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Abstract: With the digitalization of mechatronic systems in the conditions of a shortage of available
bandwidth of digital communication channels, the problem of ensuring the transfer of information
between various components of the system can arise. This problem can be especially challenging in
the observation and control of spatially distributed objects due to the complexity of their dynamics,
wide frequency band, and other factors. In such cases, a useful approach is to employ smart sensors,
in which the measurement results are encoded for transmission over a digital communication channel.
Specifically, the article is focused on the transmission of measurement data for the control of energy
for a spatially-distributed sine-Gordon chain. The procedures for binary coding of measurements
by first- and full-order coder-decoder pairs are proposed and numerically investigated, for each of
which the use of stationary and adaptive coding procedures is studied. The procedures for estimating
the state of the circuit when measuring outputs are studied, and for each of them, the accuracy of not
only estimating the state but also controlling the system by output with the help of an observer is
considered. The results of comparative modeling are presented, demonstrating the dependence of
the accuracy of estimation and control on the data transfer rate.

Keywords: sine-Gordon equation; digitalization; energy control; speed-gradient; quantization; data
sampling; communication constraints

1. Introduction

Energy regulation problem has numerous applications in physics and engineering,
such as energy harvesting [1,2], deployment of tethered systems [3], quantum control [4–6]
and many other applications. An efficient approach to energy control is based upon the
speed gradient (SG) method [7], resulting in the closed-loop system possessing a pre-
specified positive function, which decreases along the system trajectories. In the series of
papers, the SG method was extended to design energy regulation algorithms for spatially
distributed systems, using the boundary and distributed control of spatially-distributed
systems, see [7,8].

During the digitalization of mechatronic complexes under the condition of a deficiency
of the available capacity of digital communication channels ensuring the information ex-
change in the complex, the problem can arise in ensuring the transmission of information
necessary for observation and control between different components of the system, such
as sensors, controlling devices, and actuators. An efficient approach to analyze systems
robustness under disturbances caused by sampling is based on the time-delay method
proposed by E. Fridman and coauthors [9,10]. The problem of information exchange is
especially heavy for observation and control of spatially distributed plants described by
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partial differential equations due to the complexity of their dynamics, a wide frequency
band characterizing the processes in the system, the action of spatially distributed dis-
turbances, and, in many cases, because of the need to use a large number of sensors and
actuators located at considerable distances from the computing device. It is possible to
facilitate the solution of observation and control problems under these conditions by using
smart, including adaptive, sensors, in which measurement results are encoded for trans-
mission via a digital communication channel to an appropriately designed decoder. Up
to the authors’ knowledge, there exist only a few results on robustness with respect to
data sampling for parabolic PDE and hyperbolic Partial Differential Equations–Ordinary
Differential Equations (PDE–ODE) loops, such as [11–17].

Proceeding from the previous studies of the Authors [8,17], this paper is devoted to the
energy control for the sine-Gordon system. In recent years, this system has become earned
significance as a model for investigations in nonlinear physics, see for example, [18–22]. This
system demonstrates such nonlinear behavior as solitons, kinks, antikinks, and breathers,
see [23–27] for mentioning a few, and also serves as the basis for modeling various physical
processes, such as the propagation of an optical pulse in a waveguide [28], the transition
from static to dynamic friction [29], spin dynamics of an anisotropic Heisenberg ferromag-
netic chain [30], phase transition between the superfluid and the insulating ground states
of the Bose-Hubbard [31], effects of Ohmic dissipation in Josephson junctions [18,32,33],
dynamics of mechanical transmission lines, see [34–37].

Andrievsky et al. [17] numerically studied the SG-based state feedback energy con-
trol of [8] and the system robustness with respect to the data sampling. Properties of six
algorithms, such as “proportional”, “relay”, “adaptive-relay”, and combinations thereof,
according to such performance criteria as limiting error, transient time, and stability thresh-
old with respect to the data sampling interval, are studied. It is found that for the problem
under consideration, the simplest, proportional SG (P-SG) algorithm has an advantage.
It should be noted that the mentioned above papers considered only the measured data
sampling but did not take into account the constraints imposed on the data transfer rate
over the communication channel; potentially, the number of bits transmitted at sampling
(measurement) instants can be arbitrarily large there. In the present paper focused on the
estimation and control of the energy for a distributed sine-Gordon system through limited
capacity communication channels, the results of the [8,17] are extended. In contrast to [17],
in this paper, as well as in [8], the feedback control is considered both by the full system
state and by the measured output of the chain (and not only by the state), and the P-SG
algorithm is used, which was not studied by Orlov et al. [8]. This paper develops the
previous results of the Authors in the field of control of energy for spatially distributed
systems. A difficult problem is one of minimizing the amount of information required for
control. A step in this direction was made in [8], where the possibility of using not the entire
distance vector of the chain and its time derivative (which have an infinite dimension),
but by employing the state observer, only a small number of local measurements. When
quantizing control processes, an important problem arises with minimizing the amount
of information transmitted over a digital communication channel on which the present
study is focused. To the best of the Authors’ knowledge, there are currently no publications
on the observation and control of nonlinear distributed chains through communication
channels with limited capacity.

The applications of binary coding of output measurements by the first and full or-
der coders/decoders pairs are considered, for each of which the use of time-invariant,
and adaptive coding procedures are studied. The outputs are measured in the chain’s sepa-
rate sections and are used by the state Luenberger-type observer to estimate the inner state
of the system at all points. The procedures for estimating the chain state over the limited
capacity communication channels are presented. The comparative simulation results are
presented, demonstrating the dependence of the estimation and control accuracy on the
data transfer bitrate.
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The main contribution of the paper is the development of data encoding/decoding
procedures that minimize the data bit rate of the communication channel when controlling
the energy of nonlinear distributed sine-Gordon chains. Four data transmission procedures
are proposed and studied numerically, including combinations of first and full-order coding,
time-invariant and adaptive. For each of them, the accuracy of not only state estimation but
also controlling the system energy by output using an observer is examined. On the basis
of the quantitative study, permissible limits for minimizing the load of the communication
channel were revealed. The observation and control structures proposed in the paper can
also be used for other types of spatially distributed systems.

The remainder of the paper is organized as follows. Section 2 is devoted to a con-
trolled sine-Gordon system model description and an energy control problem statement.
Continuous-time algorithms for state estimation and energy control are briefly recalled
in Section 4. Section 3 is concerned with the problem of state estimation over the limited
capacity digital communication channel. In this Section, the state observation scheme with
data transferring over the communication channel is described, and the coding-decoding
procedures for the system of interest are presented. Numerical examination results for
various cases of the estimation, control, and communication schemes are described in
Section 5 and consolidated in the tables at the end of this Section. Concluding remark and
future work intentions of Section 6 finalize the paper.

2. Plant Model and Problem Statement

Let us briefly recall the key points of [8,17]. The following dissipation-free sine-Gordon
system model is considered

xtt = κxrr − F0 sin x + u(r, t), t > 0, (1)

where t∈ R denotes the time; r ∈ [0, 1] is the scalar spatial variable; x = x(·, t) is the instant
state of the system, x(r, t) : R2 → R; κ, F0 are for system parameters; u(r, t) denotes the
control input. In what follows, time t is conventionally measured in seconds, while other
variables are assumed to be dimensionless. The following Dirichlet boundary conditions
are stated for the PDE (1)

x(0, t) = 0, x(1, t) = 0. (2)

The following sampled-in-space actuation is used to control sine-Gordon model (1)

u(r, t) =
m

∑
i=1

bi(r)ui(t) (3)

which is, thus, representable in the form

xtt = κxrr − F0 sin x +
m

∑
i=1

bi(r)ui(t), t > 0. (4)

Such actuation is constituted by in-domain control channels, which are characterized
by spatial distributions bi(r) ∈ H2, i = 1, . . . , m of control inputs ui(t), located on disjoint
actuator subdomains supp bi(·) ⊆ [ri, ri + hi] ⊆ [0, 1] of some lengths hi > 0. Recall that the
Sobolev space Hl(a, b) with a natural index l consists of l times weakly differentiable func-
tions x(r) : R→ R, which are defined on the domain (a, b) ⊂ R and whose norm is given

by ‖x(·)‖Hl(a,b) =

√
l

∑
j=1

b∫
a

(
∂jx/∂rj

)2dr. By default, H0(a, b) = L2(a, b) and Hl(0, 1) = Hl .
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As in [8,17], the spatial domain [0, 1] is uniformly partitioned into m = 10 subdomains
[ri, ri + hi] of lengths hi = 0.1, i = 1, . . . , 10 so that ri = 0.1(i− 1). Within each subdomain
the corresponding actuator distribution bi(r) is specified as

bi(r) =

{
1, if ri + 0.02 6 r 6 ri + 0.08,
0, otherwise,

(5)

i.e., the first and the last actuators are located in the distance 0.02 from the left and right
boundaries, respectively, whereas the neighboring actuators possessed a slot of the length
0.04 between them.

Energy E(x, xt) of sine-Gordon model (1), (2) is given by the following expression [7]

E(x, xt) =
1
2

1∫
0

(
x2

t + kx2
r + 2F0

(
1− cos x

))
dr (6)

The control objective is regulation the chain (1)–(3) energy E(x, xt) to a prespecified
level E∗ > 0 for guaranteeing the limiting relation

lim
t→∞

E
(

x(·, t), xt(·, t)
)
= E∗. (7)

3. Continuous-Time Algorithms for State Estimation and Energy Control

This section briefly provides preliminary information from [8,17] related to continuous-
time state estimation and energy control without digitalization and data transmission over
digital communication channels.

3.1. Energy Control Synthesis Using State Feedack
3.1.1. Basics of SG Design Method

Following [7], let us briefly outline the main points of the SG design methodology in
the part that is used for the purposes of this paper.

Consider the following controlled plant model

ẋ(t) = f (x, θ, t), (8)

where x(t)∈ Rn denotes the state vector; θ(t)∈ Rm is the control vector; f (·) is a certain
vector-function continuous in x, θ, t, and continuously differentiable in θ.

Let the “admissible control laws” be of the form

θ(t) = Θ
({

x(s)t
s=0
}

,
{

θ(s)t
s=0
})

(9)

with some operator Θ, such that the solutions of the system (8), (9) exist and are unique for
t > 0 for any initial values x0, θ0.

Let the control goal be expressed by the asymptotic relation

lim
t→∞

Qt = 0. (10)

where Qt = Q
({

x(s)t
s=0
}

,
{

θ(s)t
s=0
})

is a given (local) objective functional

Qt = Q
(
x(t), t

)
, Q(·)∈ R, (11)

The SG algorithm in its finite form is as follows:

θ(t) = −ψ(x, θ, t), (12)
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where Γ = ΓT > 0 stands for m×m-matrix of algorithm gains; ω(x, θ, t) denotes derivative
of the objective functional along system (8) trajectories; ψ(x, θ, t) is a certain vector-function
satisfying the following “pseudogradient condition”:

ψ(x, θ, t)T∇θω(x, θ, t) > 0. (13)

The exact formulations can be found in ([7], Section 2.1).
In the present study function

ψ(x, θ, t) = Γ∇θω(x, θ, t) (14)

is employed, where Γ is a diagonal matrix, Γ = γIm×m, and γ is the proportional con-
troller gain.

3.1.2. SG Energy Control Law in Proportional Form

Following the SG design procedure [7], introduce the goal functional as

Q(t) =
1
2
(
E(t)− E∗

)2. (15)

Then compute the time derivative of Q(t) along the system (1), (2) trajectories, provisionally
assuming that u(r, t) is constant on t. Differentiating (15) in time, integrating then the
resulting equality by part, and employing a consequence xt(0, t) = xt(1, t) = 0 of the
boundary condition (2) yield

Q̇ =
(
E(t)− E∗

) ∫ 1

0
u(r, t) · xt dr. (16)

The control action in [8,17] is specified in the form of a finite number of sampled-in-
space actuators (3). Then Q̇ reads as

Q̇ =
(
E(x, xt)− E∗

) m

∑
i=1

(
ui(·)

ri+hi∫
ri

bi(r)xt dr
)

. (17)

At the second step of the SG procedure, one should derive the gradient ∇uQ̇∈ Rm

of the resulting expression of Q̇ with respect to the control components ui(t), i = 1, . . . , m,
thus, arriving at

∇uQ̇=
(
E(x, xt)− E∗

)[ r1+h1∫
r1

b1xt dr . . .
rm+hm∫

rm

bmxt dr

]T

.

This leads to the following sampled-in-space actuation (3) in Proportional form

ui(t) = γ∆E(t)
ri+hi∫
ri

bixt dr, (18)

where the energy error ∆E(t) = E∗ − E(x, xt) is introduced, i = 1, . . . , m; γ is the positive
controller gain (the design parameter). This parameter is chosen by the developer when
synthesizing the control algorithm. As follows from the SG method (see Section 3 above
and [7]), as well as the proof for the relay-type algorithm of [8], theoretically, any positive
value of γ leads to the achievement of the control goal. However, as is usually the case in
the synthesis of control systems, the designer can use additional criteria and conditions for
the operation of the system, so the choice of γ is usually associated with some compromise.
For example, as demonstrated in ([8], Figure 10), under state feedback control (18), the time
of the transient process of establishing the given energy decreases monotonically as γ rises
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to a certain value. However, under the output control (25), this process stops at the smaller
value of γ. Indeed, there exists an observer dynamical error at the beginning of the process,
and the high-speed controller then works at the beginning based on incorrect information
about the controlled variable. For this article, the authors chose for each channel, value
γi = 22.8 as in [17].

Andrievsky et al. [17] considered some more SG energy control laws.

3.2. Sine-Gordon Chain State Estimation
3.2.1. Sampled-in-Space Sensing

Following [8], the available position sensing of the sine-Gordon boundary-value
problem (4), (2) is assumed to be of the form

yj(t) =
1∫

0

x(r, t)ϕj(r)dr, j = 1, . . . , l. (19)

Note that in this paper, the simplified form of the observer by Orlov et al. [8] is used, where
only position, not the velocity, sensors are employed.

The in-domain measurements (19) are characterized by the sensor spatial distribution
ϕj(r) ∈ H2 with disjoint sensor locations

supp ϕj(·) ⊆ [rϕ
j , rϕ

j + hϕ
j ] ⊆ [0, 1], j = 1, . . . , l. (20)

These locations are introduced in a manner similar to the actuator subdomains (5).
Although the sensors are not in general collocated to the actuators, however, the output
feedback synthesis to be developed relies on the collocated sensing and actuation such that

ϕj(r) ≡ bij(r), j = 1, . . . , l for some ij ∈ {1, . . . , m}. (21)

3.2.2. Luenberger-Type Observer

For the position and velocity estimates ξ(r, t) and ζ(r, t) of the state components x(r, t)
and, respectively, xt(r, t) of the sine-Gordon model (1), (2), the following Luenberger-type
observer is proposed and studied in [8]:

ξt = ζ +
l

∑
j=1

µj ϕj(r)
(

yj(t)−
∫ 1

0
ϕj(ρ)ξ(ρ, t)dρ

)
(22)

ζt = κξrr − F0 sin ξ + u(r, t) (23)

where µj > 0 are observer gains, ϕj(r) denote the identical weighted functions of the
position sensor locations (20), j = 1, . . . , l. As one can see, following the Luenberger
approach, observer (22), (23) mimics the structure of the estimated model, separately given
for the canonical position-velocity variables x and xt. Then, the observer PDEs (22), (23)
are subjected to the Dirichlet boundary conditions ξ(0, t) = 0, ξ(1, t) = 0.

3.2.3. Output Feedback Control of Sine-Gordon Chain Energy

For output feedback energy control of the sine-Gordon chain, the following control
law is suggested, where instead of x, xt in (6), (18) the estimates ξ, ζ, obtained by the
observer (22), (23) are employed:
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Ê(ξ, ζ) =
1
2

1∫
0

(
ζ2 + kξ2

r + 2F0
(
1− cos ξ

))
dr (24)

ui(t) = γ∆Ê(t)
ri+hi∫
ri

biζdr, (25)

where the estimated energy error ∆Ê(t) = E∗ − Ê(ξ, ζ) is introduced, i = 1, . . . , m; γ
denotes the positive controller gain. In summary, the proposed output feedback energy
control law is described by (3), (22)–(25).

In [8], the estimation error dynamics and their well-posedness are studied, and the
output feedback control by means of SG relay algorithm, using sampled-in-space sensing
and actuation is examined both analytically and numerically.

Remark 1. It should be mentioned that, compared with state feedback control, output feedback
control has obvious disadvantages associated with the occurrence of additional dynamic errors
associated with the transient process of state estimation using an observer, as well as errors caused
by the uncertainty of the plant parameters (in the case under consideration, these are the parameters
κ, F0). Typically, when controlling distributed systems, approximation of PDEs by ODEs, based on
expansion in terms of eigenfunctions, the Galerkin method, or model reduction, is performed [11,38].
However, since the energy of the chain, according to (6), is defined via x(r, t) and xt(r, t), and it is
practically impossible to measure these variables themselves, the use of the state observer seems to
be the only practically implementable way to control. The impact of parametric uncertainty can be
reduced by using adaptive estimation methods, the consideration of which is beyond the scope of
this paper.

The present paper is focused on algorithm design and studying the observation and
control of the chain energy for the case of the measurements transmitting over limited-
capacity digital communication channels. The rest of the Sections are concentrated on
this topic.

4. State Estimation over the Digital Communication Channel
4.1. Observation Scheme with Transferring Data over the Communication Channel

Let the in-domain measurement signals yj(t), j = 1, . . . , l, see (19), be transmitted
over the limited capacity communication channel. In the present study, we assume that
control action u(r, t), see (3), is perfectly known at the receiver side. and the communication
channel is ideal, although introduces time and level quantization to transmitted data. Let
us further assume that the sampling occurs with some constant period Ts. Let us denote the
sampling times as tk = kTs, where k ∈ Z is the iteration number (the “discrete time”). Thus,
a sequence of discrete-time signals yj[k] = yj(tk), j = 1, . . . l is applied to the coder for
transmitting over the channel to the receiver side (hereinafter, square brackets are used for
the argument of discrete-time processes). At instants tk, the decoder produces the restored
signals ȳj[k] for each transmitter channel. In this study, it is adopted that on the receiver
side, the zero-order extrapolator is used to convert the discrete-time signals ȳj[k] to the
continuous time ones, ȳj(t) such that ȳj(t) = ȳj[k] as tk 6 t < tk+1. Taking this into account,
the following observer equations are derived by replacing yj(t) with ȳj(t) in (22), (23):

ξt = ζ +
l

∑
j=1

µj ϕj(r)
(

ȳj(t)−
∫ 1

0
ϕj(ρ)ξ(ρ, t)dρ

)
(26)

ζt = κξrr − F0 sin ξ + u(r, t). (27)
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4.2. Coding-Decoding Procedures
4.2.1. Time-Invariant Coder of First Order

Consider transmission of the signal over the digital communication channel, where
both time-sampling and level quantization procedures are present. Let us consider the
binary coder with memory, cf. [39–47].

Let signal y(t) be transmitted over the digital communication channel at sampling
instants tk = kTs, where Ts > 0 is a constant sampling period, k = 0, 1, . . . are integers. At
each k, the deviation signal δ[k] between transmitted signal y(tk) and a certain centroid
c[k] (given below by (29)) is calculated as δ[k] = y(tk)− c[k]. Signal δ[k] is subjected to the
following binary quantization scheme:

δ̄[k] = M sign(δ[k]). (28)

where sign(·) is signum function, M > 0 may be refereed to as a quantizer range. Then the
quantizer output δ̄[k] is coded by the available binary alphabet Σ = {−1, 1} and, in the form
of the binary signal σ ∈ {−1, 1}, σ[k] = sign(δ[k]) is transmitted over the communication
channel to the decoder. The sequence of central numbers c[k] is recursively defined by the
following algorithm:

c[k + 1] = c[k] + Mσ[k], c[0] = 0. (29)

Evaluating an upper bound of data transmission error d(t) can be made under the
assumption that it is known the exact bound Ly for the rate of y(t) is Ly = sup

x∈Ω
|Cẋ|, where

ẋ is from (1). Let us define ∆ = sup
t
|d(t)| . From (28)–(35) follows that for t ∈ [tk, tk+1),

the transmission error is as d(t) = y(t)− c(t), where c(t) = c[k]. From the coding-decoding
scheme (28)–(35) it is clear that for each time interval t ∈ [tk, tk+1), the transmission error
may be represented as d(t) = y(t)− c(t), where c(t) = c[k]. To evaluate |δ[k]|, assume that
for a certain k is valid that

|y(tk)− c[k− 1]| 6 2M. (30)

Due to the assumption on y(t) rate limitation, over the each time interval t ∈ [tk, tk+1)
the magnitude of d(t) is bounded by |δ(t)| + LyT, where δ(t) = δ[k] as t ∈ [tk, tk+1).
Then, after renovation of c by means of (35), at step k is valid that the magnitude of error
δ[k] = y(tk)− c[k] does not exceed M. Therefore, the magnitude of d(t) is bounded by
|δ(t)|+ LyTs, where δ(t) = δ[k] as t ∈ [tk, tk+1), and after renovation of c by means of (35),
at step k it is valid, that δ[k] = y(tk)− c[k] does not exceed M.

This leads to the following inequality

∆ < M + LyTs. (31)

If M is chosen, satisfying the condition

M > LyTs, (32)

then at instant tk+1 inequality (30) will be fulfilled, and the aforementioned relation will be
recursively valid for k := k + 1 and, using the mathematical induction argument, for all
consequent steps.

Inequality (32) imposes restrictions on sampling period T and quantizer range M for a
given growth rate Ly of y(t). If (32) is fulfilled, then magnitude |d(t)| of data transmission
error d(t) does not exceed ∆. Otherwise, the data transmission scheme based on (28)–(34)
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can fail in the sense that the data transmission error for several steps can be greater than
the prescribed bound ∆. Therefore, it is reasonable to choose M as

M = αLyTs, (33)

where a certain design parameter α > 1 is chosen.
Equations (28) and (29) describe the coder algorithm. A similar algorithm is repre-

sented by the decoder: values of δ̄y[k] are restored with given M from the received binary
codeword σ[k] as δ̄y[k] = Mσ[k]. Then the decoder output ȳ[k] is found as

ȳ[k] = c̄[k] + δ̄y[k]. (34)

Centroid c̄[k] is recursively found at the decoder side in accordance with (29):

c̄[k + 1] = c̄[k] + Mσ[k], c̄[0] = 0. (35)

Remark 2. Obviously, the smaller parameter M is, the smaller the data transmission error, but the
inequality (32) limits the minimum value of M. This issue is discussed in the framework on the

“zooming” concept, cf. [39,41,48] and in the adaptive coding procedure described in Section 4.2.3 below.

Remark 3. Since the binary coder (28) is used, then this coding scheme corresponds to the channel
data transmission rate as R = T−1

s bits per second.

4.2.2. Time-Invariant Coder of Full Order

The idea behind the full-order coding procedure is as follows. The coder incorporates
the “embedded” observer, cf. [41,48–50]. On the encoder side, the measured sampled data
are quantized by the level according to the chosen (say, binary) quantization procedure and
fed to the observer, whose structure corresponds to the complete model of the controlled
plant. The peculiarity is that although on the encoder side, the measurement results are
considered known and not level quantized, the quantization procedure is implemented in
relation to the measurement signals to ensure the so-called equi-memory condition [41],
which requires that both the encoder and the decoder should work based on the same
information. Further, the update (residual) signal of the observer on the encoder side
is transmitted in a quantized form through the communication channel and is used to
correct a similar observer included in the decoder. Its state variables are used further
as estimates of the plant state. Potentially, such a scheme makes it possible, at a suffi-
ciently high communication channel capacity, asymptotically in time, vanishing the state
estimation error.

Let us describe an implementation of this approach to the considered problem of
the sine-Gordon chain (1), (2) state estimation. The observer, embedded in the coder, is
represented by

ξt = ζ +
l

∑
j=1

µj ϕj(r)ε̄ j(t) (36)

ζt = κξrr − F0 sin ξ + u(r, t). (37)

where ε̄ j(t) are generated for j = 1, . . . , l by the binary coding procedure (28), (29), applyied

to the mismatch signals ε j(t) = yj(t)−
1∫

0
ϕj(ρ)ξ(ρ, t)dρ. More specifically, ε j(t) are taken

instead of yj(t) in (28), (29), which leads to the following coding procedure: the deviation
signals δj[k] between transmitted signal ε j(tk) corresponding centroids cj[k], given by (29),
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are calculated as δj[k] = ε j(tk)− cj[k]. Then the binary quantization scheme (28) is applied
to δ[k] and signals ε̄ j(t) are formed as

ε̄ j[k] = M sign δj[k], j = 1, . . . , l. (38)

The binary-valued signals σj[k] ≡ sign δj[k] are transferred to the receiver over the
communication channel at instants tk = kTs. On the reciever side, the values of ε̄ j are
restored with given M from the received binary codeword σ[k] as ε̄ j = Mσj[k]. Then the
decoder output ȳj[k] is found as

ε̄ j[k] = c̄j[k] + Mσj[k]. (39)

The receiver’s centroids ĉ[k] are found as follows

ĉj[k + 1] = ĉj[k] + Mσj[k], ĉj[0] = 0, j = 1, . . . l. (40)

The observer, embedded in the receiver, is also used as the system state estimator. It
is governed by the algorithm, similar to one on the coder’s side, with the exception that
the correction (renovation) signals ε̄ j(t) are obtained by the zero-hold extrapolation on
sampling period Ts of signals ε̄[k], which are received over the communication channel:

ξ̂t = ζ̂ +
l

∑
j=1

µj ϕj(r)ε̄ j(t) (41)

ζ̂t = κ̂ξrr − F0 sin ξ̂ + u(r, t). (42)

Summarizing, in the proposed full-order coding/decoding scheme, the innovation
signals ε̄ j[k] are transmitted over the channel, govern the observer on the decoder side,
and ξ̂ and ζ̂ are used as the plant position and velocity estimates.

4.2.3. Adaptive Coding

In time-varying quantizers [41,45,48,51,52] range M is updated with time. Using such
a zooming strategy improves the steady-state accuracy of the transmission procedure
and, at the same time, prevents the encoder saturation during the process beginning.
The values of M[k] may be precomputed (the time-based zooming), or current quantized
measurements may be used at each step for updating M[k] (the event-based zooming).
For an audio channel, Moreno-Alvarado et al. [53] developed the coding schemes with
the capacity to simultaneously encrypt and compress audio signals, which makes the
possible increasing necessity for transmitting sensitive audio information over insecure
communication channels.

The event-based zooming can be realized in the form of adaptive zooming, see [48,54,55],
where the quantizer’s range is adjusted automatically depending on the current variations of
the transmitted signal.

For the binary quantizer, the following adaptive zooming algorithm was proposed
and experimentally studied in [48]:

λ[k] = (s[k] + s[k− 1] + s[k− 3])/3, s[−1] + s[−2] = 0,

M[k + 1] = mc +

{
ρM[k], if |λ[k]| 6 0.5,
M[k]/ρ, else,

σ̄[k] = M[k]s[k],

(43)

where M[0] = M0 is an initial value of M[k] (the design parameter); σ̄[k] denotes the value
of σ[k] recovered at the decoder side from binary values s[k]. Unlike the case of time-based
zooming, the initial value M0 can be chosen in the wide range since M[k] is automatically
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adjusted and can be increased or decreased during the zoom-in and zoom-out stages.
The decay parameter 0 < ρ 6 1 serves for setting the rate of change of the quantization
range M[k].

This adaptive coding procedure can be applied both for the first-order and the full-
order communication schemes. In the first case, the sensors measurements yj(t), j = 1, . . . , l,
are coded and transmitted over the channel (see Section 4.2.1); in the second one, the
adaptive coding procedure is applied to innovation signal ε(t), as described in Section 4.2.2.

The overall block diagram of the control system (3), (22)–(25) with data transmission
via the communication channel is depicted in Figure 1.

A—actuator, S—sensor, C—coder, D—decoder

Figure 1. Block diagram of control system (3), (22)–(25) with data quantization.

Remark 4. The closed-loop system stability was theoretically studied in the previous authors’
works. In ([8], Theorem 2), the closed-loop system with the state feedback (1), (6), (18) stability has
been proved for a similar to (18) algorithm with the only difference that the error signum-wise gain
has been used instead of the present linear gain in (18). However, the line of reasoning remains
applicable for the stability proof in the present case as well. Regarding the stability of the system
with the observer-based output feedback control described by (3), (22)–(25) ([8], Theorem 4) proved
the convergence of the observer and the output feedback case. In ([8], Theorem 5) is proved locally
for the non-linear sine-Gordon chain, and state feedback stabilization of the corresponding invariant
manifold has been globally proved. With this in mind, the detailed stability proof is skipped since
it is beyond the scope of the present paper, which is focusing on the numerical shreds of evidence
supporting the closed-loop stability in the control-quantified setting.

To the best Authors’ knowledge, up to now on, there are no publications on the control of
nonlinear spatially distributed systems over communication channels with limited bandwidth. A
complete and rigorous analytical study of the stability of such systems is hardly possible, although
there are numerous theoretical results for finite-dimensional systems, cf. [45,50,51,56–60]. In par-
ticular, [48,54,55,61] present the results of analytical and experimental studies on adaptive data
coding during transmission over a digital communication channel in control systems. Due to the
fact that the Lipschitz constant Ly differs in various areas of the system state, the justification of the
stability of control systems with coding can only be local. Under these conditions, when there is no
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universal solution covering all possible situations, intensive computer investigations are needed for
designing a particular system.

Remark 5. The approach presented in this paper can be used not only for the sine-Gordon system
under consideration but also for other systems whose dynamics are described by PDEs, including
aerospace applications, cf. [62–64]. The closest problem to the one considered in this paper was
studied by Gao and Liu [65], who had taken into account quantization by the level of control actions
in constructing a neural network algorithm for suppressing elastic oscillations of the wing. As a
direction for the development of the distributed systems control method described in this study, it
seems promising and expedient to use optimal and adaptive-optimal control methods, among which
it is worth highlighting the recent results on fuzzy optimal tracking control via single-network
adaptive critic design. For example, in [66], almost optimal servo controllers for hypersonic aircraft
are proposed, where the controllers for the velocity and the flight altitude subsystems are developed
using brief fuzzy approximations, and then optimal controllers are implemented using adaptive
critical design. The possibility of obtaining satisfactory performance for real-time systems is shown.
Bu et al. [67] proposed a direct non-affine tracking control method, in which neural networks with
fuzzy wavelets are used to build action networks and critic networks, and new direct non-affine
controllers are proposed. To achieve the desired performance in a transient and steady state, Ref. [67]
imposes behavioral restrictions on speed and altitude tracking errors.

5. Numerical Examination Results

In the simulations the following model (1) parameters are taken: J = 1, κ = 0.12,
F0 = 25. The initial states were pre-specified in the form

x(0, r) = A
(
1− cos(2πr)

)7, xt(0, r) = 0 (44)

with a “magnitude” parameter A = 0.03.
As in [17], control gains γi, i = 1, . . . , 10 were set to γi = 22.8 and the desired energy

level was taken as E∗ = 5. Number N = 2500 was selected for the PDEs (1) to discretize
the spatial variable r and duration of the computation time tfin was confined to 30 s. Initial
values of observers (26), (27), (41), and (42) states ξ, ζ, and ξ̂, ζ̂, respectively, are set to zero.

5.1. Quality Indices

From the point of view of the authors, there is no single function (functional) of
quality that would fully and comprehensively characterize the properties of the system.
Therefore, as in [17], this article uses several functionals that reflect various aspects of
system performance. They are as follows.

1. Based on [8], the following integral-quadratic function V(t) is used to evaluate the
state observation estimation accuracy

V(t) =
1
2

1∫
0

(
F0(∆ξ)2 + κ(∆ξr)

2 + (∆ξt)
2
)

dr, (45)

where ∆ξ(x, t) = ξ(r, t)− x(r, t), and ∆ξt(x, t) = ξt(r, t)− xt(r, t).
2. Since V(t) is a function, not a number, then, following the lines of [17], the correspond-

ing quality functionals are introduced as:

(a) its terminal value V(tfin), where tfin denotes the simulation time (tfin = 30 s in
what follows);

(b) trancient time tV
tr , understood as the maximal instant such that V(t) > 0.01V(0).

In the case of tV
tr > 30, or does not exist, then tV

tr is set to tV
tr = ∞;
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3. Sine-Gordon chain energy E(x, xt) given by (6) as

E(t) =
1
2

1∫
0

(
x2

t + kx2
r + 2F0

(
1− cos x

))
dr

4. The corresponding functionals are:

(a) ∆E(t) = E∗ − E(t) terminal value ∆E(tfin);
(b) trancient time tE

tr, understood as the maximal instant such that ∆E(t) >
0.01∆E(0). If this instant is greater than tfin=30, or the given condition does
not happen at all, then the quality index is set to tE

tr = ∞.

In the following sections, the values of the specified quality indices are established by
modeling for the specified chain parameters, initial conditions, and the required energy
value for various data encoding-decoding schemes.

5.2. Ideal Channel Case

This subsection is aimed to present the simulation results of the “ideal channel case”
for comparatively demonstrating the impact of limited communication capabilities on the
performances of state estimation and control procedures. No quantization is assumed here
in the communication channel, except for the sampling of measurement data during the
transmission of the output signal with the sampling time Ts = 1/400 s.

5.2.1. Free Motion State Estimation in Ideal Channel Case

The simulation results for free motion state estimation over the sampled-data commu-
nication channel with Ts = 1/400 s and absence of the level quantization are depicted in
Figures 2–4. The control action u(r, t) is taken equal to zero. Time history of V(t) and the
spatiotemporal plot of the observer (22), (23) correction signal defined as

uobs(r, t) =
l

∑
j=1

µj ϕj(r)
(

yj(t)−
∫ 1

0
ϕj(ρ)ξ(ρ, t)dρ

)
, j = 1, . . . , 5, (46)

are plotted in Figure 2. The observer transient time as tV
tr = 5.42 s is found based on the

initial value V(0) = 82.1 and the threshold, calculated as 0.01V(0).
One can get an impression of the state estimation accuracy from Figure 3, where

the time histories of x(0.5, t), ξ(0.5, t), estimation error x(0.5, t)− ξ(0.5, t), and x(0.75, t),
ξ(0.75, t), x(0.75, t)− ξ(0.75, t) for t ∈ [0, 10] are depicted.

0 5 10 15 20 25 30
t

10
-1

10
0

10
1

10
2
V(t)

V

0.01V(0)

Figure 2. State estimation. Free motion case, u(r, t) ≡ 0, ideal channel. V(t) time history (left plot);
uobs spatiotemporal plot (right plot). Cross sign “x” marks tV

tr .
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Figure 3. State estimation. Free motion case, u(r, t) ≡ 0, ideal channel. x(r, t), ξ(r, t), x(0.r, t)− ξ(r, t)
time histories for r = 0.5 (left column), and r = 0.75 (right column).

Figure 4. State estimation. Free motion case, u(r, t) ≡ 0, ideal channel. The visual representation of
the system behavior and its state estimation process.

5.2.2. State-Feedback Control in Ideal Channel Case

The simulation results for the closed-loop energy control of the system, defined
by (1), (2), (6), and (18) are demonstrated in Figures 5–8. The controller uses the state
feedback; the state estimation process is performed over the sampled-data communication
channel with Ts = 1/400 s without the level quantization of measurements. This process
does not have any effect on the controller behavior. Control action u(r, t) is assumed to be
accurately known to the observer.

Time histories of E(t), V(t), and the spatiotemporal plots of control signal u(r, t) and
observer (22), (23) correction signal uobs(r, t), defind by (46), are plotted in Figures 5 and 6,
respectively. The transient time for an energy control as tE

tr = 1.04 s is found based on
the initial value ∆E(0) = −15.7 and the threshold, calculated as 0.01∆E(0). The observer
transient time as tV

tr = 2.39 s is found based on the initial value V(0) = 82.1 and the threshold,
calculated as 0.01V(0). The finite values for tfin = 30 s are found as ∆E(tfin) = −3.30× 10−5,
V(tfin) = 0.32.
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Figure 7, where the time histories of x(0.5, t), ξ(0.5, t), estimation error x(0.5, t) −
ξ(0.5, t), and x(0.75, t), ξ(0.75, t), x(0.75, t)− ξ(0.75, t) for t ∈ [0, 10] are depicted, demon-
strates the state estimation accuracy.

0 1 2 3 4 5
t, s
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20

E(t),  E
*

E

E
*

0 1 2 3 4 5
t, s

10
-1
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1

10
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V(t)

V

0.01V(0)

Figure 5. Feedback energy control (6), (18), ideal channel. Energy E(t) (left plot) and function V(t)
(right plot) time histories. Cross sign “x” marks tE

tr (left); Cross sign “x” marks tV
tr (right).

Figure 6. Feedback energy control (6), (18), ideal channel. Spatiotemporal plots of control signal
u(r, t) and observer correction signal uobs(r, t).
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Figure 7. Feedback energy control (6), (18), ideal channel. The time histories of x(r, t), ξ(r, t),
estimation error x(r, t)− ξ(r, t) for r = 0.5 (left plot), and r = 0.75 (right plot).

By the analogy with Figure 4, a visual representation of the system behavior and the
state estimation process is demonstrated in Figure 8 for instants ti = 0, 0.5, 1.0 . . . , 4.0.
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Figure 8. State estimation. Energy control (6), (18), ideal channel. The visual representation of the
system behavior and its state estimation process.

5.3. Free Motion–State Estimation over Limited Capacity Communication Channel
5.3.1. Free Motion State Estimation, First-Order Coder
Time-Invariant Coding

The first-order time-invariant coder/decoder pair is governed by (28), (29), (34), (35).
For the simulations, the control signal u(r, t) was set to zero, u(r, t) ≡ 0, that produces free
oscillations of the sine-Gordon chain (1), (2). Parameters of (33) were taken as α = 1.05,
Ly = 15 for each of l = 5 sensors.

For each simulation runs, the following transmission rates were set (equal for ev-
ery channel):

R = 1/Ts ∈ [10, 50, 100, 200, 400, 500, 1000], bit/s. (47)

The time histories of V(t) for various R (logarithmically scaled), along with the
spatiotemporal plot of uobs(r, t) (see (46)), calculated for R = 400 bit/s, t ∈ [0.10] s, are
depicted in Figure 9.

Taking into account that V(0) = 82.1, the following values of the quality indices
are found:

V(tfin) =
[
0.0501 0.0534 0.0571 0.1038 0.5645 3.221 106.2

]
tV
tr =

[
5.340 5.335 5.330 5.320 ∞ ∞ ∞

]
It is clear that although V(t) for R = 100 bit/s falls in the given threshold, it tends

to increase. Therefore, the case of R = 100 bit/s should also be regarded as the state
estimation failure. The conclusion can be made that for R > 200 bit/s and given initial
conditions (44), observer (26), (27) with the quantized measurements signals, produces
the admissibly accurate state estimate for free motion of the sine-Gordon chain (1), (2).
The transient time ttr of the estimation is approximately 5.3 s, which is practically the same
as for the ideal case of Section 5.2.1.
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Figure 9. State estimation. Free motion case, u(r, t) ≡ 0. First-order time-invariant coder (28), (29).
V(t) time histories for R as in (47) (left plot); uobs(r, t) spatiotemporal plot for R = 400 bit/s
(right plot).

Adaptive Coding

The adaptive coding procedure for the first-order coder/decoder pair is described
by (28), (29), (34), (35), where the quantization range M[k] is recursively found on the coder,
and, synchronously, on the decoder side by (43). As above, u(r, t) ≡ 0, α = 1.05 were taken;
Ly = 0.5 was set for all five channels. Parameter ρ in (43) was calculated for an every single
R as

ρ = exp(−ηTs), (48)

where η > 0 is a design parameter. Such a parameter setting leads to the same rate of
change M(tk) in real (continuous) time independently of the sampling interval Ts = 1/R.
In what follows, η = 0.6 is taken.

The simulations were performed for the values of R, given by (47). The results are
demonstrated in Figure 10, where for various R, the time histories of logarithmically scaled
V(t) along with the plots of adaptively tunes quantizer range M0.5(t) around the point
r = 0.5 are depicted. It is seen from the simulation results that for all considered values of
R, save R = 10 bit/s, the state estimation procedure convergences on time.
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Figure 10. State estimation. Free motion case, u(r, t) ≡ 0. First-order adaptive coder (28), (29), (43).
V(t) time histories for R as in (47) (left plot); M0.5(t) time histories for r = 0.5 (right plot).

Since V(0) = 82.1, the quality indices are as follows:

V(tfin) =
[
0.285 0.286 0.286 0.290 0.314 0.384 3.207

]
tV
tr =

[
5.425 5.425 5.420 5.410 5.395 5.375 ∞

]
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Compared with the time-invariant coder of the previous subsection, it is seen that the
transmission rate range is wider, and the lowest admissible rate (among the considered
ones, given in (47)) is 50 bit/s for each channel. This effect is because the adaptive encoder
automatically reduces the quantization level when the behavior of the process allows it.
In addition, in each section [rj, rj+1], j = 1, . . . , l− 1, the forms of x(rj, t) oscillations in time
for the sine-Gordon system are different, and their time derivatives slow down nearby the
boundaries (where are zero). This peculiarity is automatically tracked by adaptive coding,
ensuring the different Mj(tk) for various sensors. It is also worth mentioning that, for the
free motion state estimation, the transient time for considered above data transmission
schemes is approximately the same for all considered above cases (and is about 5.3–5.5 s).

5.3.2. Free Motion State Estimation, Coder of Full Order

Let us examine the time-invariant and adaptive coding procedures for the full-order
coder/decoder pair in the case of uncontrolled (free) motion of the chain.

The full-order encoder procedure assumes the inclusion of state observers in both
the coder and decoder algorithms, and the observer on the decoder side generates the
required plant state estimates. For the system under consideration, the coder-side observer
is described by Equations (36), (37), when the observer on the decoder-side is described
by (41), (42). The coder-generated update signals ε̄ j, j = 1, . . . , 5, are transmitted through
the communication channel to correct the estimation process in the decoder-side observer.

Time-Invariant Coding

The time-invariant coding procedure uses (38)–(40) for ε j(t) quantization and trans-
mission to the receiver.

The simulations were performed for the values of R, given by (47), Ly = 0.5. The
results are demonstrated in Figure 11, where for various R, the time histories of loga-
rithmically scaled V(t) and the spatiotemporal plot of uobs(r, t) (see (46)), calculated for
R = 400 bit/s, t ∈ [0, 10] s, are depicted.
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Figure 11. State estimation. Free motion case, u(r, t) ≡ 0. Full-order time-invariant coder (36), (37),
observer on the decoder-side (41), (42). V(t) time histories for R as in (47) (left plot); uobs(r, t)
spatiotemporal plot for R = 400 bit/s (right plot).

The simulations give the following quality indices:

V(tfin) =
[
0.0151 0.0148 0.0160 0.0303 0.109 0.443 10.6

]
tV
tr =

[
5.382 5.367 5.357 5.352 ∞ ∞ ∞

]
Again, despite V(t) for R = 50 and R = 100 bit/s falling into the threshold value

as 0.01V(0), these cases are also reasonable to refer to as unacceptable ones since V(t)
increases after a certain time interval of fading. Therefore, the case of R = 200 bit/s for
each channel can be considered as a boundary one for this type of coder. Compared with
the case of time-invariant first-order coding, one can notice that the values of V(tfin) are
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significantly less than those for first-order coding, which shows better accuracy of the state
estimation by the full-order coder. The same conclusion can also be made compared with
the corresponding results for adaptive first-order coding. Regarding the transient time, the
conclusion can be made that it also falls within the mentioned interval 5.3 s –5.5 s.

Adaptive Coding

Consider now the application of the adaptive coding procedure (38)–(40), (43) with
a full-order coder/decoder pair (36)–(41) for estimating the system state in free motion.
For the simulation, the following values are taken α = 1.05, Ly = 0.5 for all five channels;
parameter ρ was calculated by (48), where η = 0.6 was set.

The simulations were performed for the values of R, given by (47). The results are
demonstrated in Figure 12, where for various R, time histories of logarithmically scaled
V(t) along with the plots of adaptively tunes quantizer range M0.5(t), also logarithmically
scaled, around the point r = 0.5, are depicted. It is seen from the simulation results that
for all considered values of R starting from R = 50 bit/s, the state estimation procedure
convergences on time, and after a short period of increasing, M0.5(t) gradually decreases.
This corresponds to increasing the estimation accuracy on time.
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Figure 12. State estimation. Free motion case, u(r, t) ≡ 0. Full-order adaptive coder (38)–(40), (43).
V(t) time histories for R as in (47) (left plot); M0.5(t) time histories for r = 0.5 (right plot).

The simulations give the following quality indices:

V(tfin) =
[
0.0173 0.0178 0.0183 0.0203 0.0261 0.0602 12.29

]
tV
tr =

[
5.357 5.358 5.359 5.362 5.367 5.378 ∞

]
As can be seen from the data obtained, the convergence of the estimates is achieved

at a data bitrate of 50 bits per second and is kept as R increases. The decay time of the
estimation error lies in the range 5.3–5.5 s, as well as above, but this encoding method leads
to significantly smaller estimation errors. In comparison with adaptive first-order coding,
however, the question arises: does the complication of the estimation procedure and the
associated computational costs pay off the increase in the estimation accuracy? The answer
to this question requires further research and can hardly be given outside the framework of
solving a specific physical or technical problem.

5.4. Output Control of Energy–State Estimation over Limited Capacity Communication Channel

In this subsection, the closed-loop energy control problem via output feedback is
examined. The closed-loop energy control system is described by (1), (2), (24), (25), where
the controller, instead of x(r, t), xt(r, t), used by the ideal state-feedback energy control
law (6), (18), employes the state estimates ξ(r, t), ζ(r, t) obtained by the state observer where
measured data in the observer input are transferred over the limited capacity communi-
cation channel. Control action u(r, t) is assumed to be accurately known to the observer.
For the given initial conditions (44) and E∗ = 5, it is valid that ∆E(0) = −15.7, V(0) = 82.1.



Electronics 2023, 12, 2269 20 of 27

Note that an ideal energy control case is numerically studied in Section 5.2.2, where
the state feedback control law (18) is used.

5.4.1. Output Control of Energy, First-Order Coder
Time-Invariant Coding

In this paragraph, the case of output feedback energy control with the time-invariant
first-order coder is studied. The coder/decoder pair, governed by (28), (29), (34), (35) is
employed. Parameters of (33) were taken as α = 1.05, Ly = 15 for each of l = 5 sensors.
The control law (24), (25) uses the estimates ξ, ζ generated by observer (22), (23). As in
Section 5.2.2, the controller gains γi are taken as γi = 22.8 for i = 1, . . . , 10, and the desired
energy level E∗ = 5 was set.

Time histories of E(t), V(t) are plotted in Figure 13 for various values of R from (47).
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Figure 13. Output control law (22)–(25). First-order time-invariant coder (28), (29). Time histories of
E(t) (left plot), V(t) (right plot).

The simulations give the following quality indices:

V(tfin) =
[
0.0618 0.0675 0.0737 0.166 1.035 4.501 34.87

]
∆E(tfin) =

[
0.009 0.014 0.027 0.097 0.502 2.320 −1.450

]
tV
tr =

[
2.755 2.78 2.79 2.80 ∞ ∞ ∞

]
tE
tr =

[
5.157 5.615 5.133 5.163 ∞ ∞ ∞

]
As is seen from the results obtained, the minimal appropriate data transmission rate

is 200 bit/s for each channel. The state estimation transient time tV
tr lies between 2.7 s–

2.8 s, while the energy control transient time tE
tr is between 5.2 s–5.7 s for all suitable data

transmission rates.

Adaptive Coding

In this series of simulations, the output feedback energy control with the adaptive
first-order coder is studied. The coder/decoder pair is governed by (28), (29), (34), (35), (43),
where for (33), α = 1.05, Ly = 0.5 were set to all sensors. The control law (24), (25) uses the
estimates ξ, ζ generated by observer (22), (23). As in Section 5.2.2, the controller gains γi
are taken as γi = 22.8, and E∗ = 5 was set.

Time histories of E(t), V(t) are plotted in Figure 14 for various values of R from (47).
The simulations give the following quality indices:

V(tfin) =
[
0.295 0.295 0.295 0.296 0.302 0.328 2.812

]
∆E(tfin) =

[
0.0780 0.0785 0.0902 0.1038 0.1044 0.1052 0.860

]
tV
tr =

[
3.445 3.440 3.435 3.395 3.360 3.315 ∞

]
tE
tr =

[
5.815 5.835 5.790 5.720 5.700 5.680 ∞

]
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It is seen from the results, the data transmission rate can be taken as low as 50 bit/s,
the observer transient time tV

tr lies between 3.34 s–3.36 s, while the energy control transient
time tE

tr is between 5.6 s–5.9 s for all data transmission rates except R = 10 bit/s, where the
considered output control procedure fails.
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Figure 14. Output control law (22)–(25). First-order adaptive coder (28), (29), (43). Time histories of
E(t) (left plot), V(t) (right plot).

5.4.2. Output Control of Energy, Coder of Full Order
Time-Invariant Coding

Let us examine the properties of the output feedback energy control system with the
time-invariant coder of full order. The time-invariant coding procedure (38)–(40) is used for
ε j(t) quantization and transmission to the receiver. Transmission rate R for the simulations
was taken from (47); α = 1.05, Ly = 0.5. The control law (22)–(25) uses the estimates ξ, ζ
generated by the data transmission ans state estimation procedure (38)–(40). The controller
gains γi are taken as γi = 22.8, and E∗ = 5 was set.

The time histories of E(t), V(t) are plotted in Figure 15.
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Figure 15. Output control law (22)–(25). Time-invariant coding procedure (38)–(40). Time histories of
E(t) (left plot), V(t) (right plot).

The quality indices, calculated by the simulation results, are as follows:

V(tfin) =
[
0.0210 0.0202 0.0220 0.0338 0.1225 0.4551 8.9404

]
∆E(tfin) =

[
0.002 0.011 0.019 0.0302 0.075 0.232 4.060

]
tV
tr =

[
3.155 3.190 3.215 3.225 ∞ ∞ ∞

]
tE
tr =

[
6.538 6.550 6.555 6.570 ∞ ∞ ∞

]
Since for R = 100 bit/s, V(t) increases after a certain decreasing interval; this case is

also referred to as an inappropriate one.
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Adaptive Coding

Finally, consider the output feedback energy control system with the adaptive coder of
full order. This coding procedure for quantization of ε j(t) and transmission it the receiver
is described by (38)–(40), (43). Transmission rate R for the simulations was taken from (47);
α = 1.05, Ly = 0.5. The control law (22)–(25) uses the estimates ξ, ζ generated by the data
transmission ans state estimation procedure (38)–(40). The controller gains γi are taken as
γi = 22.8; E∗ = 5 was set.

The time histories of E(t), V(t) are plotted in Figure 16.
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Figure 16. Output control law (22)–(25). Adaptive coding (38)–(40), (43). Time histories of E(t) (left
plot), V(t) (right plot).

Based on the simulation results, the following quality indices are found:

V(tfin) =
[
0.0324 0.0327 0.0328 0.0350 0.0379 0.0606 0.7979

]
∆E(tfin) =

[
−0.0144 −0.0143 −0.0140 −0.0139 −0.0101 0.0017 0.753

]
tV
tr =

[
3.385 3.38 3.385 3.375 3.355 3.315 ∞

]
tE
tr =

[
7.745 7.740 7.735 7.730 7.72 6.50 ∞

]
It is seen from the results the minimal appropriate data transmission rate is as 50 bit/s,

the observer transient time tV
tr lies between 3.2 s–3.9 s, while the energy control transient

time tE
tr is between 6.5 s–7.5 s for all appropriate data transmission rates. The energy control

static (final) error is less than all of the above in magnitude.

5.5. Consolidated Results

This section presents the combined results of the above performance scores for state
estimation under free motion and simultaneous energy control with state estimation from
the output. These results are summarized in Table 1 (estimation of state in free motion case)
and Table 2 (control over state estimates). Combinations are highlighted in gray, in which
data transmission over a digital channel with coding is not acceptable. As can be seen from
the results, the best values of quality indicators are obtained with adaptive coding with a
full-order coder/decoder pair. In this context, the question arises: does the complication of
the estimation procedure and the associated computational costs pay off the increase in the
estimation accuracy? In the Authors’ opinion, the answer to this question requires further
research and can hardly be given outside the framework of solving a specific physical or
technical problem.
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Table 1. Free Motion State Estimation.

Transmission Rate, bit/s

Section; Equation; Figure Q. Fun. 1000 500 400 200 100 50 10

Section 5.3.1 First-order Time-invariant Coder

Equations (26)–(29) V(tfin) 0.0501 0.0534 0.0571 0.104 0.564 3.22 106
(34), (35); u(r, t)≡0; Figure 9 tV

tr 5.340 5.335 5.330 5.320 ∞ ∞ ∞

Section 5.3.1 First-order Adaptive Coder

Equations (26)–(29), (34) V(tfin) 0.285 0.286 0.286 0.290 0.314 0.384 3.207
(35), (43); u(r, t)≡0; Figure 10 tV

tr 5.425 5.425 5.420 5.410 5.395 5.375 ∞

Section 5.3.2 Full-order Time-invariant Coder

Equations (36)–(42), (34) V(tfin) 0.0151 0.0148 0.0160 0.0303 0.109 0.443 10.6
(35); u(r, t)≡0; Figure 11 tV

tr 5.382 5.367 5.357 5.352 5.351 5.350 ∞

Section 5.3.2 Full-order Adaptive Coder

Equations (36)–(42), (34) V(tfin) 0.0173 0.0178 0.0183 0.0203 0.0261 0.0602 12.29
(35), (43); u(r, t)≡0; Figure 12 tV

tr 5.357 5.358 5.359 5.362 5.367 5.378 ∞
Note: the gray color background uses to stress the unfeasible cases.

Table 2. Output Control of Energy.

Transmission Rate, bit/s

Section; Equation Q. Fun. 1000 500 400 200 100 50 10
Figure

Section 5.4.1 First-order Time-invariant Coder

V(tfin) 0.0618 0.0675 0.0737 0.166 1.035 4.501 34.9
Equations (26)–(29) tV

tr 2.755 2.78 2.79 2.80 ∞ ∞ ∞
(34), (35) ∆E(tfin) 0.009 0.014 0.027 0.097 0.502 2.32 −1.450
Figure 13 tE

tr 5.157 5.615 5.133 5.163 ∞ ∞ ∞

Section 5.4.1 First-order Adaptive Coder

V(tfin) 0.295 0.295 0.295 0.296 0.302 0.328 2.812
Equations (26)–(29) tV

tr 3.44 3.44 3.43 3.39 3.36 3.31 ∞
(34), (35), (43) ∆E(tfin) 0.078 0.078 0.090 0.104 0.104 0.105 0.86
Figure 14 tE

tr 5.815 5.835 5.790 5.720 5.700 5.680 ∞

Section 5.4.2 Full-order Time-invariant Coder

V(tfin) 0.0210 0.0202 0.0220 0.0338 0.1225 0.4551 8.940
Equations (36)–(42) tV

tr 3.155 3.190 3.215 3.225 ∞ ∞ ∞
(34), (35) ∆E(tfin) 0.002 0.011 0.019 0.0302 0.075 0.232 4.06
Figure 15 tE

tr 6.538 6.550 6.555 6.570 ∞ ∞ ∞

Section 5.4.2 Full-order Adaptive Coder

V(tfin) 0.0324 0.0327 0.0328 0.0350 0.0379 0.0606 0.798
Equations (36)–(42) tV

tr 3.38 3.38 3.38 3.37 3.35 3.31 ∞
(34), (35), (43) ∆E(tfin) 0.0144 0.0143 0.0140 0.0139 0.0101 −0.002 −0.75
Figure 16 tE

tr 7.745 7.740 7.735 7.730 7.72 6.50 ∞
Note: the gray color background uses to stress the unfeasible cases.
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6. Conclusions

This paper considers and studies the problem of controlling the energy of a nonlinear
spatially distributed sine-Gordon system when transmitting measurements and estimating
the state of the chain through digital communication channels of limited bandwidth. As
part of the research, observation schemes with data transmission over a communication
channel based on stationary and adaptive encoders of the first order, as well as full orders,
are presented. The procedures for estimating the state during the free movement of the
chain, as well as the control of its energy by output during data transmission over a
digital information channel, are considered separately. Based on the results of numerical
analysis, comparative applications of the characteristics of various coding schemes are
obtained. It is shown that from the point of view of minimizing the channel load, estimation
accuracy, and energy control, the adaptive first-order encoder has an advantage, but its
use implies high computation costs, which may be unacceptable in specific technical
applications. The present numerical study has confirmed the fundamental limitations
of the underlying closed-loop nonlinear PDE to be locally asymptotically stable only.
Establishing the domain of the initial states, which converge to the closed-loop equilibrium,
calls for further numerical investigation and to be tackled along the line of the proposed
development, hopefully. Studies of the possibility of using encoders of “intermediate”
(finite) orders, as well as the effects of measurement noise and in the communication
channel, are planned for investigations in the future.
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Abbreviations

The following abbreviations and notations are used in this manuscript:
1-D One-Dimensional
BVP Boundary-Value Problem
LMI Linear Matrix Inequality
MEMS Microelectromechanical Systems
ODE Ordinary Differential Equation
PDE Partial Differential Equation
SG Speed-Gradient
L2 L2-norm of a vector x is ‖x‖2

Hl(a, b) Sobolev space
supp( f ) Support of function f : Rk → R—the smallest closed set containing

all the points x∈ Rk where f (x) 6= 0
Z set of nonnegative integer numbers, Z = {0, 1, . . . }

xt ẋ ≡ ∂x
∂t

xtt ẍ ≡ ∂2x
∂t2

x′ xr ≡
∂x
∂r

xrt
∂2x
∂r∂t

x′′ xrr ≡
∂2x
∂r2
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