely training time, R2, MAE, RMSE, and MSE, were used
for performance evaluation and comparison. The proposed model Catboost performed
best with the complete combination of parameters. Therefore, the Catboost algorithm has a
high potential for predicting CO2 emissions with reasonable accuracy.

Future studies may focus on creating more accurate models to forecast fuel usage
and CO2 emissions. Finally, vehicle buyers and manufacturers can accept the recommen-
dations from this study’s findings to build and implement appropriate action plans for
lessening their environmental impacts. The model can be used for devising policies related
to designing ecofriendly vehicles, improving fuel efficiency, and encouraging environmen-
tal sustainability.
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