
Citation: Lu, S.; Zhang, X.; Zhao, R.;

Chen, L.; Li, J.; Yang, G. P-Raft: An

Efficient and Robust Consensus

Mechanism for Consortium

Blockchains. Electronics 2023, 12, 2271.

https://doi.org/10.3390/

electronics12102271

Academic Editor: Mehdi Sookhak

Received: 24 April 2023

Revised: 13 May 2023

Accepted: 16 May 2023

Published: 17 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

P-Raft: An Efficient and Robust Consensus Mechanism for
Consortium Blockchains
Shaofei Lu 1,2,* , Xuyang Zhang 1, Renke Zhao 1,2, Lizhi Chen 1, Junyi Li 1,2 and Guanzhong Yang 1,2

1 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;
zhangxuyang@hnu.edu.cn (X.Z.); zzzk@hnu.edu.cn (R.Z.); chenlzs@hnu.edu.cn (L.C.);
junyilee@hnu.edu.cn (J.L.); gzyang@hnu.edu.cn (G.Y.)

2 Hunan Provincial Key Laboratory of Blockchain Infrastructure and Application, Changsha 410082, China
* Correspondence: sflu@hnu.edu.cn

Abstract: With the rise in blockchain technology, consortium blockchains have garnered increasing
attention in practical applications due to their decentralization and immutability. However, the
performance of current consortium blockchains remains a significant obstacle to large-scale com-
mercial adoption. The consensus algorithm, as a fundamental component of blockchain technology,
plays a critical role in ensuring both security and efficiency. Unfortunately, most existing consensus
algorithms for consortium blockchains are vote-based consensus algorithms, and the performance of
vote-based consensus algorithms is largely limited by the performance of the leader node. Therefore,
we present P-Raft: a high-performance consensus algorithm that builds upon the Raft algorithm
and leverages node server performance evaluations. The primary objectives of this article included
enhancing the efficiency of Leader processing, promoting the utilization of the consortium blockchain,
and ensuring the robustness of Leader election. Specifically designed to meet the service requirements
of consortium blockchain’s consensus mechanism, the P-Raft incorporated the Yasa model, which
evaluated the instant machine performance of each node. The performance of each node is then
associated with the election timeout, ensuring that nodes with superior performance are more likely
to be chosen as Leaders. Additionally, we implemented a leader verification mechanism based
on the Bohen-Lynn-Shacham (BLS) signature, which prevented malicious Byzantine nodes from
becoming Leaders without receiving enough votes. Empirical findings show that the P-Raft can
swiftly designate high-performing nodes as Leaders, thereby greatly improving service efficiency
in the consensus process and the overall performance of the consensus mechanism. Ultimately,
P-Raft is better equipped to meet the demands of consortium blockchain applications for large-scale
transactions.

Keywords: blockchain; consensus mechanism; performance evaluation; Raft

1. Introduction

As the underlying technical support of many digital currencies, blockchain has at-
tracted wide attention in recent years. The essence of blockchain is a chain data structure
in which each node in the network operates data in a distributed environment with the
help of cryptography, a consensus algorithm, and a smart contract. As a new distributed
computing paradigm, blockchain provides a decentralized, immutable, transparent, and
traceable distributed database solution [1].

However, in the blockchain system, the number of nodes engaged in accounting
was substantial, and there was distrust between the nodes. In this circumstance, the
consensus algorithm adopted by the blockchain system needed to have a Byzantine fault
tolerance for errors [2]. According to the different scales and power of nodes in the
blockchain, Blockchain can be broadly classified into three distinct types: public blockchains,
consortium blockchains, and private blockchains [3,4]. Consortium blockchains only allow

Electronics 2023, 12, 2271. https://doi.org/10.3390/electronics12102271 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12102271
https://doi.org/10.3390/electronics12102271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2183-4314
https://doi.org/10.3390/electronics12102271
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12102271?type=check_update&version=1

Electronics 2023, 12, 2271 2 of 13

trusted and authorized entities to join the consortium blockchains, which helps to improve
the overall stability and safety of the consortium chain.

The consensus algorithm assumed a paramount role within the blockchain system
because it could solve the problem of how a single node in a blockchain network achieved
message consistency [5]. In the blockchain system, the consensus algorithm assumed a
paramount role. The Practical Byzantine Fault Tolerance (PBFT) was frequently employed
in consortium blockchains, but non-Byzantine Fault Tolerance mechanisms such as Raft and
PoET were also viable options. The Raft algorithm allows multiple nodes to work together
as a cluster, and when some nodes exit or fail, the cluster can still reach a consensus quickly.
Most existing consensus algorithms for consortium blockchains are vote-based consensus
algorithms, and the performance of vote-based consensus algorithms is largely limited by
the performance of the leader node. This is because these consensus algorithms mainly rely
on the leader node to initiate the consensus process. Once the performance of the leader
node is poor or it becomes a Byzantine malicious node, it results in the low performance of
the consortium blockchain or an unsafe consensus.

The Raft algorithm sets three roles: Leader, Follower, and Candidate. The Raft achieves
consistency by selecting a Leader and then letting it manage the replication log with full
responsibility. The Leader is responsible for handling written requests, managing log
replication, and constantly sending heartbeat messages, meaning that a Leader with better
machine performance and stability can make the consensus more efficient. In the Raft
algorithm, each node had the same possibility of being the Leader, meaning that the Raft
algorithm election could not guarantee that the performance of the Leader was the best in
the blockchain network.

The Raft algorithm was easy to implement while being highly understandable. How-
ever, Raft is not suitable for Byzantine fault-tolerant environments: Raft assumes that
nodes participating in the consensus only have a Fail-stop Failure. However, the election of
Leader nodes should take into account the impact of network attacks and malicious nodes.
In scenarios where consortium blockchains are deployed on public networks or in sensitive
applications such as finance, it is necessary to consider Byzantine fault tolerance. Although
PBFT can achieve Byzantine fault tolerance, its communication complexity is higher, and
its throughput is not as good as that of the Raft algorithm.

The primary objectives of this article include enhancing the efficiency of Leader
processing, promoting the utilization of consortium blockchain, and ensuring the robustness
of Leader election. To address these aforementioned issues, the present article introduced a
novel consensus algorithm, P-Raft, which offered the following key contributions:

• We introduced an enhanced election algorithm that assessed the performance of
individual nodes. The election algorithm evaluated the performance of nodes. It could
correctly select the node with the best machine performance as the Leader and satisfy
the data consistency and availability.

• We proposed a leader verification mechanism based on the BLS signature to prevent the
malicious Byzantine node from becoming the Leader during the election by pretending
that it had received enough votes.

The subsequent sections of this article are structured as follows. Section 2 delves into
the related work. Section 3 presents the proposed consensus algorithm, P-Raft. Section 4
showcases the experimental results. Section 5 provides a summary of this article.

2. Related Work

Unlike the public blockchain, the consortium blockchain only allows trusted and
authorized entities to proceed through the activities within the consortium blockchain [6].
This means that a new member needs to join a consortium blockchain with the permission
of the consortium, which is usually given by certification authorities. In this way, members
of the consortium blockchain are actual participants to a certain extent, and the overall
stability and safety of the consortium chain are improved.

Electronics 2023, 12, 2271 3 of 13

Raft is a voting-based consensus algorithm [7]. It sets a Leader in the cluster, and the
Leader needs to completely accomplish the consensus. However, when multiple Candidates
send vote requests, each Candidate can easily fail to obtain majority votes, leading to
numerous rounds of Leader elections. While Raft applies a randomized election timeout
mechanism to limit the multiple Candidates broadcasting voting requests simultaneously
in an election, election conflicts inevitably occur when Candidate nodes are shut down or
the network is delayed. In addition, the Leader of Raft is responsible for synchronizing the
state of the entire cluster and handling external events. A Leader with poor performance
negatively affects the consensus efficiency of the whole network.

Recently, some other researchers have concentrated on enhancing the capability of Raft.
The Kraft consensus algorithm, as presented in Reference [8], is rooted in the Kademlia pro-
tocol [9]. Kraft utilizes K-Buckets to optimize the process of leader election and successfully
mitigates the challenge of vote splitting in the Raft algorithm. It has higher stability and
reduces the negative effects on Leader election efficiency. However, the process of electing
a Leader in Kraft still relies on the generation of a random number. This means that the
selected Leader may exhibit a subpar performance, ultimately hindering the consensus
efficiency of the entire cluster. The CRaft consensus algorithm [7], which integrates Raft
and credit models, has been proposed to assess the nodes according to their transactions.
However, the handling ability of CRaft for network partition was relatively weak: in the
event of a network partition, the algorithm may result in multiple partitions where nodes
believe themselves to be the primary node, ultimately leading to the failure of reaching
a consensus. Wu, YS. et al. [10] proposed a consensus algorithm that incorporated node
activity with Raft. By utilizing the weighted PageRank algorithm, it assigned distinct
PR values, thereby mitigating the influence of malevolent nodes on the overall network
consensus to a significant extent. However, honest nodes need to spend a considerable
amount of time to acquire a high PR value, which is not friendly to the honest nodes that
join later.

The Raft algorithm should be implemented in an ideal environment that does not
tolerate Byzantine nodes, which means that it is not suitable for consortium blockchains.
To solve this problem, some researchers have conducted research on Raft-like algorithms
that tolerant Byzantine faults.

Sihan T [11] proposed a consensus algorithm that was based on the Schnorr signature.
It requires the client to sign the message before sending it to the leader in order to thwart
any potential interference from the Byzantine leader; measures were taken to safeguard
the logs. However, the algorithm’s reliance on frequent communication between the nodes
made it vulnerable to network latency and instability, rendering it less effective in unstable
network environments. THCM [12], proposed by Jiang X based on trust evaluation, divided
the nodes in the network into multiple layers. The nodes within each layer utilized the
enhanced Raft algorithm, while the nodes situated between layers employed the PBFT
algorithm, thus effectively circumventing the Byzantine issue. However, its structure and
trust evaluation model made it quite complex, which could make it difficult to understand
and implement.

The above researchers enhanced the efficiency of Raft by evaluating the behavior of
the nodes. However, few researchers have made good use of the performance of the nodes
to improve the efficiency of Raft.

3. Materials and Methods
3.1. Raft Algorithm

The Raft consensus algorithm employs a heartbeat mechanism to initiate the process
of leader election. In the Raft consensus algorithm, if the Follower fails to receive Leader’s
heartbeat message within a designated time frame, it transitions into a Candidate state and
initiates the Leader election process. The Leader election process of Raft is illustrated in
Figure 1.

Electronics 2023, 12, 2271 4 of 13
Electronics 2023, 12, x FOR PEER REVIEW 4 of 13

Figure 1. The election process of Raft.

The Follower (F in Figure 1) votes for the Candidate (C in Figure 1) who first sent

the voting request. If none of the Candidates obtained majority votes, a new Leader elec-

tion would be started. The Candidate that received the majority of votes became the

Leader (L in Figure 1) and demonstrate its leadership by sending a heartbeat message to

the other nodes in the cluster. The other nodes will turn into Follower (F in Figure 1) after
received the heartbeat message.

3.2. P-Raft Consensus Mechanism

In Raft’s Leader elections, Follower nodes could only cast their votes for only one

Candidate node in each election. Raft uses a randomized election timeout mechanism to

prevent multiple Candidates from starting the election at the same time. However, it can-

not guarantee that the performance of the node is elected as the Leader.

We propose a consensus algorithm called P-Raft based on performance evaluation. It

added a performance score to each node participating in the consensus. The higher the

performance score was, the easier the node would find being elected as the Leader.

The intricate process of Leader election in P-Raft is expounded below and illustrated

in Figure 2.

(1) If a Follower node fails to receive any heartbeat message from the Leader in the

set period, it reads its real-time performance and calculates the current performance score

according to the Yasa model. Based on the performance score, it calculates the upper limit

of the waiting time for Leader election T, which indicates how long each node has to think

about whether to become the Leader or not. As the performance score increases, the Fol-

lower is prompted to swiftly transition into a Candidate and commence the election pro-

cess.

The formula for calculating the upper limit of waiting time T based on the node per-

formance score is as follows:

T T γ 1 C , (1)

T is the maximum value of the upper limit time T, and γ is the gain parameter. In

this paper, we set γ = 1.

(2) After waiting for T, the Follower node initiated an election, increased the current

term, and changed the node’s identity as a Candidate.

(3) The Candidate sent voting requests to the other nodes. The node that received the

voting request compared its term with that of the request sender. If the sender’s term was

higher than its own, the node withdrew from the election and assumed the role of a Fol-

lower. When the received term of all other nodes was lower than the term itself, the node

voted for itself. Finally, the Leader was determined by the number of received votes.

(4) Once the Leader was confirmed, the confirmation message was sent to other

nodes. The Follower verifies the Leader when it receives messages from the Leader. After

the main selection process is over, other nodes switch to the follower state. The process of

Leader verification is introduced in Section 3.4.

Figure 1. The election process of Raft.

The Follower (F1 in Figure 1) votes for the Candidate (C2 in Figure 1) who first sent the
voting request. If none of the Candidates obtained majority votes, a new Leader election
would be started. The Candidate that received the majority of votes became the Leader (L2

in Figure 1) and demonstrate its leadership by sending a heartbeat message to the other
nodes in the cluster. The other nodes will turn into Follower (F2 in Figure 1) after received
the heartbeat message.

3.2. P-Raft Consensus Mechanism

In Raft’s Leader elections, Follower nodes could only cast their votes for only one
Candidate node in each election. Raft uses a randomized election timeout mechanism to
prevent multiple Candidates from starting the election at the same time. However, it cannot
guarantee that the performance of the node is elected as the Leader.

We propose a consensus algorithm called P-Raft based on performance evaluation. It
added a performance score to each node participating in the consensus. The higher the
performance score was, the easier the node would find being elected as the Leader.

The intricate process of Leader election in P-Raft is expounded below and illustrated
in Figure 2.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 13

Figure 2. Process of Leader election of P-Raft.

3.3. Evaluation Model of Node’s Performance: Yasa Model

To evaluate the comprehensive performance of each node, we proposed a node per-

formance evaluation model: Yasa Model. This evaluated the current performance of the

node’s server and provided a score. The performance score of each node consisted of the

machine performance score and stability score. The calculation formula for the node per-

formance score was as follows:

C w C w C , (2)

where C is the node’s machine performance score, C is the node’s stability score, w

is the weight of C , and w is the weight of C . The value of w and w can be decided

by the actual application requirements. As consortium chain environments typically use

relatively stable servers, the performance differences resulting from the assigned values

of w and w had little impact on the election priority sequence. Therefore, for experi-

mental convenience, both values were set to 0.5 in this paper. However, if unstable servers

were used for nodes in the consortium chain, stability scores should be given greater con-

sideration. Users can adjust the values of w and w according to their actual needs by

modifying the configuration file.

Figure 2. Process of Leader election of P-Raft.

Electronics 2023, 12, 2271 5 of 13

(1) If a Follower node fails to receive any heartbeat message from the Leader in the
set period, it reads its real-time performance and calculates the current performance score
according to the Yasa model. Based on the performance score, it calculates the upper
limit of the waiting time for Leader election T, which indicates how long each node has
to think about whether to become the Leader or not. As the performance score increases,
the Follower is prompted to swiftly transition into a Candidate and commence the election
process.

The formula for calculating the upper limit of waiting time T based on the node
performance score is as follows:

T = Tmax × γ(1−C), (1)

Tmax is the maximum value of the upper limit time T, and γ is the gain parameter. In
this paper, we set γ = 1.

(2) After waiting for T, the Follower node initiated an election, increased the current
term, and changed the node’s identity as a Candidate.

(3) The Candidate sent voting requests to the other nodes. The node that received
the voting request compared its term with that of the request sender. If the sender’s term
was higher than its own, the node withdrew from the election and assumed the role of a
Follower. When the received term of all other nodes was lower than the term itself, the
node voted for itself. Finally, the Leader was determined by the number of received votes.

(4) Once the Leader was confirmed, the confirmation message was sent to other nodes.
The Follower verifies the Leader when it receives messages from the Leader. After the main
selection process is over, other nodes switch to the follower state. The process of Leader
verification is introduced in Section 3.4.

3.3. Evaluation Model of Node’s Performance: Yasa Model

To evaluate the comprehensive performance of each node, we proposed a node perfor-
mance evaluation model: Yasa Model. This evaluated the current performance of the node’s
server and provided a score. The performance score of each node consisted of the machine
performance score and stability score. The calculation formula for the node performance
score was as follows:

C = wm × Cm + ws × Cs, (2)

where Cm is the node’s machine performance score, Cs is the node’s stability score, wm is
the weight of Cm, and ws is the weight of Cs. The value of wm and ws can be decided by the
actual application requirements. As consortium chain environments typically use relatively
stable servers, the performance differences resulting from the assigned values of wm and ws
had little impact on the election priority sequence. Therefore, for experimental convenience,
both values were set to 0.5 in this paper. However, if unstable servers were used for nodes
in the consortium chain, stability scores should be given greater consideration. Users
can adjust the values of wm and ws according to their actual needs by modifying the
configuration file.

In most of the previous studies, the utilization of system hardware resources has been
selected as the load index, and the most common indicators were CPU utilization and
memory utilization. These two indicators could directly reflect the system’s performance,
so they must be considered. However, considering that there are certain differences in
the processing capabilities of cluster servers for different requests in the scenario of high
concurrency, it is limited to measure the load performance of servers by only one or several
load indicators. In many cases, users need to evaluate node server performance from
a holistic perspective. The proposed node performance evaluation model is needed to
balance different demands.

Therefore, we proposed the following calculation model for machine performance
scoring:

Each node reads the server’s CPU idle rate, memory idle rate, GPU idle rate, and
network bandwidth idle rate into the following matrix X:

Electronics 2023, 12, 2271 6 of 13

X = {ci, mi, gi, ni}, (3)

where ci represents the CPU idle rate, mi represents memory idle rate, gi represents GPU
idle rate, and ni represents network bandwidth idle rate.

The formula of Cm is as follows:

Cm = ∑4
j=1

(
wj × x1j

)
, (4)

In previous research, weight coefficients were usually determined by empirical as-
signments and a lack of necessary mathematical analysis and quantitative basis. In order
to enhance the accuracy and reliability of the performance score calculation, this paper
selected the Analytic Hierarchy Process (AHP) [13] to calculate the weight coefficients
scientifically.

(1) Theoretical basis [13]

Definition 1. Assume a matrix Q =
(
qij
)

n×n(i, j ∈ (1, 2, . . . , n)), if Q satisfies: (1) qij > 0;
(2) qii = 1; (3) qij = 1/qji; then, the matrix can be called a positive reciprocal matrix.

Definition 2. Assume a positive reciprocal matrix Q =
(
qij
)

n×n, if Q satisfies
qij = qik/ qjk(i, j ∈ (1, 2, . . . , n)), then the matrix Q can be called a consistent matrix.

Theorem 1. An n-order positive reciprocal matrix Q is a congruent matrix if and only if its largest
characteristic root λmax = n. It can be assumed that there are n load indicators in the system, and
the weight coefficients of each indicator are, respectively expressed as M1, M2, . . . , Mn, then the
weight coefficient vector is M = (M1, M2, . . . , Mn)

T . Comparing the weight coefficients in pairs
then obtains the ratio matrix Q:

Q =

M1/M1 M1/M2 · · · M1/Mn
M2/M1 M2/M2 · · · M2/Mn

...
...

...
Mn/M1 Mn/M2 · · · Mn/Mn

 =
(

qij

)
n×n

, (5)

According to the matrix Q, qii = 1, qij = 1/qji, qij = qik/qjk, we can then continue to
obtain:

QM =

M1/M1 M1/M2 · · · M1/Mn
M2/M1 M2/M2 · · · M2/Mn

...
...

...
Mn/M1 Mn/M2 · · · Mn/Mn

M1
M2

...
Mn

 =

nM1
nM2

...
nMn

 = nM, (6)

where n is the characteristic root of matrix Q, and is the largest characteristic root, denoted
as λmax. M is the eigenvector of the matrix and the weight coefficient vector of each load
index that needs to be calculated.

(2) Calculation of weight coefficient vector
First, we need to build the analytic hierarchy model. Take machine performance

evaluation as the goal level, the CPU idle rate, Memory idle rate, network bandwidth idle
rate, and GPU idle rate can be taken as the criteria level.

We employed the “1–9” rating scale to assess the significance of each load metric to
construct the judgment matrix Q when combined with the server test situation. During
the actual testing, it was observed that the rates of CPU, Memory, and GPU idling were
relatively high, while the network bandwidth was relatively low. The comparison results
obtained based on the test of the server and the “1–9” scaling method are shown in Table 1,
which represents the load evaluation index.

Electronics 2023, 12, 2271 7 of 13

Table 1. The impact of server resources on distributed system performance.

Q CPU GPU Memory Net

CPU 1 1 1 3
GPU 1 1 1 3

Memory 1 1 1 3
Net 1

3
1
3

1
3 1

Therefore, the judgment matrix can be written as:

Q =

1 1 1 3
1 1 1 3
1 1 1 3
1
3

1
3

1
3 1

, (7)

After the judgment matrix Q was constructed, it was added by columns and then
normalized. Finally, rows were added and normalized by the last column elements from
left to right to obtain its approximate feature vector M′.

M′ = (0.3, 0.3, 0.3, 0.1)T, (8)

The maximum characteristic root of the judgment matrix Q could be obtained by
calculating the approximate feature vector. The formula is as follows:

λmax = ∑n
i=1

(QM)i
nMi

, (9)

(QM)i represents the i-th element of QM. According to the formula, the maximum
characteristic root λmax = 4, which is the order of the positive reciprocal matrix. According
to Theorem 1, the matrix Q is the consistent matrix, so the approximate eigenvector M′ is
the eigenvector M. Therefore, the formula for calculating Cm is as follows:

Cm = ∑4
j=1

(
wj × x1j

)
, (w1 = 0.3, w2 = 0.3, w3 = 0.3, w4 = 0.1), (10)

In accordance with the formula, w1 denotes the weight of the CPU, w2 represents the
weight of the GPU, w3 signifies the weight of memory, and w4 denotes the weight of the
network bandwidth.

During the process of Raft consensus, all logs are committed to the Leader first. The
Leader then sends the AppendEntries RPC synchronization log to the follower. If the
Leader is unstable and fails frequently, log synchronization and client interaction may
occur, resulting in consensus failure. Therefore, a scoring method to measure the stability
of the node is needed. The calculation formula of Cs is as follows:

Cs =
2

1 + eµ×tk
, (11)

tk is the number of downtimes in the server within time k; µ is a gain parameter. A
higher value of µ results in reduced system tolerance towards node downtime behavior.
Figure 3 shows the process of updating the performance score.

3.4. Leader Verification Mechanism

When there is a Byzantine node, the election encounters the situation of forged voting
messages. The Byzantine node may falsify that it has received voting messages from most
other nodes during the election process. To prevent malicious nodes from forging their
term and preempting the cluster Leader, we propose a leader verification mechanism that
combines the threshold signature scheme with the BLS signature.

Electronics 2023, 12, 2271 8 of 13
Electronics 2023, 12, x FOR PEER REVIEW 8 of 13

Figure 3. Process of performance score update.

3.4. Leader Verification Mechanism

When there is a Byzantine node, the election encounters the situation of forged voting

messages. The Byzantine node may falsify that it has received voting messages from most

other nodes during the election process. To prevent malicious nodes from forging their

term and preempting the cluster Leader, we propose a leader verification mechanism that

combines the threshold signature scheme with the BLS signature.

The Boneh-lynn-shacham (BLS) signature algorithm was proposed by Boneh et al.

[14]. The BLS signature could aggregate multiple signatures and m-n multiple signatures

without generating a random number. BLS signature reduced the redundant communi-

cation overhead between nodes.

The process of leader verification is as follows:

Phase 1: A Candidate node receives partial BLS signatures from more than 2/3 of the

Followers and generates BLS -aggregated signatures.

Phase 2: The Candidate node dispatches a message appended with the BLS aggre-

gated signature and awaits the validation of the BLS aggregation signature by other nodes.

If the verification process is successful, the Follower can provide positive feedback. How-

ever, if the verification process fails, negative feedback is given.

Phase 3: The Candidate node that receives 2/3 positive feedback turns into the Leader

and sends a heartbeat message with positive feedback to other nodes to complete the elec-

tion process.

When a Candidate or Follower who has lost contact with the Leader detects a new

Leader, it first requests the Leader for the BLS aggregated signature generated during the

election. The Leader is recognized when the aggregated signature is correct.

4. Results

This section compares the P-Raft algorithm with the Raft algorithm in terms of time

consumption and the result of the Leader’s election.

4.1. Experimental Environment

We incorporated P-Raft into Hyperledger Fabric, supplanting the former Raft mod-

ule. Subsequently, we deployed and evaluated the enhanced Fabric platform within a ser-

vice environment comprising Alibaba Cloud servers. These servers were categorized into

five distinct types based on their respective configurations, and the total number of servers

amounted to 30. Detailed server configurations are given in Table 2.

The construction of the node performance evaluation model and the consensus phase

of both the P-Raft and Raft algorithms were implemented using Go1.17.1, and the P-Raft

algorithm was deployed to HyperLedger Fabric to verify its effectiveness.

Figure 3. Process of performance score update.

The Boneh-lynn-shacham (BLS) signature algorithm was proposed by Boneh et al. [14].
The BLS signature could aggregate multiple signatures and m-n multiple signatures without
generating a random number. BLS signature reduced the redundant communication
overhead between nodes.

The process of leader verification is as follows:
Phase 1: A Candidate node receives partial BLS signatures from more than 2/3 of the

Followers and generates BLS -aggregated signatures.
Phase 2: The Candidate node dispatches a message appended with the BLS aggregated

signature and awaits the validation of the BLS aggregation signature by other nodes. If the
verification process is successful, the Follower can provide positive feedback. However, if
the verification process fails, negative feedback is given.

Phase 3: The Candidate node that receives 2/3 positive feedback turns into the Leader
and sends a heartbeat message with positive feedback to other nodes to complete the
election process.

When a Candidate or Follower who has lost contact with the Leader detects a new
Leader, it first requests the Leader for the BLS aggregated signature generated during the
election. The Leader is recognized when the aggregated signature is correct.

4. Results

This section compares the P-Raft algorithm with the Raft algorithm in terms of time
consumption and the result of the Leader’s election.

4.1. Experimental Environment

We incorporated P-Raft into Hyperledger Fabric, supplanting the former Raft module.
Subsequently, we deployed and evaluated the enhanced Fabric platform within a service
environment comprising Alibaba Cloud servers. These servers were categorized into five
distinct types based on their respective configurations, and the total number of servers
amounted to 30. Detailed server configurations are given in Table 2.

Table 2. Server configurations.

Server Type A B C D E

vCPU 1 2 4 2 2

CPU Clock Speed/Turbo 2.5 GHz/
3.2 GHz -/3.5 GHz -/3.5 GHz 2.5 GHz/2.7

GHz 2.5 GHz/-

Memory 2G 4G 8G 8G 8G
GPU - - - - NVIDIAP4

Region Hangzhou Guangzhou Guangzhou Shanghai Shenzhen
Amount 7 8 2 12 1

Network Bandwidth 50 Mbps
OS Ubuntu 16.04

HyperLedger Fabric v2.0.0
Docker 1.8.2

Electronics 2023, 12, 2271 9 of 13

The construction of the node performance evaluation model and the consensus phase
of both the P-Raft and Raft algorithms were implemented using Go1.17.1, and the P-Raft
algorithm was deployed to HyperLedger Fabric to verify its effectiveness.

4.2. Changes in Nodes’ Stability Score

Cs represents the stability of a node. The node with a higher score has higher reliability.
Therefore, nodes with low Cs are not suitable for the Leader. This section tests unstable
nodes.

If a node with an unstable status assumes the role of Leader in the cluster, it may
result in a system failure, requiring the other nodes to initiate a new election for Leadership.
Should a node experience frequent outages, the cluster will perceives it as unstable, and
its score decreases, thereby reducing the likelihood of it being elected as the Leader and
maintaining the cluster’s stability.

In this experiment, an unstable node P was set in the blockchain network of 10 nodes.
Within a certain period, after it was added to the cluster network, P went down for times,
and other nodes could not receive the message from P. The impact of P’s behavior on its
stability score was controlled by the number of its downtime and the parameter µ. In this
experiment, 4 different values of µ were set according to Formula (9). The initial reputation
values of the nodes were all one, and the parameters µ ranged from 0.5 to 3.

As can be seen from Figure 4, when a node went down, its stability score gradually
decreased, but the speed of reduction depended on the value of µ. It can be seen that the
downtime behavior of the node has a great impact on the stability score of the node, which
means that the node is not suitable to serve as the Leader.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 13

Figure 4. The changes in a node’s stability score when μ is different.

4.3. Performance of P-Raft

4.3.1. Election Result

This section tested the election result of the Raft and the P-Raft algorithm when the

size of cluster N in the blockchain network was 20 and 30. We ran the Leader election

process 1000 times and collected the election results.

Table 3 depicts the election outcomes of both Raft and P-Raft algorithms when the

number of nodes (N) was 30, which was made up of 7 A nodes, 8 B nodes, 2 C nodes, 12

D nodes, and 1 E node; this was the result when the number of nodes N was 20, which

were made up of 7 A nodes, 7 B nodes, 2 C nodes, 2 D nodes, and 1 E node as shown in

Table 4.

Table 3. Leader election result when N = 30.

Algorithms A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 B8 C1 C2 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 E1

Raft 41 32 30 1 36 42 33 37 36 36 37 31 31 45 36 47 47 28 32 32 1 27 32 33 32 43 31 31 39 41

P-Raft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 591 0 0 0 0 0 0 0 0 0 0 0 0 409

Table 4. Leader election result when N = 20.

Algorithms A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 C1 C2 D1 D2 D3 E1

Raft 55 58 62 47 53 64 56 60 12 51 44 50 43 33 12 61 60 61 54 64

P-Raft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 699 0 0 0 293

Table 3 shows that in the 1000 Leader election, node C2 was elected as Leader 591

times, and E1 was elected as Leader 409 times in the P-Raft algorithm; Table 4 shows that

node C2 was elected as the Leader 699 times, and E1 was elected as the Leader 292 times

in the P-Raft algorithm. This is because the election timeout of the P-Raft could be related

to the server performance, and nodes with better performance had a shorter timeout. The

election timeout of Raft is random, meaning that all the nodes had a chance to become the

Leader.

Figure 4. The changes in a node’s stability score when µ is different.

4.3. Performance of P-Raft
4.3.1. Election Result

This section tested the election result of the Raft and the P-Raft algorithm when the
size of cluster N in the blockchain network was 20 and 30. We ran the Leader election
process 1000 times and collected the election results.

Table 3 depicts the election outcomes of both Raft and P-Raft algorithms when the
number of nodes (N) was 30, which was made up of 7 A nodes, 8 B nodes, 2 C nodes, 12 D
nodes, and 1 E node; this was the result when the number of nodes N was 20, which were
made up of 7 A nodes, 7 B nodes, 2 C nodes, 2 D nodes, and 1 E node as shown in Table 4.

Electronics 2023, 12, 2271 10 of 13

Table 3. Leader election result when N = 30.

Algorithms A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 B8 C1 C2 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 E1

Raft 41 32 30 1 36 42 33 37 36 36 37 31 31 45 36 47 47 28 32 32 1 27 32 33 32 43 31 31 39 41
P-Raft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 591 0 0 0 0 0 0 0 0 0 0 0 0 409

Table 4. Leader election result when N = 20.

Algorithms A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 C1 C2 D1 D2 D3 E1

Raft 55 58 62 47 53 64 56 60 12 51 44 50 43 33 12 61 60 61 54 64
P-Raft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 699 0 0 0 293

Electronics 2023, 12, 2271 11 of 13

Table 3 shows that in the 1000 Leader election, node C2 was elected as Leader 591 times,
and E1 was elected as Leader 409 times in the P-Raft algorithm; Table 4 shows that node
C2 was elected as the Leader 699 times, and E1 was elected as the Leader 292 times in the
P-Raft algorithm. This is because the election timeout of the P-Raft could be related to the
server performance, and nodes with better performance had a shorter timeout. The election
timeout of Raft is random, meaning that all the nodes had a chance to become the Leader.

4.3.2. Efficiency of Leader Election

In this section, we evaluated the latency of Leader election in both the Raft and P-Raft
algorithms for N = 10, 20, and 30 nodes. We ran the Leader election process 1000 times and
collected the average election latency. The result is shown in Figure 5:

Electronics 2023, 12, x FOR PEER REVIEW 11 of 13

4.3.2. Efficiency of Leader Election

In this section, we evaluated the latency of Leader election in both the Raft and P-Raft

algorithms for N = 10, 20, and 30 nodes. We ran the Leader election process 1000 times and

collected the average election latency. The result is shown in Figure 5:

Figure 5. Latency of Leader election.

As depicted in Figure 5, P-Raft exhibited an election latency reduction of approxi-

mately 6% compared to Raft. In the P-Raft algorithm, the waiting time T is related to node

performance, and the node with the best performance could always initiate the election

first. However, in the Raft algorithm, the election delay was random because the value of

waiting time T was random, relatively high values could be generated, and the average

election delay of Raft was higher than that of P-Raft.

4.3.3. Byzantine Fault-Tolerance

This section aims to evaluate the resilience of the P-Raft algorithm against the inter-

ference and damage caused by malicious Byzantine nodes in the consensus cluster.

To achieve this goal, we conducted a comparison between the election results of the

P-Raft algorithm and the Raft algorithm in a cluster of five nodes with one Byzantine node

present. Specifically, the Byzantine node was initially transformed into a Leader and sent

heartbeat messages to other nodes. We repeated the Leader election process 1000 times

and collected the corresponding election results for analysis.

As depicted in Table 5, we considered a cluster composed of one A node, one B node,

two C nodes, and one D node. Among them, C2 was the Byzantine node, and A1, B1, C1,

and D1 were non-Byzantine nodes. We presented the election results of both algorithms

under these conditions.

Table 5. Election result when Byzantine nodes were present.

Algorithms A1 B1 C1 C2 D1

Raft 0 0 0 1000 0

P-Raft 0 0 1000 0 0

The results of the election in the presence of Byzantine nodes are depicted in Table 5.

It can be observed that in 1000 leader elections, node C1 in the P-Raft algorithm was

elected as the Leader 1000 times. By contrast, in the Raft algorithm, the Byzantine node

C2 was elected as the Leader 1000 times. This discrepancy could be attributed to the fact

that the P-Raft election process involved the collection of signatures from the nodes that

had already cast their votes. Once the new Leader was elected, the collected signatures

were presented to other nodes as proof. Raft, on the other hand, did not verify the Leader’s

signatures. This left Raft vulnerable to Byzantine nodes that manipulated the vote count

Figure 5. Latency of Leader election.

As depicted in Figure 5, P-Raft exhibited an election latency reduction of approximately
6% compared to Raft. In the P-Raft algorithm, the waiting time T is related to node
performance, and the node with the best performance could always initiate the election
first. However, in the Raft algorithm, the election delay was random because the value of
waiting time T was random, relatively high values could be generated, and the average
election delay of Raft was higher than that of P-Raft.

4.3.3. Byzantine Fault-Tolerance

This section aims to evaluate the resilience of the P-Raft algorithm against the interfer-
ence and damage caused by malicious Byzantine nodes in the consensus cluster.

To achieve this goal, we conducted a comparison between the election results of the
P-Raft algorithm and the Raft algorithm in a cluster of five nodes with one Byzantine node
present. Specifically, the Byzantine node was initially transformed into a Leader and sent
heartbeat messages to other nodes. We repeated the Leader election process 1000 times and
collected the corresponding election results for analysis.

As depicted in Table 5, we considered a cluster composed of one A node, one B node,
two C nodes, and one D node. Among them, C2 was the Byzantine node, and A1, B1, C1,
and D1 were non-Byzantine nodes. We presented the election results of both algorithms
under these conditions.

Table 5. Election result when Byzantine nodes were present.

Algorithms A1 B1 C1 C2 D1

Raft 0 0 0 1000 0
P-Raft 0 0 1000 0 0

Electronics 2023, 12, 2271 12 of 13

The results of the election in the presence of Byzantine nodes are depicted in Table 5.
It can be observed that in 1000 leader elections, node C1 in the P-Raft algorithm was elected
as the Leader 1000 times. By contrast, in the Raft algorithm, the Byzantine node C2 was
elected as the Leader 1000 times. This discrepancy could be attributed to the fact that the
P-Raft election process involved the collection of signatures from the nodes that had already
cast their votes. Once the new Leader was elected, the collected signatures were presented
to other nodes as proof. Raft, on the other hand, did not verify the Leader’s signatures.
This left Raft vulnerable to Byzantine nodes that manipulated the vote count to become
the Leader. In such cases, P-Raft could detect forged votes by the number of signatures,
whereas Raft failed to identify malicious behavior.

5. Conclusions

In this study, we proposed a consensus algorithm named P-Raft and a performance
evaluation model called the Yasa model. P-Raft adds the attribute of the performance score
to each node participating in the consensus. The higher the performance score is, the easier
it will be for the node to be elected as the Leader. P-Raft also adds a leader verification
mechanism based on the BLS signature to prevent the malicious Byzantine node from
becoming Leader without receiving enough votes. Experimental results showed that it
could elect the node with the best performance score among the available nodes as the
Leader, and its latency of Leader in the election was less than the normal Raft algorithm,
which reduced the probability of an invalid election caused by vote partitioning in Raft,
reducing the average election cycle and time of the algorithm and enhancing the resilience
of the blockchain network.

P-Raft can correctly select the node with good machine performance as the Leader
and satisfy the data consistency and availability. It can also prevent the Byzantine node
from being Leader, which is suitable for a consortium blockchain.

The accuracy and computational speed of the proposed Yasa model required further
improvement. Additionally, the efficiency of the Leader verification mechanism in P-
Raft required enhancement, and its Byzantine fault tolerance capability required further
strengthening. Potential research directions included implementing advanced algorithms
to enhance the precision and computational efficiency of performance evaluation, as well
as adopting updated signature algorithms to improve the speed of both user signature and
verification.

Author Contributions: Conceptualization, S.L., X.Z. and R.Z.; methodology, R.Z. and X.Z.; soft-
ware, X.Z. and L.C.; validation, X.Z. and R.Z.; formal analysis, X.Z. and R.Z.; investigation, R.Z.;
resources, S.L., R.Z. and L.C.; data curation, L.C.; writing—original draft preparation, X.Z. and R.Z.;
writing—review and editing, S.L., X.Z. and R.Z.; visualization, X.Z.; supervision, S.L., G.Y. and J.L.;
project administration, S.L. and R.Z. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by the Special Funds for Construction of Innovative Provinces
in Hunan Province of China, grant numbers 2020GK2016, 2020GK2006, and 2020GK2007.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cui, S.; Lu, Y.; Chang, X. Research on model of blockchain-enabled power carbon emission trade considering credit scoring

mechanism. Electr. Power Constr. 2019, 40, 104–111.
2. Lamport, L.; Shostak, R.; Pease, M. The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 1982, 4, 382–401. [CrossRef]
3. Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An overview of blockchain technology: Architecture, consensus, and future trends.

In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017;
pp. 557–564.

https://doi.org/10.1145/357172.357176

Electronics 2023, 12, 2271 13 of 13

4. Lu, S.; Pei, J.; Zhao, R.; Yu, X.; Zhang, X.; Li, J.; Yang, G. CCIO: A Cross-Chain Interoperability Approach for Consortium
Blockchains Based on Oracle. Sensors 2023, 23, 1864. [CrossRef] [PubMed]

5. Guerrero-Sanchez, A.E.; Rivas-Araiza, E.A.; Gonzalez-Cordoba, J.L.; Toledano-Ayala, M.; Takacs, A. Blockchain Mechanism and
Symmetric Encryption in A Wireless Sensor Network. Sensors 2020, 20, 2798. [CrossRef] [PubMed]

6. Singh, A.; Saha, R.; Conti, M.; Kumar, G. PoSC: Combined Score for Consensus in Internet-of-Things Applications. In Proceedings
of the 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA), San Antonio, TX, USA, 5–7
September 2022; pp. 173–180.

7. Chen, Y.; Liu, P.; Zhang, W. Raft consensus algorithm based on credit model in consortium blockchain. Wuhan Univ. J. Nat. Sci.
2020, 2.

8. Wang, R.; Zhang, L.; Xu, Q.; Zhou, H. K-Bucket based Raft-like consensus algorithm for permissioned blockchain. In Proceedings
of the 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China, 4–6 December 2019;
pp. 996–999.

9. Xu, H.; Zhang, L.; Liu, Y.; Cao, B. Raft based wireless blockchain networks in the presence of malicious jamming. IEEE Wirel.
Commun. Lett. 2020, 9, 817–821. [CrossRef]

10. Wu, Y.S.; Wu, Y.S.; Liu, Y.R.; Shi, T.J. The research of the optimized solutions to Raft consensus algorithm based on a weighted
PageRank algorithm. In Proceedings of the 2022 Asia Conference on Algorithms, Computing and Machine Learning, Hangzhou,
China, 25–27 March 2022; pp. 784–789.

11. Tian, S.; Liu, Y.; Zhang, Y.; Zhao, Y. A byzantine fault-tolerant Raft algorithm combined with Schnorr signature. In Proceedings of
the 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Republic
of Korea, 4–6 January 2021; IEEE: New York, NY, USA, 2021; pp. 1–5.

12. Jiang, X.; Sun, A.; Sun, Y.; Luo, H.; Guizani, M. A Trust-Based Hierarchical Consensus Mechanism for Consortium Blockchain in
Smart Grid. Tsinghua Sci. Technol. 2022, 28, 69–81. [CrossRef]

13. Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [CrossRef]
14. Boneh, D.; Lynn, B.; Shacham, H. Short signatures from the Weil pairing. In Proceedings of the 2001 International Conference on

the Theory and Application of Cryptology and Information Security, LNCS 2248, Gold Coast, Australia, 9–13 December 2001;
Springer: Berlin/Heidelberg, Germany; pp. 514–532.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s23041864
https://www.ncbi.nlm.nih.gov/pubmed/36850462
https://doi.org/10.3390/s20102798
https://www.ncbi.nlm.nih.gov/pubmed/32423025
https://doi.org/10.1109/LWC.2020.2971469
https://doi.org/10.26599/TST.2021.9010074
https://doi.org/10.1504/IJSSCI.2008.017590

	Introduction
	Related Work
	Materials and Methods
	Raft Algorithm
	P-Raft Consensus Mechanism
	Evaluation Model of Node’s Performance: Yasa Model
	Leader Verification Mechanism

	Results
	Experimental Environment
	Changes in Nodes’ Stability Score
	Performance of P-Raft
	Election Result
	Efficiency of Leader Election
	Byzantine Fault-Tolerance

	Conclusions
	References

