
Citation: Xing, L.; Wang, K.; Wu, H.;

Ma, H.; Zhang, X. FL-MAAE: An

Intrusion Detection Method for

the Internet of Vehicles Based

on Federated Learning and

Memory-Augmented Autoencoder.

Electronics 2023, 12, 2284. https://

doi.org/10.3390/electronics12102284

Academic Editor: Suleiman Yerima

Received: 4 April 2023

Revised: 30 April 2023

Accepted: 16 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

FL-MAAE: An Intrusion Detection Method for the Internet
of Vehicles Based on Federated Learning and
Memory-Augmented Autoencoder
Ling Xing , Kun Wang, Honghai Wu * , Huahong Ma and Xiaohui Zhang

School of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China;
xinglingmy@haust.edu.cn (L.X.); 200320050343@stu.haust.edu.cn (K.W.); mhh@haust.edu.cn (H.M.);
9906117@haust.edu.cn (X.Z.)
* Correspondence: honghai2018@haust.edu.cn

Abstract: The Internet of Vehicles (IoV) is a network system that enables wireless communication
and information exchange between vehicles and other traffic participants. Intrusion detection plays a
very important role in the IoV. However, with the development of the IoV, unknown attack behaviors
may appear. The lack of analysis and collection of these attack behavior has led to an imbalance in
the sample data categories of the IoV intrusion detection, which causes the problem of low detection
accuracy. At the same time, the intrusion detection model usually needs to upload data to the cloud
for training, which will introduce the privacy risk due to of the leakage of vehicle users’ information.
In this paper, we propose an intrusion detection method for the IoV based on federated learning and
memory-augmented autoencoder (FL-MAAE). We add a memory module to the autoencoder model
to enhance its ability to store the behavior feature patterns of the IoV, make it robust to imbalanced
samples, and use the reconstruction error as the evaluation index, so as to detect unknown attacks in
the IoV. We propose a federated learning based training method for the IoV intrusion detection model.
Local training of intrusion detection models in roadside units can effectively protect the privacy of
data resources. We also designed an aggregation method based on the performance contribution
of participants to improve the reliability of model aggregation. We conducted experiments on
the NSL-KDD intrusion detection dataset to evaluate the performance of the proposed method.
Experimental results show that our method has the best intrusion detection performance. In the case
of contaminated samples, the accuracy and F1 score of the proposed method are 9.6% and 7.39%
higher than those of the comparison methods on average.

Keywords: Internet of Vehicles; intrusion detection; network security; federated learning; autoencoder

1. Introduction

The Internet of Vehicles (IoV) is a vehicle-to-everything (V2X) interconnection with
intelligent networked vehicles as the main information perception subject, and is designed
to realize the interconnection between vehicles and people, roads, infrastructure, etc. As a
new paradigm of the Internet of Things [1], the Internet of Vehicles can serve many appli-
cations, including assisted/autonomous driving, safety information sharing, and traffic
control, among others.

In the IoV, vehicles generate a large amount of information (such as user informa-
tion) [2] and exchange information about both themselves and other vehicles around them.
In this environment, malicious vehicle nodes can easily affect the availability, integrity
and confidentiality of the network. Some malicious nodes might send false information to
deceive other vehicles, resulting in the disclosure of vehicle information and vehicle owner
privacy information; moreover, some malicious nodes could forge multiple identities and
use them to create false traffic scenarios, thereby affecting traffic order, disrupting the
normal operation of the network, and threatening the safety of users’ lives and property.

Electronics 2023, 12, 2284. https://doi.org/10.3390/electronics12102284 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12102284
https://doi.org/10.3390/electronics12102284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5132-3817
https://orcid.org/0000-0003-0209-4488
https://doi.org/10.3390/electronics12102284
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12102284?type=check_update&version=1

Electronics 2023, 12, 2284 2 of 21

These malicious nodes pose a direct threat to the integrity of the data exchanged in the
network. Moreover, while traditional network security protection mechanisms (such as
firewalls and encryption) can usually prevent attacks from outside the network, they can-
not effectively detect intrusions within the network (e.g., malicious behavior of legitimate
users). Therefore, corresponding intrusion detection methods are required if intrusion
behaviors are to be detected in the IoV.

Intrusion detection methods detect abnormal network behavior by monitoring the
communication traffic of nodes in the IoV. Most research works regard intrusion detection
as a classification problem of normal samples and attack samples. Most early intrusion
detection schemes employed traditional machine learning methods—such as support vec-
tor machines [3], decision trees [4], etc.—to manually extract features for classification.
However, these methods find it difficult to deal with the massive and multi-dimensional
intrusion detection data associated with the IoV. Deep learning methods represented by
neural networks have brought new ideas to the field of intrusion detection. Deep learning
can effectively learn the inherent laws and representation levels of sample data. The nonlin-
ear network structure, composed of multiple hidden layers, can adapt to the requirements
of higher-dimensional learning and prediction, and thereby improve the intrusion detection
performance. Various deep learning algorithms, such as the convolutional neural network
(CNN), recurrent neural network (RNN), and generative adversarial network (GAN), etc.,
have been widely utilized in intrusion detection. For example, Zheng et al. [5] proposed a
deep-learning-based intrusion detection method for the IoV, which uses a CNN to extract
spatial range features from network traffic and LSTM to extract time-related features in
order to detect malware traffic in the network. Alladi et al. [6] used sequence reconstruction
and a threshold algorithm implemented via a deep neural network to determine whether a
given message sequence in the IoV is real or abnormal.

However, there are some defects in the deep-learning-based intrusion detection
method for the connected car network. Firstly, it is difficult to collect attack behavior
data from the IoV. With the continuous development and expansion of the IoV, many
new types of attack will appear [7,8]. This results in a lack of attack-related data in the
dataset used to train the intrusion detection model, which reduces the intrusion detection
performance due to the missed detection of attacks that have not yet appeared. Secondly,
these schemes usually require devices to have powerful computing capabilities, so they are
usually trained in the cloud, and vehicle-related data needs to be uploaded to the cloud.
During this process, the user’s privacy data, such as location information, behavior habits,
and consumption records, are also uploaded, which can easily lead to user privacy leakage
problems [9,10].

To address the above issues, this paper proposes a method for intrusion detection in
the IoV based on federated learning and a memory-augmented autoencoder (FL-MAAE).
The FL-MAAE uses an autoencoder model with a memory structure (called memory-
augmented autoencoder) to enhance the storage capacity of the communication behavior
characteristics of the IoV, and realize the storage and positioning of the vehicle’s latent
space features. The memory-augmented autoencoder only uses normal sample data during
training. When the attack type and normal type of sample data are unbalanced, it will not
interfere with model training, so it is robust to unbalanced samples. Due to the overfitting
of the traditional autoencoder, the attack samples can be better reconstructed, resulting
in an increase in the false negative rate. The method adds a memory module to enhance
the modeling ability of normal communication behavior characteristics. The memory
module will cause a large reconstruction error of the attack sample, and it is not easy to
generate false positives, thus improving the detection accuracy. In order to prevent user
privacy leakage during model training, we use the behavior data of local vehicles in the
IoV to train the memory-augmented autoencoder model on the roadside unit based on
federated learning. The model parameters are uploaded to the cloud server and based on
the performance contribution of the participants. The global model is aggregated to ensure
the security and privacy of the IoV data.

Electronics 2023, 12, 2284 3 of 21

The main contributions of this paper can be summarized as follows:

• We propose a model called the memory-augmented autoencoder for IoV intrusion
detection, which enhances the ability of the autoencoder network to characterize
behavioral patterns by using a memory module, and design new reconstruction error
and feature error loss functions for constraining the memory module, enabling efficient
detection of intrusions and improving the accuracy of intrusion detection.

• We designed a federated learning-based intrusion detection model training method
for the IoV. The local training of the intrusion detection model in the roadside unit can
effectively protect the privacy of the data resources of the IoV. In addition, an aggrega-
tion method based on the performance contribution of the participants is designed to
improve the reliability of model aggregation.

• The proposed FL-MAAE method was simulated on the NSL-KDD dataset, and its
performance was evaluated in terms of accuracy, precision, recall, and F1 score. Com-
parisons with state-of-the-art methods (GAN, AE, FedAGRU) were also conducted.

2. Related Work
2.1. Internet of Vehicle Intrusion Detection

In this section, we discuss signature-based and anomaly-based IoV intrusion detection
and deep-learning-based intrusion detection methods, as shown in Table 1.

In recent years, intrusion detection methods in the IoV have attracted increasing
research attention. Intrusion detection methods can be broadly divided into signature-
based and anomaly-based intrusion detection methods. Signature-based intrusion detection
methods typically assume intruder activity, which can be represented by a pattern; the goal
of the system is to determine whether the activity of the subject conforms to these patterns.
Gao et al. [11] proposed a distributed DDoS intrusion detection approach, based on big data
technology, that uses HDFS to store attack behavior data and the random forest algorithm
to detect traffic in self-organizing vehicle networks in order to identify DDoS attacks.
Zaidi et al. [12] used statistical methods to analyze traffic in the IoV and find malicious
network nodes. This method uses hypothesis testing to model the intrusion detection
problem and simulate it under different traffic conditions, achieving good performance
in malicious node detection. Hoang et al. [13] proposed an intrusion detection system
for in-vehicle networks, which uses an autoencoder to reduce the data dimension on the
CAN bus, then employs a recurrent neural network combined with a SoftMax classifier to
distinguish between attack data and normal data. Notably, although the above signature-
based intrusion detection methods can effectively identify existing attacks in the signature
database, they cannot detect unknown attacks and find it difficult to adapt to new attack
behaviors. Many solutions to specific types of attacks, such as jamming attacks [14] and
selective forwarding attacks [15], have been proposed. These specific attack types are of
wide concern to researchers because they also pose a great security threat to the Internet
of Vehicles.

Anomaly-based intrusion detection methods regard intrusion behavior as an abnor-
mal value. After establishing a normal behavior model, the subject’s current activity is
compared with this normal behavior model. When the deviation from the normal contour
model is large, the behavior is identified as intrusion behavior. In the IoV environment,
most network traffic is normal behavioral traffic and lacks relevant attack tag data; there-
fore, anomaly-based intrusion detection methods that only need normal behavioral data to
detect intrusions are a current research hotspot. Sedjelmaci et al. [16] designed a lightweight
ad hoc network intrusion detection framework for vehicles, called AECFV. This approach
adopts the packet drop rate (PDR), the packet send rate (PSR), the message duplication rate
(MDR), and the signal strength intensity (SSI) to model normal behavior, then uses the SVM
algorithm to train malicious vehicle node detection. This scheme has low computational
overhead and a small false positive rate. Li et al. [17] also implemented an intrusion detec-
tion system for abnormal vehicle detection based on the SVM algorithm. This approach
uses behavior and context information to train the SVM classifier by deploying on each

Electronics 2023, 12, 2284 4 of 21

vehicle node to analyze the adjacent node behavior and exchange information, and also
employs Dempster—Shafer evidence theory fused node data. Focusing on the intrusion
problem in the CAN bus of the in-vehicle network, Levi et al. [18] adopted a hybrid ma-
chine learning method. First, the normal behavior of the vehicle is learned by training a
hidden Markov model, after which a regression model is used to adjust the A threshold for
anomaly prediction. This adaptive threshold achieves better detection performance than
the previous static threshold.

Table 1. Comparison of different IoV intrusion detection methods.

Categories Research Work Contribution Limitation

Signature-based

Gao et al. [11] Using HDFS to store DDoS attack behavior
data Only DDoS attacks can be detected

Zaidi et al. [12] Analyzing IoV attack traffic using hypothesis
testing

When the amount of data is large,
the processing time is longer and

unknown attacks cannot
be discovered

Hoang
et al. [13]

Using Softmax classifier to distinguish normal
and attack data on CAN bus

Applies only to periodic messages,
not aperiodic messages

Anomaly-based

Sedjelmaci
et al. [16]

Four features, PDR, PSR, MDR, and SSI, are
used to simulate normal vehicle behavior and

detect attacks through cluster heads

The cluster head node is selected
only according to the mobility and

trust of the node, which may be
controlled by an attacker

Li et al. [17]
The behavior and context information of

normal vehicle nodes are analyzed to detect
attacks using SVM

Lack of public dataset validation

Levi et al. [18]

Train a hidden Markov model to learn the
normal behavior of the vehicle and adaptively

adjust the detection threshold using a
regression model

When the data dimension is high
and the data volume is large,
the advantage is not obvious

Deep-learning-based

Hu et al. [19] Increase the diversity of features based on the
split convolution module

Poor detection accuracy and
execution efficiency on

small samples

Park et al. [20]
Building twin convolutional neural networks

using small-sample learning methods to extract
time-dependent dynamic features in traffic

Relatively low
detection performance

Zhou et al. [21] Proposed an incremental long short-term
memory-based method to detect attacks Weak detection of stealth attacks

Ashraf
et al. [22]

Detecting attacks based on long short-term
memory networks and autoencoders

Serial spatio-temporal feature
extraction is susceptible to the

impact of the previous sub-model

Liu et al. [23] Collaborative intrusion detection based on
blockchain and federated learning High communication overhead

Chen et al. [24]
Increase the weight of important nodes based

on the attention mechanism to reduce the
overhead of federated intrusion detection

Depends on the consistency and
stability of the global model

Attota et al. [25]
Improving learning efficiency for different

classes of attacks using multi-view
ensemble learning

computational and communication
overheads impact nodes

2.2. Intrusion Detection Based on Deep Learning

Traditional machine learning methods suffer from dimensional disasters in intrusion
detection and have limitations in the face of massive multidimensional IoV data. Deep
learning can be more efficient in analyzing and extracting the behavioral data of the IoV and

Electronics 2023, 12, 2284 5 of 21

reflecting the essential features of the behaviors; therefore, this has motivated researchers
to implement intrusion detection using deep learning methods such as autoencoders,
convolutional neural networks, long and short-term memory networks, etc. Many emerging
technologies such as deep learning [26], mobile edge computing [27], etc., have been applied
to solve the network security problems of the Internet of Things [28,29]. These methods also
provide ideas for intrusion detection of the Internet of Vehicles. Hu et al. [19] implemented
a wireless network intrusion detection system using adaptive synthetic sampling and a
convolutional neural network implemented by a split convolutional module to increase the
diversity of spatial features and reduce the impact of inter-channel information redundancy
on the model. Park et al. [20] convert network traffic into grayscale maps and build twinned
convolutional neural networks based on small sample-learning methods to determine
the type of attack based on the similarity scores of attack samples. To capture the time-
dependent dynamic features in network traffic, Zhou et al. [21] proposed an incremental
long and short-term memory network intrusion detection method that introduces state
changes into LSTM and processes dynamic information in network data by obtaining the
state of the LSTM implicit layer. Ashraf et al. [22] combined LSTM and a self-encoder to
extract the network traffic of the vehicular network from temporal features to improve the
accuracy of intrusion detection in vehicular networks.

However, in deep learning methods, vehicle data usually needs to be collected and
trained on the cloud server, which may easily result in the leakage of private data. Federated
learning can perform joint model training provided that all of the multiple participants
meet certain data privacy conditions. This is an effective method of solving the problem
of data silos that has been proposed in recent years. Accordingly, some researchers have
applied it to the field of intrusion detection. Liu et al. [23] proposed a coordinated intrusion
detection method based on blockchain and federated learning for edge computing in
vehicles. Under this approach, the vehicle performs distributed training of the intrusion
detection model, then uploads the model parameters to the blockchain, composed of RSU.
Model aggregation is carried out on the platform, after which the training and updating of
the global intrusion detection model is completed collaboratively without revealing private
data. Chen et al. [24] proposed an intrusion detection method for wireless edge networks
based on federated learning, applying an attention mechanism to increase the weights of
important devices in order to avoid unnecessary updates being uploaded to the cloud server.
This scheme successfully reduces the large communication overhead. Attota et al. [25]
introduced a federated-learning-based intrusion detection method, MV-FLID, which trains
multiple views of IoT network data in a decentralized manner so as to detect, classify,
and defend against attacks. However, the intrusion detection model of the above method is
deployed on the vehicle, and the model training brings a lot of computational overhead
to the vehicle. At the same time, when performing model aggregation, the conventional
model aggregation method aggregates according to the local data volume of the participant
as the weight. When there is a participant whose dataset is too large, it will affect the model
aggregation. Therefore, this paper proposes that the roadside unit should be responsible for
the training of the intrusion detection model; at the same time, based on the performance
of the local model, the contribution of the roadside unit to the model training is calculated
to solve the above problems.

Compared to the existing intrusion detection methods in the Internet of Vehicles,
the advantages of the method proposed in this article are that (1) the method is anomaly-
based and can detect unknown attacks; (2) it performs better in detection performance;
and (3) it can avoid leakage of user privacy.

3. System Model and Threat Model
3.1. System Model

The system model in this paper is built on the federated learning framework, which
can be broadly divided into two stages. In the first stage, the roadside unit collects the
vehicle communication behavior data in the area, constructs the dataset for the training

Electronics 2023, 12, 2284 6 of 21

of the local intrusion detection model, and uses the data downloaded from the cloud.
The initial model is trained locally. In the second stage, each roadside unit uploads the
trained model to the cloud, which aggregates the models uploaded by multiple roadside
units to obtain a global model. The cloud server then sends the aggregated global model to
the roadside unit to detect malicious vehicles in the area. As shown in Figure 1, it is mainly
composed of the following three entities:

• Vehicle: The vehicle is the main information perception body in the IoV, and the
equipped on board unit (OBU) can communicate with the vehicle or roadside unit
through dedicated short range communication (DSRC) or LTE-V technology. The gen-
erated communication behavior data will be transmitted to nearby roadside units for
the training of the intrusion detection model.

• Roadside Unit: The roadside unit is a fixed device deployed along the road. Each unit
is equipped with an edge computing server nearby and has strong computing and
communication capabilities. The roadside unit, as a gateway node for information
sharing in the IoV, is used to collect the communication behavior data of vehicles in its
area to train the local intrusion detection model and interacts with the central server
based on a federated learning approach to update the model. The trained intrusion
detection model will be deployed on the roadside unit to detect the vehicle data in the
coverage area, which enables the intrusion vehicle nodes to be identified.

• Cloud Server: The cloud server is mainly used for federated learning model ag-
gregation. It operates by aggregating the uploaded model parameters according to
the contributions made by roadside units participating in the training and establish-
ing a global intrusion detection model, which facilitates optimization of the model,
the cloud server, and each of the multiple rounds of interaction between roadside
units. After the model converges, the cloud server sends the model parameters to
each roadside unit participating in the federated training, thereby updating the local
intrusion detection model.

Figure 1. System model.

In the IoV environment, vehicles and roadside units establish wireless connections
through wireless communication technologies (such as DSRC or LTE-V) to improve data
access services for high-speed moving vehicles, as well as to realize information exchange
between vehicles and roadside units. In the model presented in this paper, the roadside unit
collects and stores the vehicle communication behavior data with the help of the connected

Electronics 2023, 12, 2284 7 of 21

edge computing server, which is used to train the intrusion detection model. At the same
time, the roadside unit collects the vehicle communication behavior data in the area to
detect whether there are malicious vehicle nodes sending information.

In order to ensure the security of the local data of the roadside unit, the roadside unit
uses this local data to train the intrusion detection model received from the cloud server,
only then does it upload the trained model parameters to the cloud. Notably, it does this
without uploading the local training data, thus ensuring the security and privacy of this
data. The cloud server updates the global model according to the contribution made by
each roadside unit participating in the training, then sends the updated global model to the
roadside unit.

3.2. Threat Model

In this section, we mainly consider the threat of internal cyber-attacks in the IoV. These
include the following typical attack behaviors:

• DoS attack: Malicious vehicle nodes use reasonable service requests to occupy an
excessive amount of network resources, thereby preventing service providers from
providing normal services. For example, a malicious vehicle may launch a DoS attack
on the RSU, exhausting its computing and communication resources and causing it to
stop responding or even crash.

• Sybil attack: Malicious vehicle nodes forge information corresponding to multiple
identities and broadcast multiple pieces of forged node information to the network,
allowing them to gain network control, interfere with queries, and deny responses
and other permissions. For example, malicious vehicle nodes can create the illusion
that there are many vehicles on the road, so that other normal vehicles will mistakenly
assume that traffic on this road is congested. Through a false identity attack of this
kind, attackers can inject misinformation into the network, causing confusion.

• Sinkhole attack: A malicious vehicle node creates a “hole” centered on itself, attracting
data packets from surrounding vehicles to pass through. In this way, the passing data
packets can be modified or deleted. This attack can spread false information or cause
information to be lost, interfering with normal network behavior.

• Broadcast tampering attack: Malicious vehicle nodes tamper with relevant security
information or service information in the IoV and then publish this information.
For example, malicious nodes could tamper with their own basic safety message
(BSM) and then publish it to affect traffic order. It is also possible to broadcast false
service information to attract other vehicles to visit a particular region.

The typical IoV attack methods presented above usually exhibit network behaviors
that differ from those of normal nodes, meaning that their communication behavior and
traffic statistics characteristics can be used as important attributes to distinguish normal
behavior from attacks. However, new types of cyber-attacks continue to emerge in an
endless stream, such as zero-day attacks, the attack modes of which are currently unknown
and difficult to detect. If the detection is carried out directly, there will be a high rate of
both false positives and false negatives. In contrast, the federated-learning-based intrusion
detection method outlined in this paper can update the proposed model according to the
vehicle communication behavior information regularly collected by RSU, enabling the
detection accuracy of the model to be continuously improved.

Since the communication behavior data of the IoV can reflect the behavior information
of vehicle nodes, it is possible to collect network traffic, audit information and other related
data for analysis, and establish an intrusion detection model to discover network intrusion
behavior. Next, we formally describe the intrusion behavior and intrusion detection in
the IoV.

Electronics 2023, 12, 2284 8 of 21

We represent the intrusion behavior in the IoV as I = < A, E, T, N, R >, where A
is the intruder who initiates the attack, E is the device node used by the intruder to initiate
the attack, T is the target node being attacked, which can be a vehicle or a roadside unit, N
is the network region where the attack takes place, and R is the result produced after one
attack. Its primary intrusion can be expressed as the intruder A initiates an attack on the
target node T in the network N using its attack node E to achieve the attack result R.

For an intrusion i ⊆ I, the detection of this intrusion can be expressed as ID = [f , rules],
where rules is the set of conditions for intrusion detection, f is the result of intrusion detec-
tion, divided into normal and attack results, and f is expressed as follows:

f [rules, D] =

{
attack, i ∈ rules

normal, i /∈ rules
(1)

where D is the set of behaviors in a certain time if there exists an intrusion i, ∃E→ T, which
can be represented by using D[i, time]. When ∀i, i ∈ I, r ∈ rules and f [r, D] = normal, i.e., a
missed alarm is generated, and when, ∀i, r /∈ rules and f [r, D] = attack, i.e., a false alarm is
generated. For intrusion detection, when ∀i, i ∈ I or ∀i′, i /∈ I both have f [r, D] = attack,
that is, the attack is detected.

4. The Proposed FL-MAAE Method
4.1. Memory-Augmented Autoencoder Model

Currently, autoencoders are widely used in intrusion detection. By training autoen-
coders with normal data, autoencoders can have a large reconstruction error for data that
produces anomalies, thus achieving intrusion detection. However, autoencoders can some-
times also achieve good reconstruction of abnormal data, leading to intrusion omission and
reducing intrusion detection performance. To address this issue, we propose a model called
memory-augmented autoencoder to implement intrusion detection in the IoV. By adding a
memory module to the original autoencoder to store and represent vehicle communication
behavior data, we train the memory module based on the feature reconstruction loss func-
tion using normal vehicle communication behavior data, so that the memory module saves
the latent features of normal vehicle communication behavior. When attack behavior data
appears, only the latent space features of normal behavior can be queried with the potential
space features in the memory module. By calculating the reconstruction error between the
query feature-reconstructed data and the attack data, which is significantly higher than the
normal reconstruction threshold, the attack can be detected. The proposed storage structure
expands the reconstruction error of attack data input to the autoencoder, thus effectively
avoiding the omission of attack data. As shown in Figure 2, the memory-augmented
autoencoder model consists of three parts: namely, the encoder, decoder, and memory
modules. The preprocessed vehicle communication behavior data is first input into the
model to obtain the latent space features, after which the memory module is used to store
and locate latent space features, and finally to use the reconstruction loss function so that
the model can reconstruct the original feature vector. In the model training stage, we only
use the sample data marked as normal for training; this means that the memory module
only stores the potential features of the normal sample data, so that when performing
intrusion detection, the attack behavior sample data is input into the model and matched
based on the data from the a memory module. If the feature is reconstructed and output,
the reconstruction error will be significantly higher than that of the normal sample; thus,
it is determined that the sample in question represents attack behavior. Table 2 lists the
utilized notations and variables.

Electronics 2023, 12, 2284 9 of 21

Figure 2. Memory-augmented autoencoder model architecture.

Table 2. List of notations.

Notation Description

x and x̂ Input and output of MAAE
z and ẑ Input and output of memory module

RD Latent space feature dimensions
θE and θD Parameters of encoder and decoder

K Number of memory items
mi i-th memory item

exp(·) Exponential operation
ρ(·) Calculate Pearson similarity
ωi Memory item weight

R(x, x̂) Sample reconstruction loss
FR(z, ẑ) Feature reconstruction loss

RT Overall loss function threshold
Rmin Minimum sample reconstruction loss

τ Preset intrusion judgment parameters
Di Local dataset
Pi Model performance contribution
ωg Global model parameters
ωe

i i-th local model parameters

4.1.1. Encoder

The encoder is used to encode the input communication behavior data into communi-
cation behavior features in the latent space, and the specific data contained in the commu-
nication behavior data are based on the actual setting. The encoder of this model is imple-
mented by a four-layer fully connected neural network, which is used to map the input
data features to the latent space. The encoder can be expressed by the following formula:

z = E(x; θE) (2)

The communication behavior data x ∈ RN , and N are the dimensions of the input
data, z ∈ RD is the communication behavior feature in the latent space after the data are
input to the encoder, D is the dimension of the communication behavior feature, and θE is
the model parameter of the encoder.

4.1.2. Memory Module

The memory module is used to store and locate the latent space features of the
data. It would be more difficult to store the latent space features directly. Here we use
multiple memory items instead. During training, z matches the combination of memory
items with the highest similarity, and training optimizes the memory items so that the
normal behavior data can be reconstructed better. In contrast, when performing intrusion
detection, the anomalous data will match the combination of stored items with normal
behavior, resulting in a larger reconstruction error to detect the intrusion. We use the matrix
M ∈ RK×D to represent this, where D is the dimensionality of the feature and K is the

Electronics 2023, 12, 2284 10 of 21

number of memory items. The specific latent space features stored in the memory items are
denoted using mi. The latent space features z obtained by encoding the encoder are input
to the memory module M. The features ẑ are obtained by applying specific combinations
of memory terms as shown in the following equation:

ẑ = ωM =
K

∑
i=1

ωimi (3)

where ωi is the weight of each memory item to indicate the similarity between the latent
space feature z and the memory item mi, which is calculated using the softmax method to
derive ωi with the following formula:

ωi =
exp(ρ(z, mi))

∑K
j=1 exp(ρ(z, mj))

(4)

where ρ() is the similarity calculation formula. The conventional similarity calculation
usually uses cosine similarity, but its cosine calculation cannot be performed when the
dimension is missing, so we propose to use the Pearson correlation coefficient to calculate
the correlation degree between latent space features and memory items. The value of the
coefficient is always between −1 and 1; close to 0 is said to have no correlation, close to 1 or
−1 is said to have strong correlation, and the ρ() calculation formula is as follows:

ρ(X, Y) = ∑n
i=1(Xi − X̄)(Yi − Ȳ)√

∑n
i=1(Xi − X̄)

2
√

∑n
i=1(Yi − Ȳ)2

(5)

The features ẑ obtained by matching from the memory module are input to the decoder,
and the output x̂ similar to the original input data x is reconstructed from the latent
features ẑ. According to the above description, this model reconstructs the communication
behavior feature z using multiple memory items, and optimizes the memory items through
training so that the normal communication behavior data can be better reconstructed.
When intrusion detection is performed, abnormal communication behavior data will be
matched to the combination of memory items that store normal behavior, resulting in a
large reconstruction error, thereby realizing intrusion detection.

4.1.3. Decoder

The decoder is used for reverse coding according to the reconstructed communication
behavior characteristic ẑ to obtain the reconstructed data x̂ with the same size as the original
communication behavior data x. The specific structure of the decoder is set symmetrically
according to the encoder. The data decoding process of the decoder can be expressed by
the following formula:

x̂ = D(ẑ; θD) (6)

where, θD is the decoder parameter.

4.1.4. Loss Function

The model is trained by two loss functions: sample reconstruction and feature recon-
struction. The sample reconstruction loss is used to calculate the difference between the
input communication behavior data and the reconstruction data, and is calculated using
the square error function; the calculation formula of sample reconstruction loss R(x, x̂) is
as follows:

R(x, x̂) =
1
N

N

∑
n=1

(xn − x̂n)
2 (7)

where N is the number of input samples, xn and x̂n are the n-th input sample and the
corresponding reconstructed output sample samples, respectively. We use the sample
reconstruction loss as a criterion to determine whether a sample is an attack sample or not.

Electronics 2023, 12, 2284 11 of 21

In order to train and optimize the memory module in the model, this paper proposes a
feature reconstruction loss function, which is used to reduce the error between the memory
input and output, and improve the memory’s ability to characterize normal behavior
characteristics. The calculation formula of feature reconstruction loss FR(z, ẑ) is as follows:

FR(z, ẑ) =
1
I

I

∑
i=1

(zi − ẑi)
2 (8)

where I is the feature dimension, zi and ẑi represent the i-th element value of communica-
tion behavior feature z and reconstruction communication feature ẑ, respectively. When
there is a difference between z and ẑ, it represents a bias in the representation of the behav-
ior feature by the memory module. Therefore we use the feature reconstruction loss for
reducing the existence of discrepancy between z and ẑ, thus improving the ability of the
memory module to characterize the features. The total loss function of the model can be
expressed as the following formula:

L = R(x, x̂) + λFR(z, ẑ) (9)

where λ is the parameter used to balance the two loss functions. Convergence of the
total loss function is achieved by continuous training of the model. After the training is
completed, the following method is used to calculate the reconstruction loss threshold:

RT = Rmin + τ (10)

Among them, Rmin represents the minimum value of the sample reconstruction loss
during the training process, and τ represents the preset hyperparameter, which is set
according to actual needs.There is a difference between unknown attack behavior and
normal behavior traffic, so it is difficult for anomalous samples to be reconstructed by the
decoder again after encoder downscaling. This is due to the fact that in a batch of training
data, most of the network parameters are trained by normal samples, and the reconstruction
error of anomalous samples will be much larger than that of normal samples, so we use the
reconstruction error to detect the attack behavior. When performing intrusion detection,
the abnormal judgment of the sample reconstruction loss R(x, x̂) is performed according
to the reconstruction loss threshold RT . To obtain the vehicle intrusion detection results,
the specific method is as follows: when R(x, x̂) ≤ RT , the corresponding communication
behavior data is normal data; when R(x, x̂) > RT , the corresponding communication
behavior data is abnormal data, and the corresponding communication behavior data will
be sent. The vehicle is identified as an intrusion vehicle.

4.2. Federated Learning Training

At present, many vehicle networking intrusion detection methods usually need to
collect vehicle communication behavior data, and train intrusion detection models on the
cloud server side. However, the vehicle communication behavior data contains the user’s
private information, and uploading these data to the cloud introduces the risk of privacy
leakage. Therefore, we train an intrusion detection model based on federated learning.
First, the roadside unit is trained locally using its own data and a local model is obtained.
Then, multiple roadside units only upload the parameters of the model to the cloud for
model aggregation. Finally, the cloud server sends the aggregated model to the roadside
unit. The above steps are repeated until the intrusion detection model converges. Since
we train the intrusion detection model based on federated learning, there is no need to
transmit or share data with other parties or cloud servers; rather, the model is trained
locally and only model parameters or gradients are uploaded, thereby avoiding the risk of
user privacy disclosure.

Electronics 2023, 12, 2284 12 of 21

4.2.1. System Initialization

The cloud server selects the initialization model parameters ω, loss function L, learning
rate η, batch size B, and other related parameters for the intrusion detection model. We also
preset the number of iteration rounds of the cloud server and roadside unit E.

4.2.2. Local Model Training

The roadside unit receives the initial model parameters ω, loss function L, and learn-
ing rate η from the server, and uses the local dataset Di for training. The local dataset is
formed by the roadside unit collecting the vehicle communication behavior data of the
coverage area. This includes the following: basic safety message (BSM)—safety status
data exchanged between vehicles, including position, speed, heading, and other related
information; network data information—key network information generated by vehicle
communication, including network protocol type, source address, destination address,
timestamp, and other information; traffic statistics information—statistical feature informa-
tion of the data sent by roadside units to vehicles, including data packet transmission rate
per unit time, data packet discard rate, and other information. Roadside units collect this
data to form local datasets. Each dataset is required to contain only normal vehicle commu-
nication behavior data to facilitate its modeling of normal vehicle communication behavior.
During model training, the data needs to be standardized for comprehensive evaluation.
In this paper, the z-score algorithm is used for standardized processing. The formula is
as follows:

z =
x− µ

σ
(11)

where x is the input data, µ is the mean of the input data, and σ is the standard deviation of
the input data. Moreover, the character features in the dataset are encoded and converted
into numerical features using LabelEncoder in the sklearn library, after which the processed
data features are converted into matrices to facilitate the processing of these data by the
intrusion detection model. Since the roadside unit is trained with the help of the edge
server, it can be assumed that the roadside unit has sufficient computing power without
considering the computational complexity of the algorithm.

4.2.3. Model Parameter Aggregation

Traditional federated learning usually uses the FedAvg algorithm to perform weighted
average aggregation of the model according to the proportion of the data volume of the
participants participating in the federated training to the total training volume [30–32].
However, in the IoV environment, the local datasets collected by each roadside unit are often
uneven, meaning that the final aggregated model will bias the roadside unit with a large
amount of data. For this reason, this paper proposes an aggregation method that considers
the contribution made by the local model performance. The aggregation method based on
the performance contribution sets a verification dataset on the cloud server side. Whenever
the roadside unit uploads the model parameters to the cloud server, these parameters are
used to restore the local model, and the model is verified with the verification dataset to
obtain the detection performance index. We use the detection performance of the model on
the validation set as the model weight, and aggregate the local models for all roadside units.
This method focuses on the detection performance of the local model itself, and assigns
higher weights to the models with high detection performance for aggregation. What
the model has learned from the data has a higher degree of reliability for solving the
intrusion detection task. The model parameters uploaded by the roadside unit are first
tested on a verification dataset on the cloud server, from which four performance evaluation
parameters of the model are obtained: accuracy, precision, recall, and F1 score. Aggregation
based on model performance contribution is more reliable than aggregation based on data
volume alone. The calculation formula for performance contribution is as follows:

Pi =
Acci + Prei + Reci + F1i

Total(Acc + Pre + Rec + F1)
(12)

Electronics 2023, 12, 2284 13 of 21

Here, Acci, Prei, Reci, and F1i, respectively, represent the accuracy, precision, recall,
and F1 score of the model uploaded by roadside unit number i on the validation dataset
located on the server, while Total(Acc + Pre + Rec + F1) represents the sum of the perfor-
mances of the four performance indicators (accuracy, precision, recall, and F1 score) of the
models uploaded by all roadside units.

The cloud server receives the local model parameters uploaded by each roadside unit
and performs weighted aggregation according to the performance contribution of each
roadside unit, thereby obtaining the global model parameters ωg. The aggregation method
is as follows:

ωg =
I

∑
i=1

ωiPi (13)

Here, I denotes the number of roadside units participating in federated training,
ωi represents the model parameters uploaded by the i-th roadside unit, and Pi is the
performance contribution of the i-th roadside unit.

4.2.4. Local Model Updating

The roadside unit receives the aggregated global model parameters ωg sent by the
cloud server, then updates the local intrusion detection model according to ωg. The updated
expression of the local model is as follows:

ωe
i ← ωg (14)

where ωe
i is expressed as the model parameter of the number of iterations in the e-th round

of the i-th roadside unit. The above steps are iterated multiple times until the optimal
global intrusion detection model is obtained.

The federated learning framework allows RSUs to retain datasets locally and train
deep learning models in collaboration with other RSUs, thereby ensuring that no third party
has access to raw vehicle data. In this way, federated-learning-based models can achieve
intrusion detection without compromising privacy. Details of the FL-MAAE algorithm are
presented in Algorithm 1.

Algorithm 1 FL-MAAE Algorithm.

Input: E: number of iteration rounds; Ri: roadside unit; Di: local dataset; T: test dataset;
Output: classification result of test set T;

1: server initialization defines initial model parameters ω, loss function L, learning rate η;
2: calculates the model contribution Pi =

Acci+Prei+Reci+F1i
Total(Acc+Pre+Rec+F1) ;

3: e = 1;
4: while e ≤ E do
5: if i ∈ I then
6: input x into the encoder to get the latent space feature z;
7: input the latent space feature z into the memory module for query and get ẑ;
8: take the ẑ input to the decoder and obtain the reconstructed output x̂;
9: calculate the loss function L;

10: backpropagate L to update the model;
11: end if
12: Ri uploads local model parameters ωi to cloud server;
13: ωg = ∑I

i=1 ωiPi;
14: for i ∈ I do

Electronics 2023, 12, 2284 14 of 21

Algorithm 1 Cont.

15: ωe
i ← ωg;

16: end for
17: e← e + 1;
18: end while
19: for sample data in test set T do
20: test samples xt are input into the model to get x̂t;
21: calculate the reconstruction error R(xt, x̂t);
22: judge whether the data is intrusion sample data according to the threshold;
23: end for

5. Performance Evaluation

In this section, extensive experiments are carried out to evaluate the performance of
the proposed scheme. First, the experimental settings are presented, including environment
settings, dataset descriptions, and performance metrics. Next, the method proposed in this
paper is compared with some current state-of-the-art methods.

5.1. Experimental Setup

The simulation experiments are designed and implemented in the Python language.
The federated learning framework is implemented based on the FedML [33] open-source
library, and the memory-augmented intrusion detection model is implemented using
PyTorch [34]. We use random search to optimize model parameters. Within a given
range of hyperparameters, we randomly select a set of hyperparameter combinations, then
evaluate their performance, and finally select the optimal group. The specific parameter
settings of the model are shown in Table 3.

Table 3. Main parameters of FL-MAAE method.

Parameter Value

Encoder layer 4
Decoder layer 4
Memory item 15
Learning rate 0.001

Latent feature dimension 16
Optimizer Adam

Client node number 10

5.2. Dataset Description

This experiment uses the NSL-KDD dataset [35] to verify the effectiveness and perfor-
mance of the proposed method. NSL-KDD is one of the most commonly used datasets in
the field of network intrusion detection. In NSL-KDD, each piece of network traffic data
consists of 42-dimensional features: of these, 38 dimensions are numeric features, 3 are
character features, and the last dimension is labeling features. The first 41-dimensional
features can be divided into basic features, content features, and traffic features. Basic
features contain the basic information of each piece of traffic data, while content features
are primarily the payload information of data packets, which can be used to represent
network behavior information. For their part, traffic characteristics present certain traffic
statistics, such as time-based or host-based traffic statistics. We normalized these features
using the z-score algorithm and used the processed data sequence for model training and
validation. The final one-dimensional feature marks the traffic data as either normal or
attack data. There are four types of attacks: DoS, Probe, R2L, and U2R. We unify the four
attack types as either attack samples (marked as 1) or normal sample data (marked as 0).

We extract 70% of the data from the dataset to form the training dataset, while the
remaining 30% is the test dataset. In the training phase, the training dataset is equally

Electronics 2023, 12, 2284 15 of 21

divided across each RSU participating in federated learning, and only data with normal
labels is used for FL-MAAE model training.

5.3. Performance Metrics

The output of intrusion detection can be regarded as binary classification. There are
four outcomes: true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN). The proposed method is evaluated using four evaluation metrics: accuracy,
precision, recall and F1-score, which are calculated as follows:

Accuracy: The proportion of correctly classified samples to all samples, which can be
expressed as follows:

Accuracy =
TP + TN

TP + FN + FP + FN
(15)

Precision: The proportion of samples classified as attack samples that are in fact attack
samples, which can be expressed as follows:

Precision =
TP

TP + FP
(16)

Recall: The proportion of all attack samples that are correctly classified as attack
samples, which can be expressed as follows:

Recall =
TP

TP + FN
(17)

F1 score: The weighted average of precision and recall, which can be expressed by
as follows:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(18)

5.4. Comparative Analysis

The proposed FL-MAAE method is compared with some state-of-the-art baseline
methods, which include the following: the generative adversarial network (GAN)-based
distributed IoT intrusion detection method proposed by Ferdowsi et al. [36], which proposes
a distributed GAN architecture that learns abnormal behavior data to detect intruding
nodes; the autoencoder-based intrusion detection method proposed by Faber et al. [37] for
cloud and mobile environments, which uses an autoencoder neural network to implement
anomaly-based intrusion detection methods, which it implements based on time window
features and network flow; the intrusion detection method for wireless edge networks
based on federated learning and an attention-gated recurrent unit (FedAGRU) proposed by
Chen et al. [24], which adds an attention mechanism to the gated recurrent unit to improve
the weight of important devices, so that only the important weights are updated to the cloud
server. We reproduced the above schemes, then compared and analyzed their intrusion
detection performance with that of FL-MAAE under the federated learning framework.
As Table 4 shows, most of FL-MAAE’s intrusion detection performance indicators are
superior to those of the other three methods. In terms of accuracy, FL-MAAE is 1.39%
better than the AE scheme proposed Faber et al., reaching 97.22%. This occurs because,
compared with the AE-based intrusion detection method, the memory module we added
to the AE model enhances the model’s ability to represent network behavior. In terms
of precision, FL-MAAE performs slightly worse than FedAGRU, while in terms of recall,
FL-MAAE is 2.41% better than FedAGRU, reaching 95.73%. At the same time, FL-MAAE
also outperforms all compared methods in terms of F1 score, which effectively takes into
account both the precision and recall, indicating that the model quality is higher.

Electronics 2023, 12, 2284 16 of 21

Table 4. Comparison of intrusion detection performance (%) of different methods.

Methods Accuracy Precision Recall F1 Score

GAN 91.34 89.72 88.43 89.08
AE 95.83 92.08 91.35 91.71

FedAGRU 94.92 97.41 93.32 95.31
FL-MAAE 97.22 96.54 95.73 96.13

To demonstrate the robustness of FL-MAAE , we contaminate it by adding samples
with attack labels to the training dataset. Figure 3 illustrates the results of models trained
on our method and comparison schemes using datasets with different contamination rates.
From the figure, it can be seen that as the contamination rate increases, various intrusion de-
tection performance indicators gradually decline. Moreover, compared with other schemes,
our proposed scheme shows the slowest decline in intrusion detection performance and
the lowest influence of contaminated samples as the contamination rate increases. This is
because FL-MAAE can effectively suppress the interference of contaminated samples on
the global model by calculating the contribution of each participant in federated learning.
At the same time, the memory module in the memory-augmented autoencoder model
enhances the overall anti-interference ability of the model. The experimental results accord-
ingly show that our proposed FL-MAAE exhibits better robustness than the comparison
methods when the training dataset is contaminated.

Figure 3. Performance comparison of each method at different contamination rates: (a) accuracy
comparison, (b) precision comparison, (c) recall comparison, and (d) F1 score comparison.

5.5. Further Analysis

We evaluate the learning rate of the proposed model under federated learning. Figure 4
plots the intrusion detection performance of FL-MAAE with different numbers of commu-
nication rounds under the federated learning framework. As the communication rounds
increase from one to five, the performance indicators of the model increase significantly;
however, after the sixth round of communication, the performance of the model no longer

Electronics 2023, 12, 2284 17 of 21

changes significantly. From this, it can be seen that FL-MAAE has a faster learning speed
and requires fewer communication rounds to achieve model convergence.

Figure 4. Influence of the number of communication rounds on the performance of the proposed
model under federated learning.

We analyzed the influence of the number of participants on the performance of the
model under federated learning in the FL-MAAE method. As shown in Figure 5, the in-
crease in the number of participants will have a certain adverse effect on the model per-
formance, when the number of federation participants is less than 30, the performance
indicators of the FL-MAAE method do not change much, but as the number further
increases, the detection performance will decrease. This is because as the number of par-
ticipants increases, more uncertainty will be brought to model aggregation. At the same
time, the complexity of model aggregation will be higher, making model aggregation
more difficult.

Figure 5. Influence of the number of participants on the performance of the model.

In addition to the above experiments, we also analyzed the influence of the number of
memory items in the memory module in FL-MAAE on the model performance. As shown
in Figure 6, when the number of memory items is five, intrusion detection performance
is reduced, as an insufficient number of memory items precludes the full characterization
of the latent features of normal sample data. The detection performance of the model
increases with the number of memory items. The best intrusion detection performance is
achieved when the number of memory items is 15. When the number of memory items
is between 15 and 25, the detection performance tends to be stable. When the number

Electronics 2023, 12, 2284 18 of 21

of items is further increased, the intrusion detection performance degrades, as too many
memory terms lead to overfitting of the model.

Figure 6. Influence of the number of memory items in the memory module on the performance of
intrusion detection.

Since the latent space feature dimension will affect the feature extraction and recon-
struction process, thereby affecting the model performance, we analyzed it. As shown in
Figure 7, when the feature dimension of the latent space is too small or too large, the intru-
sion detection performance is low, and the best performance can only be achieved when
the dimension is 16. We believe that when the dimension is small, the latent space features
cannot effectively represent the behavior data, and when the dimension is large, more redun-
dant features will be generated, thereby reducing the performance of intrusion detection.

Figure 7. Influence of the latent space feature dimension on the performance of the model.

In summary, the FL-MAAE method in this paper not only shows a certain improve-
ment in intrusion detection performance, but also has good robustness when facing the
situation of the training dataset being contaminated. The FL-MAAE method can converge
with fewer training rounds, which proves the feasibility and effectiveness of this method in
the IoV environment.

6. Conclusions and Future Work

Network security is a key challenge facing the Internet of Vehicles today. Intrusion
detection, as an important technology for defending against network attacks and protecting
data security, is imperative to apply in the Internet of Vehicles.

Electronics 2023, 12, 2284 19 of 21

In this paper, we propose an intrusion detection method for the Internet of Vehicles
based on federated learning and a memory-augmented autoencoder. We added a memory
module to the traditional autoencoder model to store the latent features of the normal
behavior of the Internet of Vehicles, based on the reconstruction loss as an intrusion
judgment indicator, so that various network attacks against the Internet of Vehicles can be
effectively detected. In addition, our method performs federated learning training between
the roadside unit and the cloud, by locally training the intrusion detection model on the
roadside unit, and then uploading the model parameters to the cloud server for aggregation
based on performance contribution. This method does not need to upload the Internet of
Vehicles data to the cloud, avoiding the leakage of user privacy. Experimental results show
that our method has higher accuracy, recall, and F1 score than the existing state-of-the-art
methods, and has stronger robustness and faster training speed.

We use a memory-augmented autoencoder to model the communication behavior char-
acteristics of the Internet of Vehicles. However, since the traffic of the Internet of Vehicles is
a time series, the memory-augmented autoencoder ignores the time dependence, which
may have a certain impact on the detection performance. In future research work, we will
study this problem, and further extract temporal features to mine deeper information, so as
to improve intrusion detection performance. At the same time, with the increasing data
dimension and scale in the Internet of Vehicles, the intrusion detection model is becom-
ing more and more complex. How to reduce the training cost of the federated learning
intrusion detection model and make it more suitable for the environment with limited
communication resources such as the Internet of Vehicles is also worth further research.

Author Contributions: Conceptualization, L.X. and K.W.; methodology, L.X.; software, K.W. and
X.Z.; validation, H.W., H.M. and X.Z.; formal analysis, L.X.; investigation, H.W.; resources, L.X.;
writing—original draft preparation, K.W.; writing—review and editing, all authors; visualization,
H.W.; supervision, H.M.; funding acquisition, L.X., H.W. and H.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This work is fully supported by the National Natural Science Foundation of China
(62071170, 62171180, 62072158, 62272146), the Program for Innovative Research Team at the University
of Henan Province (21IRTSTHN015), in part by the Key Science and the Research Program of the
University of Henan Province (21A510001), Henan Province Science Fund for Distinguished Young
Scholars (222300420006), the Science and Technology Research Project of Henan Province under
Grant (222102210001), and Leading Talent in Scientific and Technological Innovation in Zhongyuan
(234200510018).

Data Availability Statement: The data used to support the findings of this study can be downloaded
from https://www.unb.ca/cic/datasets/nsl.html, accessed on 3 May 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoV Internet of Vehicles
FL-MAAE Federated learning and memory-augmented autoencoder
V2X Vehicle to Everything
CNN Convolutional neural network
RNN Recurrent neural network
GAN Generative adversarial network
AE Autoencoder
OBU On-board unit
RSU Roadside unit
DSRC Dedicated short-range communication
BSM Basic safety message

https://www.unb.ca/cic/datasets/nsl.html

Electronics 2023, 12, 2284 20 of 21

References
1. Contreras-Castillo, J.; Zeadally, S.; Guerrero-Ibanez, J.A. Internet of Vehicles: Architecture, Protocols, and Security. IEEE Internet

Things J. 2018, 5, 3701–3709. [CrossRef]
2. Jia, X.; Xing, L.; Gao, J.; Wu, H. A Survey of Location Privacy Preservation in Social Internet of Vehicles. IEEE Access 2020,

8, 201966–201984. [CrossRef]
3. Aslahi-Shahri, B.M.; Rahmani, R.; Chizari, M.; Maralani, A.; Eslami, M.R.; Golkar, M.J.; Ebrahimi, A. A hybrid method consisting

of GA and SVM for intrusion detection system. Neural Comput. Appl. 2016, 27, 1669–1676. [CrossRef]
4. Yang, L.; Moubayed, A.; Hamieh, I.; Shami, A. Tree-Based Intelligent Intrusion Detection System in Internet of Vehicles.

In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM 2019), Waikoloa, HI, USA, 9–13 December
2019; pp. 1–6. [CrossRef]

5. Zeng, Y.; Qiu, M.; Zhu, D.; Xue, Z.; Xiong, J.; Liu, M. DeepVCM: A Deep Learning Based Intrusion Detection Method
in VANET. In Proceedings of the 5th IEEE International Conference on Big Data Security on Cloud, IEEE International
Conference on High Performance and Smart Computing, and IEEE International Conference on Intelligent Data and Security,
BigDataSecurity/HPSC/IDS 2019, Washington, DC, USA, 27–29 May 2019; pp. 288–293. [CrossRef]

6. Alladi, T.; Gera, B.; Agrawal, A.; Chamola, V.; Yu, F.R. DeepADV: A Deep Neural Network Framework for Anomaly Detection in
VANETs. IEEE Trans. Veh. Technol. 2021, 70, 12013–12023. [CrossRef]

7. Yang, L.; Moubayed, A.; Shami, A. MTH-IDS: A Multitiered Hybrid Intrusion Detection System for Internet of Vehicles. IEEE
Internet Things J. 2022, 9, 616–632. [CrossRef]

8. Zekry, A.; Sayed, A.; Moussa, M.; Elhabiby, M. Anomaly Detection using IoT Sensor-Assisted ConvLSTM Models for Connected
Vehicles. In Proceedings of the 93rd IEEE Vehicular Technology Conference (VTC Spring 2021), Helsinki, Finland, 25–28 April
2021; pp. 1–6. [CrossRef]

9. Xing, L.; Zhao, P.; Gao, J.; Wu, H.; Ma, H. A Survey of the Social Internet of Vehicles: Secure Data Issues, Solutions, and Federated
Learning. IEEE Intell. Transp. Syst. Mag. 2023, 15, 70–84. [CrossRef]

10. Zhao, P.; Huang, Y.; Gao, J.; Xing, L.; Wu, H.; Ma, H. Federated Learning-Based Collaborative Authentication Protocol for Shared
Data in Social IoV. IEEE Sens. J. 2022, 22, 7385–7398. [CrossRef]

11. Gao, Y.; Wu, H.; Song, B.; Jin, Y.; Luo, X.; Zeng, X. A Distributed Network Intrusion Detection System for Distributed Denial of
Service Attacks in Vehicular Ad Hoc Network. IEEE Access 2019, 7, 154560–154571. [CrossRef]

12. Zaidi, K.; Milojevic, M.B.; Rakocevic, V.; Nallanathan, A.; Rajarajan, M. Host-Based Intrusion Detection for VANETs: A Statistical
Approach to Rogue Node Detection. IEEE Trans. Veh. Technol. 2016, 65, 6703–6714. [CrossRef]

13. Hoang, T.; Kim, D. Detecting in-vehicle intrusion via semi-supervised learning-based convolutional adversarial autoencoders.
Veh. Commun. 2022, 38, 100520. [CrossRef]

14. Abdalzaher, M.S.; Elwekeil, M.; Wang, T.; Zhang, S. A Deep Autoencoder Trust Model for Mitigating Jamming Attack in IoT
Assisted by Cognitive Radio. IEEE Syst. J. 2022, 16, 3635–3645. [CrossRef]

15. Abdalzaher, M.S.; Muta, O. A Game-Theoretic Approach for Enhancing Security and Data Trustworthiness in IoT Applications.
IEEE Internet Things J. 2020, 7, 11250–11261. [CrossRef]

16. Sedjelmaci, H.; Senouci, S. An accurate and efficient collaborative intrusion detection framework to secure vehicular networks.
Comput. Electr. Eng. 2015, 43, 33–47. [CrossRef]

17. Li, W.; Joshi, A.; Finin, T. SVM-CASE: An SVM-Based Context Aware Security Framework for Vehicular Ad-Hoc Networks.
In Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC Fall 2015), Boston, MA, USA, 6–9 September 2015;
pp. 1–5. [CrossRef]

18. Levi, M.; Allouche, Y.; Kontorovich, A. Advanced Analytics for Connected Car Cybersecurity. In Proceedings of the 87th IEEE
Vehicular Technology Conference (VTC Spring 2018), Porto, Portugal, 3–6 June 2018; pp. 1–7. [CrossRef]

19. Hu, Z.; Wang, L.; Qi, L.; Li, Y.; Yang, W. A Novel Wireless Network Intrusion Detection Method Based on Adaptive Synthetic
Sampling and an Improved Convolutional Neural Network. IEEE Access 2020, 8, 195741–195751. [CrossRef]

20. Park, D.; Kim, S.; Kwon, H.; Shin, D.; Shin, D. Host-Based Intrusion Detection Model Using Siamese Network. IEEE Access 2021,
9, 76614–76623. [CrossRef]

21. Zhou, H.; Kang, L.; Pan, H.; Wei, G.; Feng, Y. An intrusion detection approach based on incremental long short-term memory.
Int. J. Inf. Secur. 2022, 22, 433–446. [CrossRef]

22. Ashraf, J.; Bakhshi, A.D.; Moustafa, N.; Khurshid, H.; Javed, A.; Beheshti, A. Novel Deep Learning-Enabled LSTM Autoencoder
Architecture for Discovering Anomalous Events From Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021,
22, 4507–4518. [CrossRef]

23. Liu, H.; Zhang, S.; Zhang, P.; Zhou, X.; Shao, X.; Pu, G.; Zhang, Y. Blockchain and Federated Learning for Collaborative Intrusion
Detection in Vehicular Edge Computing. IEEE Trans. Veh. Technol. 2021, 70, 6073–6084. [CrossRef]

24. Chen, Z.; Lv, N.; Liu, P.; Fang, Y.; Chen, K.; Pan, W. Intrusion Detection for Wireless Edge Networks Based on Federated Learning.
IEEE Access 2020, 8, 217463–217472. [CrossRef]

25. Attota, D.C.; Mothukuri, V.; Parizi, R.M.; Pouriyeh, S. An Ensemble Multi-View Federated Learning Intrusion Detection for IoT.
IEEE Access 2021, 9, 117734–117745. [CrossRef]

26. Lv, Z.; Qiao, L.; Li, J.; Song, H. Deep-Learning-Enabled Security Issues in the Internet of Things. IEEE Internet Things J. 2021,
8, 9531–9538. [CrossRef]

http://doi.org/10.1109/JIOT.2017.2690902
http://dx.doi.org/10.1109/ACCESS.2020.3036044
http://dx.doi.org/10.1007/s00521-015-1964-2
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013892
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00060
http://dx.doi.org/10.1109/TVT.2021.3113807
http://dx.doi.org/10.1109/JIOT.2021.3084796
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9449086
http://dx.doi.org/10.1109/MITS.2022.3190036
http://dx.doi.org/10.1109/JSEN.2022.3153338
http://dx.doi.org/10.1109/ACCESS.2019.2948382
http://dx.doi.org/10.1109/TVT.2015.2480244
http://dx.doi.org/10.1016/j.vehcom.2022.100520
http://dx.doi.org/10.1109/JSYST.2021.3099072
http://dx.doi.org/10.1109/JIOT.2020.2996671
http://dx.doi.org/10.1016/j.compeleceng.2015.02.018
http://dx.doi.org/10.1109/VTCFall.2015.7391162
http://dx.doi.org/10.1109/VTCSpring.2018.8417690
http://dx.doi.org/10.1109/ACCESS.2020.3034015
http://dx.doi.org/10.1109/ACCESS.2021.3082160
http://dx.doi.org/10.1007/s10207-022-00632-4
http://dx.doi.org/10.1109/TITS.2020.3017882
http://dx.doi.org/10.1109/TVT.2021.3076780
http://dx.doi.org/10.1109/ACCESS.2020.3041793
http://dx.doi.org/10.1109/ACCESS.2021.3107337
http://dx.doi.org/10.1109/JIOT.2020.3007130

Electronics 2023, 12, 2284 21 of 21

27. Lv, Z.; Xiu, W. Interaction of Edge-Cloud Computing Based on SDN and NFV for Next Generation IoT. IEEE Internet Things J.
2020, 7, 5706–5712. [CrossRef]

28. Lv, Z.; Lou, R.; Li, J.; Singh, A.K.; Song, H. Big Data Analytics for 6G-Enabled Massive Internet of Things. IEEE Internet Things J.
2021, 8, 5350–5359. [CrossRef]

29. Zhang, J.; Peng, S.; Gao, Y.; Zhang, Z.; Hong, Q. APMSA: Adversarial Perturbation Against Model Stealing Attacks. IEEE Trans.
Inf. Forensics Secur. 2023, 18, 1667–1679. [CrossRef]

30. Mills, J.; Hu, J.; Min, G. Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT. IEEE Internet Things J.
2020, 7, 5986–5994. [CrossRef]

31. Cao, X.; Zhu, G.; Xu, J.; Cui, S. Transmission Power Control for Over-the-Air Federated Averaging at Network Edge. IEEE J. Sel.
Areas Commun. 2022, 40, 1571–1586. [CrossRef]

32. Zhang, X.; Liu, Y.; Liu, J.; Argyriou, A.; Han, Y. D2D-Assisted Federated Learning in Mobile Edge Computing Networks.
In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2021), Nanjing, China, 29 March–1
April 2021; pp. 1–7. [CrossRef]

33. He, C.; Li, S.; So, J.; Zeng, X.; Zhang, M.; Wang, H.; Wang, X.; Vepakomma, P.; Singh, A.; Qiu, H.; et al. FedML: A Research Library
and Benchmark for Federated Machine Learning. arXiv 2020, arXiv:2007.13518. [CrossRef]

34. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019 (NeurIPS 2019), Vancouver, BC, Canada,
8–14 December 2019; pp. 8024–8035.

35. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA 2009), Ottawa, ON, Canada,
8–10 July 2009; pp. 1–6. [CrossRef]

36. Ferdowsi, A.; Saad, W. Generative Adversarial Networks for Distributed Intrusion Detection in the Internet of Things. In Pro-
ceedings of the 2019 IEEE Global Communications Conference (GLOBECOM 2019), Waikoloa, HI, USA, 9–13 December 2019;
pp. 1–6. [CrossRef]

37. Faber, K.; Faber, L.; Sniezynski, B. Autoencoder-based IDS for cloud and mobile devices. In Proceedings of the 21st IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGrid 2021), Melbourne, Australia, 10–13 May 2021;
pp. 728–736. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2019.2942719
http://dx.doi.org/10.1109/JIOT.2021.3056128
http://dx.doi.org/10.1109/TIFS.2023.3246766
http://dx.doi.org/10.1109/JIOT.2019.2956615
http://dx.doi.org/10.1109/JSAC.2022.3143217
http://dx.doi.org/10.1109/WCNC49053.2021.9417459
https://doi.org/10.48550/arXiv.2007.13518
http://dx.doi.org/10.1109/CISDA.2009.5356528
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9014102
http://dx.doi.org/10.1109/CCGrid51090.2021.00088

	Introduction
	Related Work
	Internet of Vehicle Intrusion Detection
	Intrusion Detection Based on Deep Learning

	System Model and Threat Model
	System Model
	Threat Model

	The Proposed FL-MAAE Method
	Memory-Augmented Autoencoder Model
	Encoder
	Memory Module
	Decoder
	Loss Function

	Federated Learning Training
	System Initialization
	Local Model Training
	Model Parameter Aggregation
	Local Model Updating

	Performance Evaluation
	Experimental Setup
	Dataset Description
	Performance Metrics
	Comparative Analysis
	Further Analysis

	Conclusions and Future Work
	References

