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Abstract: Over the last few years, Big Data applications have attracted ever-increasing attention in sev-
eral scientific and business domains. Biomedicine, transportation, entertainment, and aerospace are
only a few examples of sectors which are increasingly dependent on applications, where knowledge
is extracted from huge volumes of heterogeneous data. The main goal of this paper was to conduct
an academic literature review of prominent publications revolving around the application of BD in
aerospace. A total of 67 publications were analyzed, highlighting the sources, uses, and benefits of
BD. For categorizing the publications, a novel 6-fold approach was introduced including applications
in aviation technology and aviation management, UAV-enabled applications, applications in military
aviation, health/environment-related applications, and applications in space technology. Aiming
to provide the reader with a clear overview of the existing solutions, a total of 15 subcategories
were also utilized. The results indicated numerous benefits deriving from the application of BD in
aerospace. These benefits referred to the aerospace domain itself as well as to many other sectors
including healthcare, environment, humanitarian operations, network communications, etc. Various
data sources and different Machine Learning models were utilized in the analyzed publications and
the use of BD-based techniques enabled us to extract useful correlations and gain useful insights from
large volumes of data.

Keywords: big data; big data analytics; aviation technology; aviation management; unmanned aerial
vehicles; aerospace

1. Introduction

The term Big Data (BD) refers to massive datasets deriving from multiple sources
such as people, sensors, or machines [1]. BD Analytics has gained a lot of popularity
lately in both business and academic domains (e.g., biomedicine, manufacturing, aviation,
entertainment, and transportation) and can reveal previously unknown patterns and
correlations in data [2]. Traditional definitions of BD refer to its key features as “3Vs”,
namely Volume, Velocity, and Variety. There are also many other models (e.g., “4V”, “5V”,
and “8V” models) encompassing Veracity, Value, Viability, Validity, Volatility or other
BD features [3–5].

The ever-increasing demand for the acquisition, analysis, and storage of large volumes
of data has rendered BD an indispensable part of modern transportation systems [6].
The aerospace industry is related to the research, manufacturing, design, operation and
maintenance of aircrafts, spacecrafts, Unmanned Aerial Vehicles (UAVs), missiles, space
launch vehicles, etc. [7,8]. Aerospace can greatly benefit from BD-based methodologies in
various ways [9] such as:

• Optimizing air traffic and reducing congestion;
• Reducing maintenance-related costs;
• Minimization of flight delays;
• Improving aircraft/spacecraft design;
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• Supporting space missions;
• Improving operational efficiency;
• Advanced monitoring of aircrafts/spacecrafts;
• Advanced processing of spaceborne/airborne data;
• Increasing safety.

In an average Boeing 737, the two engines can generate up to 40 Terabytes per hour.
This data can provide useful insights for air traffic controllers/dispatchers, maintenance
staff as well as business stakeholders [9].

The current literature review had a threefold goal:

• To provide the reader with a clear overview of how solutions utilizing BD in aerospace
can provide important benefits in several domains.

• To introduce a 6-fold categorization of the applications, aiming to make the paper
more comprehensible as well as to potentially inspire and facilitate similar future
research works.

• To fill the existing research gap, including in the literature review applications not
only in aviation but in space technology as well.

The 6-fold categorization we introduced can be found in the following section. The
first two categories were relevant to aviation technology and management. Even though
UAVs are relevant to aviation technology, a different category was used, due to the different
nature of these applications. The fourth category revolved around applications in the field
of military aviation. The fifth category was based on the vital importance of health-related
and environment-related BD-enabled solutions. The final category comprised applications
relevant to Space Technology. To the best of our knowledge, at the time of writing, no
literature review exists in the current scientific literature for applications of BD in both the
aviation and space technology domains and there is also no other publication making use of
our aforementioned categorization. Relevant review publications focused on aviation alone
(e.g., the work of Burmester et al. [10]). Other review papers focused on a specific domain
of the aerospace industry, e.g., the work of Chinchanikar and Shaikh [11] focusing on the
use of BD analytics for additive manufacturing in aerospace applications, and the work of
Skaher et al. on the use of BD and Artificial Intelligence (AI) in pilot training [12]. Oh [13]
focused only on human factor considerations of applying BD in the aerospace industry.
Broadening this scope and including solutions related to space technology can be very
beneficial for gaining a better understanding of the usefulness of BD as well as for inspiring
future research works in this field. The categorization was based on the main focus points
that each publication had, and we would also like to highlight that the presence of one
publication in a certain category does not exclude the possibility of this solution being
relevant to other categories as well. The categorization should not be considered as strict or
exhaustive, but rather as a helpful tool for better understanding the benefits of using BD
and BD analytics in aerospace. In the context of the analysis of each individual publication,
we focused on pointing out the main benefits BD offered as well as on presenting if the
application has been tested experimentally or has been applied in real-world settings.

The remainder of the current paper is organized as follows: In Section 2, we present
the steps followed in the current literature review and the categorization and subcatego-
rization that we introduced for the analyzed publications. In Section 3, an analysis of
the publications was included, based on the aforementioned categorization. Finally, in
Chapter 4, we discuss the results of our analysis, draw conclusions, and describe future
research directions.

2. Steps of the Literature Review

The 18 steps followed in the context of the current literature review can be found in
Figure 1 below.
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Figure 1. Steps Followed in the Current Literature Review.

Initially, we identified the research questions (Step 1) and the scope of our research
(Step 2). The main research questions were:

• How can BD/BD analytics be applied in aerospace applications?
• What are the benefits of applying BD/BD analytics in aerospace applications?
• In which particular fields is the use aerospace BD useful/beneficial?

We utilized the SCOPUS academic database for scientific publications as well as
the Google Scholar search engine to find relevant papers (Step 3). In total, 32 of the
analyzed papers were published by IEEE, Springer, and the Association for Computing
Machinery (ACM).

The search queries we utilized (Step 4) contained the following keywords or combi-
nations of them: big data aviation, big data aerospace, big data avionics, big data aircraft
manufacturing, big data military aircrafts, big data galaxy, spaceborne big data, satellite
big data, big data aircraft emissions, big data environment, and big data health.

The exclusion criteria we utilized (Step 5) were as follows:

• The publication was not directly related to BD.
• The publication was not directly related to the aerospace domain.
• The publication did not clearly state how BD was utilized or how BD was useful in a

particular application.
• The manuscript contained many typos.
• The manuscript was incomprehensible and/or was not well structured.
• The paper was published before 2014.

Initially, we read and reviewed 104 publications and ebook chapters (Step 6), analyzed
the abstracts (Step 7) and assessed the quality and relevance of each source (Step 8).
Out of the 104 publications initially reviewed, we excluded 37 publications based on
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the aforementioned criteria (Step 9) and analyzed a total of 67 scientific publications/ebook
chapters. We preferred publications which were recent (of 2018 or afterwards), well-
structured and provided a clear insight of how BD is utilized in the aerospace domain.
A total of 62 publications were published between 2018 and 2023, 4 publications were
published between 2016 and 2017 and there was one publication from 2014. We also
utilized a snowballing process (Step 10). More specifically, some of the publications cited in
the publications we analyzed were also analyzed. After organizing the collected papers
(Step 11), we wrote down the results of the analysis (Step 12, Step 13) and we identified
connections and similarities (Step 14). The identification of these connections was quite
useful for forming the categorization of the publications of the current literature review
(Step 15). We classified the analyzed publications into six main categories, namely:

1. Big Data in Aviation Technology;
2. Big Data in Aviation Management;
3. Big Data and UAVs;
4. Big Data in Military Aviation;
5. Aviation Big Data related to Environmental and Health Aspects;
6. Big Data in Space Technology.

Subcategories were used for each of the aforementioned categories in order to provide
the reader with a clearer understanding of the usefulness of BD applied in diverse domains
related to the aerospace industry. The 6 categories and 15 subcategorization we utilized
together with the specific applications we analyzed can be found in Table 1. A summary of
the applications can be found at the end of Chapter 3.

Table 1. Application of Big Data in Aerospace.

Category Subcategory Publications

Big Data in
Aviation Technology

Aircraft Design/Manufacturing [14–18]
Monitoring of Flight/Aircraft/Safety
Parameters [19–26]

Health Monitoring Systems [27–32]

Big Data in Aviation
Management

Air Traffic Management and
Trajectory Planning [33–37]

Delay Prediction and Resource Allocation [38–41]
Maintenance Optimization [42,43]
Collecting Customer Insights/Increasing
Customer Satisfaction [44–47]

Big Data and UAVs Solutions for the Industry [48,49]
Solutions for Infrastructures [50–54]

Big Data in Military Aviation Supporting Military Operations [55–57]
Increasing Air Force Safety [58–60]

Aviation Big Data related to
Environmental and
Health Aspects

Aviation Big Data related to
Health Aspects [61–64]

Aviation Big Data related to
Environmental Aspects [65–68]

Big Data in Space Technology Supporting Space Missions [69–73]
Solutions Utilizing Spaceborne Big Data [74–82]

In the final chapter of this paper, we discuss the results and highlight important
findings (Step 16), extract conclusions (Step 17) and propose future research directions
(Step 18).
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3. Application of Big Data in Aerospace
3.1. Big Data in Aviation Technology

The first category of analyzed publications in the context of this review revolved
around how BD can benefit aircraft design and manufacturing processes, how it is used
for effectively monitoring flight/aircraft/safety parameters, as well as how it can improve
aircraft health monitoring systems.

3.1.1. Aircraft Design/Manufacturing

Aircraft manufacturing encompasses complex designs and processes which are di-
rectly related to BD collected in different stages of manufacturing. Wang et al. [14] proposed
a novel architecture for industrial BD processing which was capable of batch data process-
ing, low latency control, hierarchical industrial BD management, stream data processing,
etc. This architecture integrated edge computing, which helped in reducing data transmis-
sion/decreasing latency, and a feedback loop, which was particularly useful in aviation
manufacturing processes such as workshop monitoring and machine tool control. Experi-
mental testing of the proposed architecture was performed by means of a digital aviation
manufacturing workshop simulation. The experiments indicated real-time BD processing
capabilities, high effectiveness, and high suitability for the aviation manufacturing domain.
In [15] Crespino et al. described a novel framework for detecting machine faults in aviation
manufacturing, aiming to ensure that the product quality is not compromised. The so-called
Model-based Big Data Analytics as-a-Service (MBDAaaS) framework was comprised of
three main stages. In the first stage, a json file was produced which contained specifications
for the declarative model as regards the main objectives and indicators. The second stage
encompassed the definition of the procedural model which described how the analytics
would be executed/parallelized based on the requirements of the first stage. Finally, the
third stage produced the deployment model which mapped each operation/tool to the
corresponding services. This framework was tested on an aviation machine fault prediction
use case, proving its applicability in the BD pipeline of aviation manufacturing companies.

Industrial BDintegration and sharing (IBDIS) is of vital importance for the efficiency
of BD analysis in manufacturing systems. Wang et al. [16] proposed a framework for
IBDIS based on fog computing, where integration and sharing were split into different
subtasks carried out by fog clients. This framework ensured high security for raw data,
respected data privacy, and helped in importantly decreasing the network traffic. The
authors highlighted the effectiveness of the proposed framework in aircraft manufacturing
and presented a specific case study in an aircraft manufacturing group located in China.
In this, BD from two different companies of the manufacturing groups should be shared
and integrated. These data were relevant to the manufacturing of a plane positioner and
included both data regarding the position of certain key points on the wing as well as data
relevant to the execution time of each particular manufacturing step.

The combination of BD and the Digital Twin (DT) as described by diverse scientific
publications can be of particular interest for aviation manufacturing. Singh et al. [17]
proposed a novel information management framework for Aircraft Manufacturing based
on the DT, which helped in addressing BD-related challenges. The framework was com-
prised of four main layers, namely the physical layer, the data acquisition layer, the model
layer, and the data model layer. These layers were continuously interacting with each
other and were also updated regularly, thus facilitating the handling of large volumes of
data throughout the DT lifecycle. The effectiveness of this framework was presented by
the authors through a case study involving the aircraft wing fatigue crack growth and
propagation in an aircraft manufacturing company. In another publication based on DT,
Liang et al. [18] proposed a methodology for field displacement perception for component
DTs, which can be implemented in precision manufacturing scenarios, such as those of
aircraft manufacturing. The methodology combined the matrix completion theory with
online displacement monitoring. The generated displacement model was based on the
observed points as well as on the simulation BD. The method was experimentally tested,
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achieving high efficiency and high precision, yielding a max error smaller than 0.094 mm
and a median error smaller than 0.054 mm in an average timeframe smaller than 0.48 s.

3.1.2. Monitoring of Flight/Aircraft/Safety Parameters

Air turbulence is likely to cause a major concern to aviation companies, since it can
lead to the discomfort of passengers, injuries, as well as aircraft structural damage or even
accidents in extreme cases. Air turbulence can be measured by utilizing measurements
of the Vertical Overload, the Eddy Dissipation Rate (EDR), or the Derived Equivalent
Gust Velocity (DEVG). Huang et al. [19] proposed a new methodology to estimate EDR
based on Quick Access Recorder (QAR) BD. The authors tested their methodology on
QAR BD collected by Boeing and Airbus aircrafts in China from 2016 to 2018. The EDR
measurements using the aforementioned methodology were visualized spatially and could
be obtained with a reasonable time cost. The methodology was compared to traditional air
turbulence measurement methodologies and was proven to provide a reasonable indicator
when calculating the air turbulence risks during a flight, while also being less sensitive than
the traditional methodologies in cases of measurements deriving from different aircrafts.
QAR BD was also utilized in other scientific publications which can be found below. In [20],
Wang et al. made use of QAR BD from the Civil Aviation Administration Of China (CAAC)
to identify potential problems deriving from the take-off pitch angle. A very small take-
off pitch angle of an aircraft may result in the aircraft overrunning the runway and may
also reduce its capability of avoiding obstacles at a low altitude. The authors utilized
QAR BD from 54 different airlines and made a comparison between the industry-wide
data and the data of each individual airline. The data analyzed included the take-off
pitch angle, the correlative speed at rotation as well as the liftoff speed. In a use case
outlined by the authors, the take-off pitch angle of the A321 aircraft of a specific airline
was found to be too small. Right after that, the airline was informed about the problem
and immediately took the necessary steps to avoid potential future events of a very low
take-off pitch angle. In [21], Xie et al. utilized QAR BD from Chinese airlines during 2018
for detecting unstable approach events. The authors performed spatio-temporal pattern
analysis as well as exploratory correlation analysis. The Pearson correlation coefficient was
calculated to explore the correlation of unstable approach events and other factors such as
the wind grade, bad weather conditions, and altitude. The experimental results indicated
different spatio-temporal distribution characteristics of Airbus and Boeing aircrafts in cases
of unstable approach events as well as a clear correlation existing between bad weather
conditions, wind grade, altitude, and unstable approach cases.

The mandatory use of the Traffic Alert and Collision Avoidance System (TCAS) is of
paramount importance for the safe and effective management of air traffic. Such systems
have significantly reduced the risk of mid-air collisions. Schafer et al. [22] analyzed TCAS
BD in order to extract useful insights about the usage characteristics and the efficiency
of such systems. Around 250 billion aircraft transponder messages collected from over
125,000 aircrafts from the OpenSky network were analyzed. The authors noted that 89.5%
of aircraft equipped with Automatic Dependent Surveillance–Broadcast (ADS–B) had an
operational TCAS. The authors also observed that alerts by TCAS were frequent in parallel
approaches of aircraft, in conflicts between standard arrival and departure procedures, as
well as in cases of top-of-climb and beginning-of-descent of aircrafts. Olive et al. [23], also
used BD from the OpenSky network in their work. More specifically, the authors utilized
BD from the OpenSky network regarding aircrafts broadcasting the “7700” emergency code
related to general emergencies over a period of two years and combined this data with
crowdsourced sources such as social networks. The main goal of this combination was to
extract a semi-labelled dataset containing trajectories as well as to train Machine Learning
(ML) models which will be able to provide explanations about potential emergencies based
on trajectory data, when no other data are available.

An important parameter for evaluating an aircraft’s performance is the engine thrust.
In [24], Deiler compared three different models for determining thrust with limited ap riori
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information about the characteristics of a flight’s performance, utilizing BD from a database
with operational flights of Airbus A320 neo aircraft. More specifically, a linear, a local-linear,
and a nonlinear model were compared in representing an engine’s thrust. The non-linear
model was found to be the most accurate of the three and it was extended by means of
temperature correction, resulting in a robust and accurate model with reduced requirements
for computational resources as compared to other state-of-the art methodologies.

The analysis of different aircraft measurements and parameters can provide insights
which are very important for aviation safety. Wooder et al. [25] utilized a surface fitting
method and BD from the FlightGear simulation software in order to extract possible
correlations among different variables and parameters. The proposed method helped
to identify correlations even between variables which initially seemed irrelevant to each
other. Testing of the proposed methodology indicated that it is a capable solution and
can successfully identify relations in processes which focus on aircraft fault detection. In
their publication, Li et al. [26] also proposed a variable selection algorithm which was
aimed at effectively mining variables which are highly correlated to an aircraft’s safety. The
algorithm can be useful in cases of aviation BD containing a very large number of variables
(e.g., 3000 or more). Simulation results indicated satisfactory efficiency and high capability
in dimensionality reduction.

3.1.3. Health Monitoring Systems

The utilization of aircraft operation data and past events for improving the operation
and the availability of aircraft through effective health monitoring systems is crucial for
aviation. Jiao et al. [27] demonstrated a Prognostic Health Management (PHM) system
which made use of an aviation BD mining platform. The platform was based on the
Hadoop cloud architecture and used BD deriving from the whole lifecycle of an avionics
system. The platform also analyzed the correlations among different tasks/system states
and provided early warnings for potential faults. Forest et al. [28] proposed an end-to-
end scalable pipeline for analytics based on aviation BD and tailored for aircraft health
monitoring. Through this, users could extract features from flight operation BD stored on a
cluster, and the pipeline also included clustering and dimensionality reduction algorithms
as well as had visualization capabilities. The implemented health monitoring application
could be easily used even by inexperienced users. The following two publications referred
to different BD-based architectures for aviation health monitoring systems. Xie et al. [29]
presented an architecture for helicopter health management systems. The architecture was
comprised of three main modules, namely the helicopter health management module, the
helicopter fault monitoring and diagnosis module, as well as the helicopter fault knowledge
map. The authors analyzed the correlations among the different components mentioned
above, as well as described the main sources of BD such as the flight parameter recorder
data logging control box, the engine vibration sensor, the drive shaft vibration sensor and
many others. Zhaobing et al. [30] described an architecture for a health management system
for civil aircrafts. It was comprised of four layers, namely the base layer, the data layer, the
business logic layer, and the decision output layer. The operation BD that the architecture
utilized consisted of the air–ground data link, the ground data link, and the operational
data. The authors also examined the use of the proposed architecture in a typical fault case
of the aircraft’s air conditioning, noting that the architecture could predict the fault in a
timely manner.

The smart diagnosis of faults drastically improves aviation safety and helps in reducing
downtime, operating costs, and expensive repairs. Luo et al. [31] proposed an architecture
which helped in the early detection of errors or problems in an aircraft’s electronic parts
from the navigation, instrumentation, communication, and automatic control systems.
Towards this direction, BD was used to generate Long Short-Term Memory (LSTM), Support
Vector Machine (SVM), Random Process, and Unscented Particle Filter (UPF) models. Data
preprocessing was included in this architecture and is also a vital part, as in avionics data,
data loss, noise interference, and abnormal measurements are common phenomena. This
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architecture was tested on a maintenance scenario, proving its capabilities in fault detection
and remaining lifetime prediction. Ning et al. [32] proposed an LSTM autoencoder model
for detecting errors as well as for the classification of faults/problems. The model was
tested on BD from a commercial fleet and was found very effective and capable of detecting
the health state of an aircraft as well as of detecting diverse faults (e.g., in pressure control
valves, in 390F sensors, or in 450F sensors) with high accuracy.

3.2. Big Data in Aviation Management

The second category of analyzed publications included BD-enabled applications re-
lated to air traffic management, trajectory planning, prediction of delays, effective resource
allocation, maintenance optimization as well as applications for increasing customer satis-
faction and collecting customer insights.

3.2.1. Air Traffic Management and Trajectory Planning

Effective Air Traffic Flow Management is of paramount importance for modern
aviation, especially given the increasing number of Unmanned Aerial Vehicles (UAVs).
Gui et al. [33] proposed a model for the calculation of air traffic flow, based on BD from Auto-
matic Dependent Surveillance-Broadcast (ADS-B) ground stations and the received ADS-B
messages. Through the analysis of the constructed dataset and by mapping the information
extracted to each corresponding route, the authors could predict the air traffic flow for more
than 200 routes. For this, two different algorithms were tested, namely LSTM and Support
Vector Regression (SVR). Experimental testing of the algorithms indicated that LSTM could
provide more accurate results, even when abnormal measurements were present. Air traffic
BD was also used in the publication of Madhavrao and Moosakhanian [34], where it was
combined with weather BD. More specifically, the authors demonstrated a BD platform
where synthetic flight trajectory data were fused with data from the Federal Aviation Ad-
ministration (FAA) NextGen Weather Services. The platform used complex queries in order
to determine the impact of weather and helped in the strategic planning of airlines and
air traffic managers. In the experimental testing of the platform, different usage scenarios
related to aviation were tested and the platform could estimate the weather impact in
a timely manner, also applying diverse business rules. Petrou et al. [35] demonstrated
a BD framework for accurately predicting long-term streaming trajectory data with low
latency. Surveillance BD was utilized which was enriched with heterogeneous data from
various sources. The architecture consisted of the stream processing layer (including a
trajectory synopses generator, a semantic integrator, and a future location prediction), a
batch processing layer (including a data manager and trajectory clusterer), a visual analytics
module, and an interactive visualization module. A stream of surveillance data combined
with archival data from different sources were provided as inputs, while the output of the
architecture encompassed the stream of trajectory predictions.

BD related to the aircrafts’ trajectories can also be useful for evaluating a flight’s
performance as well as in trajectory visualization solutions. Based on their previous
work on the AIRPORTS DL framework, Garcıa-Miranda et al. [36] presented an end-user
application which was capable of computing diverse metrics and performance indices,
based on BD about flown trajectories. The application could calculate the metrics in a
scalable way and some of the metrics displayed in the application included the peak load,
the number of conflicts as well as the traffic density. The authors described a potential
workflow for calculating these metrics in advance as well as providing a user-friendly
dashboard to access the metrics. Zhao et al. [37] proposed a methodology for processing
real-world flight BD and subsequently using this data to visualize multiple flight trajectories
in different time frames. The methodology provided the capability to display multiple
trajectories of the same route on Google Earth application. This enabled the comparison of
different trajectories as well as the identification of potential problems/dangers based on
the identified deviations. The authors underlined that their method provided benefits over
other similar applications, by improving contrast as well as by overcoming the problem
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of displaying a single track only at a specific timeframe. Testing of the methodology
was conducted based on flight data from the Airbus A321 aircraft, proving its feasibility
and effectiveness.

3.2.2. Delay Prediction and Resource Allocation

Flight delays can have negative impacts on customer satisfaction and lead airlines to
financial losses. Therefore, flight delay prediction can be very beneficial. Jiang et al. [38]
aimed to extract useful patterns in cases of flight delays so that they could achieve precise
delay prediction with the aid of aviation BD and ML models. Some of the parameters
the authors analyzed to see if and how they were correlated to delays were: the weather
conditions, the flight date and time, the location, the airport congestion, etc. The authors
then generated an SVM model, a Decision Tree model, a Random Forest (RF) model, a
Convolutional Neural Network (CNN), as well as a Multilayer Perceptron model for flight
delay prediction. For the experimental testing of the models, the authors utilized Airline
OnTime Performance (AOTP) data as well as Quality Controlled Local Climatological Data
(QCLCD) data. The CNN model was found to be the best of the five, yielding an accuracy of
89.32% in delay prediction. The publication of Gui et al. [39] also examined several factors
which may lead to flight delays and used ML models to execute flight delay prediction tasks.
The authors divided the main causes of delays into four main categories: flight-related (e.g.,
flight number, flight delay history, and pre-flight conditions), airport-related (e.g., air traffic
flow and leave/arrive speed), air-route-related (e.g., peak traffic flow and real-time traffic
flow) and other (e.g., what season it is, if it is a holiday, and if an unexpected event has
happened). ADS-B BD together with other sources of data (e.g., weather conditions and
airport information) were used to experimentally test the generated LSTM and RF models
for flight delay prediction. The RF model was found to be the most accurate of the two,
reaching an accuracy of 90.2%.

Efficient airspace resource management can play an important role in reducing flight
delays as well as in air route optimization, proper adjustments in flight schedules, layout
planning, etc. Towards this direction, Shi et al. [40] presented a residual airspace resources
evaluation methodology for commercial aviation based on BD. Specifically, QAR BD was
used with a specific focus on the exit of the terminal area and the key waypoints. The
authors conducted successful experimental testing of the methodology in a commercial
airport in China, accurately calculating the residual airspace resources. In contemporary
and future Air–Ground Vehicle Networks (AGVNs) there are many challenges regarding
resource allocation, secure communication and mobility management. Sun et al. [41]
proposed a network architecture for AGVNs where a unified surveillance plane could be
utilized to provide local as well as global BD to stations, serving a side system for the
established communication links. The authors outlined how the side information can be
obtained, organized, managed, and finally used in the context of a so-called Aviation Data
Lake (ADL). In ADL, data analysis methodologies, ML models, and multilateration filters
could be utilized for acquiring local and global information. The ADL provided many
benefits in resource allocation, security, resource management, etc. The authors highlighted
the viability of the approach and provided numerical results in a case study including
ADL-assisted handover of low-altitude UAVs.

3.2.3. Optimizing Maintenance

Scheduled and unscheduled aircraft maintenance workloads are characterized by
uncertainty. Based on that, Dinis et al. [42] explored the use of Bayesian Networks as a BD
predictive analytics tool. The Bayesian Networks were based on the BD from maintenance
projects of a Maintenance, Repair and Overhaul (MRO) organization in Portugal. The
Bayesian Network models were developed based on different hypothesis variables and
were evaluated, demonstrating their applicability as well as their superiority over contem-
porary approaches for capacity planning. The authors also highlighted that this solution
could also help in sales planning, as well as that the consideration of uncertainty in the
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decision-making progress in the context of this solution could contribute to more informed
decisions regarding the required manpower. Daily and Peterson [43] presented an example
where the GE Aviation company combined BD from different sources to improve its pre-
dictive maintenance capabilities. These sources encompassed flight data, air quality data,
environmental data, etc. This allowed the company to cluster the engine data according
to the operating environment. It was found that the environment in certain places (e.g.,
China, the middle east) could lead the turbine to heat up and could reduce the efficiency.
All the above contributed to better predictive maintenance as well as to the avoidance of
unnecessary maintenance.

3.2.4. Collecting Customer Insights/Increasing Customer Satisfaction

BD analytics can provide useful insights about customer behaviors and customer sat-
isfaction. In [44] Sternberg et al. examined if social BD of a certain airline could be utilized
to improve certain performance metrics. In specific, BD from Turkish Airline’s social media
was processed, together with data from other sources such as the monthly number of
passengers, the stock price, and the quarterly revenue. The authors performed text mining,
used a Naïve Bayes classifier to classify text and implemented predictive and visual analyt-
ics. Through their experiments, they identified a weak relation between the business data
and social BD. However, from the findings, explanations could be provided about the cus-
tomer behavior and satisfaction, based on the social media data. Khalil et al. [45] presented
a Linear Regression model for predicting flight-related web searches of commercial aviation
customers. Flight searches are some of the most popular web searches, so the accurate pre-
diction of such searches is very useful and BD analytics help in this prediction. The authors
utilized the BD framework SparkML library and statistics. Experimental testing on the
proposed model was conducted using BD from domestic airports and yielded an accuracy
of about 90%. Ling and Weiguo [46] described how BD can increase aviation service quality
and customer satisfaction. BD from different sources (e.g., historical data, data from mobile
operators or tourist platforms) can be utilized for flight arrangement optimization (e.g., to
make adaptations to routes, to adjust flight time and the prices). Furthermore, personalized
travel services can be provided to customers based on their preferences and other data
related to them (e.g., date of birthdays and route preferences). Three other examples for the
usefulness of BD included the fast and efficient collection of customer satisfaction feedback
(e.g., through microblogs or fora), efficient emergency handling increasing the sense of
safety of customers, and finally the maintenance optimization resulting from BD analytics
which increases the sense of safety of customers and can also lead to decreased prices.

3.3. Big Data and UAVs

The third category of analyzed publications deals with UAVs which are aerial vehicles,
not carrying a human operator and can fly autonomously or be controlled remotely [47].
The following applications are divided into solutions for industry and solutions for
different infrastructures.

3.3.1. Solutions for the Industry

Source localization is extremely important in industrial monitoring as well as in other
fields (e.g., search and rescue and electronic countermeasure). The use of illegal radiation
can have negative effects in the operation and the communications of industrial facilities.
Li et al. [48] proposed two methodologies for the simultaneous localization of different
emitters which utilized BD collected by a UAV. The main goal was to improve the original
two-step Direct Position Determination (DPD) methods which face non-homogeneity and
are sensitive to the environment. First, the authors proposed a weight Direct Position
Determination (DPD) methodology which used blindly estimated Signal-to-Noise-Ration
(SNR) and then proposed an optimal weight DPD methodology. The UAVs were mounted
with an antenna area which intercepted signals at specific time slots. Simulation results
of the proposed methodologies showed that they outperformed traditional two-step DPD
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methodologies in both resolution and localization accuracy. Fernández-Caramés et al. [49]
described a UAV-based solution for the automatic execution of inventory tasks and indus-
trial item traceability tasks which could ensure data trustworthiness and thus facilitate the
extraction of reliable BD analytics (e.g., analytics for supply chain efficiency). The solution
utilized Blockchain technology, a distributed ledger, and smart contracts technologies. The
UAV collected real-time inventory data as well as could locate items in a warehouse by
making use of the Signal Strength Indicator (SSI) of Radio Frequency Identification (RFID)
tags. Experimental testing of the system in a real industrial environment indicated its
feasibility as well as its faster performance as compared to executing these tasks manually.

3.3.2. Solutions for Infrastructures

The following three BD-based solutions were related to the electricity infrastructure
and to the communication infrastructure. Image recognition is widely used in power distri-
bution systems for various reasons such as identification of poles and wires, measurement
of the icing thickness in power lines, measurement of the distance between wires and trees,
etc. Hu et al. [50] proposed a methodology for detecting transmission towers based on BD
and UAVs. The methodology made use of a Recurrent Convolutional Neural Networks
(RCNNs) model for extracting characteristics of the towers, training the tower model as
well as achieving quick image recognition and subsequently generate the power lines. For
acquiring the BD required by the model, photos were used which were captured by a
fixed-wing UAV. Experimental testing of the methodology showed that it could achieve
fast and efficient identification of transmission towers. Although the methodology was not
as accurate as the tree barrier modelling methodology that it was compared to, it could
achieve similar accuracy in a much faster way, yielding an average decrease of 14.2% of the
required time for the computations.

UAVs can be utilized for delivering wireless services (e.g., a 5G mobile network) to
targeted areas. However, in such cases there is often a tradeoff between energy consumption
of the UAV and the delivery of wireless capacity to areas which have to be explored as they
are not necessarily known in advance. Towards this direction Guo [51] demonstrated a
Deep-Reinforcement-Learning-based methodology which utilizes BD for the optimization
of both aggregate and minimum service provisioning. The proposed solution offered stable
performance, helped reduce overfitting phenomena and was also partially explainable.
The methodology addressed Quality of Service (QoS) and Quality of Experience (QoE)
requirements and achieved decreased energy consumption. Experimental testing of the
methodology, showed that it outperformed rule-based UAVs in terms of efficiency and
stability, reaching a 40% energy consumption reduction. Another similar solution was
proposed by Xu et al. [52], this time for ensuring network communication and the capability
to manage BD in cases of disasters. When a disaster happens, network communications
may be disrupted. To tackle this, the authors proposed a solution where UAVs served as
mobile edge nodes and the LoRaWAN protocol was used to connect UAVs with the control
center. Two algorithms were proposed for task management and queue management.
Experimental testing indicated that the solution could provide a relatively cheap and easily
deployable Mobile Edge Computng service, which increased the service range as compared
to an edgeless contemporary solution, while maintaining the same level of SNR and path
loss. Providing mobile cellular services is quite power consuming for UAVs and often a
charging infrastructure is employed including charging stations. Jung et al. [53] proposed
an Energy Management System (EMS) solution which incorporated a sharing mechanism
among different charging towers and aimed at minimizing the operating costs of UAV-
solutions encompassing BD analytics. The solution was based on a Deep Reinforcement
Learning model and experimental testing showed satisfying results in terms of optimizing
energy sharing and energy consumption. The solution also contributed to minimizing the
need of purchasing energy directly from the utility company. Another IoT-enabled solution
which is not directly related to network infrastructures but can help in such applications
comprising different base stations and BD processing was proposed by Wan et al. [54]. This
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solution consisted of three main layers. At the first layer, distributed sensors produced raw
data. At the second layer based on mobile edge computing, UAV base stations collected the
data, and performed an initial processing. Finally, at the third layer, a cloud service received
the data from the previous layer and performed further processing and evaluation. The
authors proposed a Lyapunov-optimization-based algorithm for online edge processing as
well as Deep-Reinforcement-learning-based model for efficient path planning of the UAVs.
Experimental testing of the solution indicated its feasibility, effectiveness, and capability of
increasing the service coverage.

3.4. Big Data in Military Aviation

The fourth category of analyzed publications included applications which can support
air force military operations as well as increase the safety in military aircraft.

3.4.1. Supporting Military Operations

The characterization of aircrafts is of vital importance for military aircrafts as it can
help determine if an observed aircraft poses a threat or not. Zhao et al. [55] demonstrated a
BD-based solution for characterizing if a specific aircraft is commercial or military based
on diverse kinematic attributes. For this, the authors relied mostly on BD from ADS-B
messages and Global Positioning System (GPS) technology, rather than on radar commu-
nications. The ADS-B messages included information about the ground/vertical speed,
the altitude, the heading, the call sign, the exact position, etc. For achieving accurate
classification of the aircrafts, a CNN model was used. Although the solution was not yet
fully finalized, experimental results showed a promising capability of accurately predicting
the type of an aircraft. Dästner et al. [56] demonstrated how different Machine Learning
methodologies and ADS-B BD can be utilized to classify and identify military aircrafts in
real-time applications. More specifically, RF, Gradient Boost Trees and Multilayer Percep-
tron classification techniques were used. Experimental testing indicated mediocre results,
yielding a 60% classification accuracy. Based on that, the authors proposed the use of these
models as complementary/additional tools for detecting military behavior.

BD can also facilitate decision making in military operations. In [57] Norman et al.
described how commercially tested BD analysis methodologies could help the Joint Strike
Fighter program, acquire stronger knowledge management and analysis capabilities for
testing and evaluation processes. At the same time, the authors highlighted how these
methodologies could also lead to faster and more efficient decision making. Some indica-
tive examples of how BDA could support military aviation and the Joint Strike Fighter
system in specific included: (i) flight classification and determination of what maneuvers a
military aircraft performed; (ii) deriving unknown relations by utilizing association rules;
(iii) conducting predictive maintenance of aircrafts and facilitating physical inspection.
Finally, the authors noted that through BD analytics regarding 1400 flights, data analysts
with no technical knowledge for aircraft failures could predict failures with a satisfying
accuracy of 70%.

3.4.2. Increasing Air Force Safety

Frantis [58] presented a BD-based architecture for increasing air force safety. The
author underlined that there can be many different data sources such as aircraft data
recorder files, military flight planning systems, logistic information systems, civil flight
planning systems, ADS-B messages, weather data, military real-time data links, etc. The
proposed architecture was comprised of three layers. The first layer included all the data
sources and the interconnections with other systems. The second layer encompassed a
BD database which had the main task of data handling/processing. Finally, the third
layer included the user interface and translated the search results into a form which was
understandable by the user. The third layer included an application which enabled the user
to make questions and data queries, as well as processed script batch files which had already
been created. In [59], Cai et al. made specific proposals for improving the Aircraft Engine
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Health Management systems which the authors underlined that are applicable in fighter
aircrafts as well as in large military transport aircrafts. The role of BD was highlighted and
the main pillars for the improvements were (i) improved data management; (ii) advanced
fusion of heterogeneous information; (iii) accurate prediction methodologies; (iv) proper
system integration. Regarding the prediction methodologies in specific, BD analytics could
come in handy regarding the processing of heterogeneous engine data. Expert systems,
fuzzy logic as well as Neural Networks, Bayesian networks, and Hidden Markov models
were some of the examples of models proposed for improving prediction tasks (e.g., fault
diagnosis, predictive maintenance). Finally, regarding the integration, the importance of
integrating the Health Management system with the Engine Control system and other
onboard systems was noted.

In [60], Morgan et al. described the important role of BD in military campaign sim-
ulation and subsequently in better decision making in defense as well as in increasing
safety for air force pilots. The so-called Synthetic Theater Operations Research Model
(STORM) for campaign simulation included air and space warfare among other warfare
types (i.e., land, maritime, amphibious). BD in such tools could help detect consistent
threads as well as causal threads. The authors also described a relevant suite which had
several postprocessing and visualization capabilities. Large-scale air attack simulation,
exploration of combat maneuvers and weapons testing, analyzing measurements from
sensors which detect aircrafts, status of critical aviation resources, determination of aircraft
loss were just some examples of the aspects covered in the simulation tool.

3.5. Aviation Big Data Related to Environmental and Health Aspects

Aviation BD can also benefit applications related to environmental (e.g., measuring
pollutants) and health aspects (e.g., controlling the spread of diseases).

3.5.1. Aviation Big Data Related to Health Aspects

BD can facilitate the fight against major health incidents, such as the recent pandemic
of COVID-19. Lin and Hou [61] described how AI and different sources of BD helped in
combatting the COVID-19 pandemic in east Asia. BD from aviation, railway, and ground
transportation systems, from customs or immigration databases, from pandemic-specific
COVID-19 or healthcare databases, from social media, from card transaction databases,
from security cameras, from wearable tracking devices or car GPSs are just some examples
of BD sources that helped in flattening the curve of the pandemic. Examples of the AI
tools utilizing BD described in the aforementioned publication were about facilitating
targeted lockdowns, classification of patients, early diagnosis, facilitating communications,
providing notifications for the pandemic, self-health reporting, etc. Gallego and Font [62]
proposed a methodology which could early detect the reactivation of the tourist markets,
which had been influenced by the COVID-19 pandemic. The main goal of this methodology
was to support Destination Management Organizations managers in taking informed policy
decisions as well as in minimizing the negative effects of COVID-19 in tourism. Making
use of operational transactional BD (i.e., air passenger searches, website visits, bookings,
selections) the proposed methodology helped to better understand the market behavior
and to stimulate demand.

BD can be very useful for combatting epidemics and pandemics including but not
limited to COVID-19. Jia et al. [63] demonstrated a multidimensional framework describing
the contribution of BD in such situations. The frameworks spanned the prevention, control,
and repair related to major health incidents. In specific, IoT data collection platforms, BD
from mobile devices, from social media and even from big gene banks could be utilized
for the early detection of an epidemic/pandemic. Regarding the response mechanisms,
BD for the predictive analysis of virus dynamic models as well as BD for supporting
decision making systems and reporting systems could be very useful. Research regarding
the development of vaccines or medicines for a disease could also make use of BD (e.g.,
for genetic data analysis or for real-time data analysis from patients based on IoT). Using
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BD could also help in tracking infected persons or persons that came in contact with
infected individuals as well as in determining the source of a specific infection. Finally, the
authors also provided examples of the potential of using BD for eliminating fear, for policy
adjustments as well as for analysis of an epidemic’s/pandemic’s impact from a political,
social, or economic point of view. Rocklöv et al. [64] demonstrated how BD was used to
contribute to monitoring the introduction and spread of the Chikungunya in Europe during
2017. The authors utilized aviation BD for areas with active transmission of the specific
virus in order to estimate the risk of virus importation from other areas. Then, they used
BD from Twitter posts to estimate mobility patterns of users as well as to estimate the risk
of short-range dispersion. Finally, BD was used to estimate the seasonal vectorial capacity
of the one of the species of mosquitoes which was responsible for the dispersion of the
disease (i.e., Aedes albopictus species). The authors extracted indicators for identifying
the virus dispersion and made estimations of the suitability of local climate for a potential
virus outbreak.

3.5.2. Aviation Big Data Related to Environmental Aspects

BD can be extremely helpful in the field of pollutant and emission measurement. In [65]
Lu et al. utilized BD from a civil airport in China in order to calculate the Landing and
Takeoff (LTO) emissions of different pollutants. Utilizing hourly LTO data of 302 days of
2015 about the specific airport, the authors calculated the annual emissions of sulfur dioxide
(SO2), nitrogen oxides (NOx), Volatile Organic Compounds (VOCs), carbon monoxide
(CO), particles with a diameter of 10 µm (PM10), and particles with a diameter of 2.5 µm
(PM2.5). A Monte Carlo methodology was also used to conduct uncertainty analysis of
the results. The uncertainty varied from 7% to 10% in different pollutants. The overall
BD-based methodology outperformed other traditional methodologies in terms of accuracy.
Environmental BD can play an important role also in the maintenance of aircrafts and the
reduction in their emissions. Martínez-Prieto et al. [66] proposed a data model which aimed
to increase the flight efficiency, reduce fuel consumption and pollutant emissions as well
as to ensure customer satisfaction. The authors combined BD from diverse providers as
well as reconstructed flight trajectories. The main goal of this model was to convert ADS-B
messages of different sources into clean and easy-to-use information, taking advantage of
surveillance information, flight information and air traffic control data. An information
processing pipeline was also developed in the context of this model which helped to
clean, transform, and enrich the data from the ADS-B messages. The effectiveness of the
model was also proved through a two-week evaluation with data deriving from three
different providers. Zhao et al. [67] presented their design of a system for monitoring
urban air quality, based on UAV technologies and BD. The authors described the hardware
design and provided details about the storage module, the processor, the transmission
module with GPRS connectivity, the UAV, the air quality sensor, and the anti-interference
system. This solution included measurements of the dust particle concentration, the CO
concentration, the temperature, and the humidity. The electromagnetic anti-interference
system helped in ensuring reliability even under harsh conditions. Experimental testing of
the solution proved its capability of successfully measuring different air quality parameters
as well as of providing adequate anti-interference.

BD analytics can play an important role in wildfire prevention and management.
Athanasis et al. [68] demonstrated a solution which aimed at improving the surveillance for
wildfire prevention and management, through the near real-time analysis of BD deriving
from UAVs. A BD cluster was utilized by the authors and a MapReduce algorithm was
implemented to identify images from burning forests. The solution was tested in the Greek
island Lesvos during 2018 and it was found to importantly improve the required time to
analyze the images received by the UAVs, thus contributing to a timelier and more reliable
management of the authorities regarding the emergency response crews. The authors also
highlighted that the execution time of the BD analysis was not affected by the area covered
by the images.
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3.6. Big Data in Space Technology

The sixth category of the publications presented in this literature review included BD
application related to the support of space missions and solutions utilizing spaceborne BD.

3.6.1. Supporting Space Missions

Dong et al. [69] proposed an BD-enabled architecture for supporting launches at rocket
launch sites. The architecture was comprised of many different elements including, space
mission planning, mission management, command support, visualization of launch mis-
sion status, analysis and fusion of launch vehicle operating data, detection of faults and
errors, equipment diagnostics and performance evaluation, decision support, allocation
of resources, monitoring of dangerous chemicals, emergency response system, training
simulation, software management, knowledge management, etc. The BD utilized in this
architecture came from two main categories, the launch mission data (e.g., monitoring
of the flight phase, weather data, organization, and command data) and the daily oper-
ating data (e.g., equipment management data, simulation data, and monitoring data of
launch facilities).

Ensuring that astronauts remain healthy is of vital importance for the performance
and the success of space missions. Prysyazhnyuk and McGregor [70] proposed a novel BD
analytics visualization methodology which aimed at improving clinical decision systems in
space. This spatio-temporal visualization methodology provided an accurate description
of the astronaut’s body functions and trajectory of health state and could also help in
the detection of anomalies and potential pathologies. The visualization technique was
capable of depicting task and time specific dynamics and its feasibility was tested during
terrestrial simulation experiments. Aiming to expand the capabilities of the health analytics
platform called Artemis, Yeung and McGregor [71] presented a solution based on BD
analytics which helped in the determination of the health state taking into consideration
the countermeasure activities in microgravity performed by astronauts. Such activities are
performed in order to help them better physically and psychologically adapt to the space
environment. The tool functioned as a feedback component within Artemis and through
BD analytics, a better overview of the overall astronaut’s health could be provided which
incorporated the effects of the countermeasure activities performed. A case study was also
provided by the authors, to highlight the usefulness of their tool in optimizing life support
systems in space.

The useful life of on-orbit satellites can be affected by several factors such as the remain-
ing life of batteries, the condition of the solar array, the reaction wheels, etc. Huang et al. [72]
proposed a Bayesian framework for estimating the remaining useful lifetime of operating
satellites, based on BD. The particular framework depended on historical telemetry BD
from other satellites as well as on certain parameters regarding the performance degrada-
tion of critical components. The feasibility of the framework was demonstrated through an
example where the framework was used to determine the remaining lifetime of a satellite,
based on data for the array wing power losses and for the Li-Ion battery degradation.

3.6.2. Solution Utilizing Spaceborne Big Data

The Besançon Galaxy Model (BGM) [73] is a popular tool performing statistical analy-
sis for the Galactic structure and evolution. Aiming to expand the capabilities of this model,
Mor et al. [74] demonstrated a theoretical framework called BGM FASt which facilitates the
study of the Milky Way based on Bayesian methodologies. This framework could utilize BD
such those of the aforementioned Gaea space mission and it also executed multi-parameter
inference. Experimental testing of the framework showed a dramatic decrease in the time
required for execution (about 10,000 times lower) as compared to the standard BGM model,
while providing very similar results with it. The framework could also infer stellar mass
density, star formation history and the initial mass function at the same time.

In [75], Kiemle et al. referred to the earth observation BD (e.g., images, multispectral
data) from satellites, managed by the German Aerospace Center as well as to the Data
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Information Management System (DIMS). The German Satellite Data Archive has been a
vital part of many earth observation missions. The DIMS can handle massive volume of data
and is comprised of different components which are relevant to processing management,
product/order management, online product publishing/delivery, handling online user
information, handling data access as well as monitoring, reporting, and control.

Synthetic Aperture Radar (SAR) BD from satellites can be utilized in the study of
ocean wave observations. Huang and Li [76] used spaceborne Wave Mode (WM) BD
over a period of ten years for extracting parameters related to the ocean, namely the
Significant Wave Height (SWH) and the Mean Wave Period (MWP). The already known
parametric model was used for the calculations and statistical analysis of the results was
also conducted. The calculations were in agreement with the in situ buoy data with
a correlation coefficient of 89% of SWH and 83% for MWP. Spaceborne SAR data can
also be used for detecting oil spills on the sea. Zeng and Wang [77] proposed a Deep
Convolutional Neural Network (DCNN) for detecting oil spills, utilizing SAR data from
satellites. The authors conducted experiments utilizing 20.000 SAR patches and compared
the model’s performance with other Machine Learning classifiers (VGG-16 and AAMLP).
The proposed model outperformed both models in terms of accuracy, recall, and precision
metrics, reaching 94.01% accuracy, 83.51% recall and 85.70% precision. The authors also
underlined the high distinguishability of the features learned by the proposed model,
which contributed to its very satisfying performance.

Disasters can seriously affect the proper functioning of the communication infrastruc-
ture and obstruct humanitarian relief operations. Nagendra et al. [78] demonstrated how
satellite BD analytics could benefit such operations in cases of disasters. A case study was
presented regarding a BD analytics platform which supported humanitarian operations
during the floods which occurred in the Indian state Kerala. This platform facilitated
logistical planning as well as the execution of security missions. The data sources which
were utilized included satellite images, geospatial data, weather data, etc.

BD can also be used in image decompression applications as well as for creating
libraries for programming languages. Nuñez et al. [79] proposed a tool for the decom-
pression of images of the under-development space telescope PLATO, which will survey
different stars. In the publication, compression was initially carried out for the BD pro-
cessed by the telescope. The images were cropped and then compressed utilizing a lossless
algorithm. Soon after that, the compressed data were sent as telemetry to the ground
service module in the form of data packets. The authors’ tool collected and classified
these data packets and utilizing metadata and other scientific data they reconstructed the
cropped and compressed images. Breddels and Veljanoski [80] presented the so-called
vaex library for the Python programming language which can be particularly useful in the
processing of massive astronomical catalogues as well as for other datasets. The library was
comprised of different packages for visualization, client–server communication, mapped
storage as well as one package specifically for astronomy. This astronomy-oriented package
enabled transformations and selections as well as memory mapped storage. The authors
incorporated streaming algorithms and enabled the processing of datasets which are larger
than what the hardware specifications of a computer would normally allow. One use
case described by the authors and highlighting the usefulness of the library, is handling
photometry, astrometry, and spectrometry data deriving from the Gaea space mission.
A BD-based methodology utilizing data from the same space mission was proposed by
Castro-Ginard et al. [81]. Specifically, the authors’ methodology had the main goal of
detecting open clusters (a kind of star cluster, sharing some characteristics and having
about the same age). For this, an unsupervised clustering algorithm and a supervised
Artificial Neural Network (ANN) were utilized. The search of open clusters using this
methodology yielded a 45% increase in known open clusters.

Settling insurance claims of farmers in case of natural disasters suffers from type-I
(rejection of claims of eligible farmers) and type-II errors (approval of claims of ineligible
farmers). Aiming to minimize these two errors, Negendra et al. [82] demonstrated how
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satellite BD analytics can help in minimizing such errors. Satellite multispectral imagery
BD was used to estimate crop area, yield, and area of the vegetation as well as to detect
anomalies and invalid points in the data used for the calculation of the yield. The feasibility
of the approach was validated through the presentation of a case study in India.

A summary of the analyzed applications described in this chapter is provided in
Table 2 below.

Table 2. Summary of the analyzed applications in the context of the current paper.

Subcategory Specific Application

Aircraft Design/Manufacturing

Architecture for industrial BD processing in aviation manufacturing [14], framework for fault
prediction in aviation manufacturing [15], fog-computing-based framework for BD
integration and sharing applicable in aircraft manufacturing [16], DT-based information
management framework in aircraft manufacturing [17], and field perception method for
component DT in aircraft manufacturing [18]

Monitoring of
Flight/Aircraft/Safety Parameters

EDR estimation methodology based on QAR BD [19], identification of problems affecting
flight quality based on QAR BD [20], detection of unstable aircraft approach events based on
QAR BD [21], estimating usage characteristics and the efficiency of the TCAS of aircrafts [22],
BD-based analysis of in-flight emergencies [23], determination of thrust based on BD [24],
aircraft fault detection based on FlightGear simulation BD [25], and variable selection
algorithm for mining variables highly correlated to an aircraft’s safety [26]

Health Monitoring Systems

PHM based on aviation BD mining [27], scalable pipeline for aircraft health monitoring [28],
BD-based architecture for helicopter health management systems [29], BD-based architecture
for health management of civil aircrafts [30], architecture for the early detection of errors in an
aircraft’s electronic parts [31], and detection of faults and problems in commercial fleet [32]

Air Traffic Management and
Trajectory Planning

Air traffic flow analysis based on ADS-B BD [33], using air traffic and weather BD for
improving strategic planning of airlines [34], trajectory prediction based on surveillance and
other BD [35], using flown trajectories BD to calculate flight performance indices [36], and
visualization of multiple trajectories, utilizing flight BD [37]

Delay Prediction and
Resource Allocation

Flight delay prediction using multiple ML algorithms [38], flight delay prediction based on
ADS-B and other BD [39], BD-based residual airspace resource evaluation methodology [40],
and BD-enabled network architecture for AGVNs [41]

Maintenance Optimization Optimized maintenance and resource allocation based on BD analytics [42] and improving
predictive maintenance by utilizing BD from heterogeneous sources [43]

Collecting Customer
Insights/Increasing
Customer Satisfaction

BD-based analysis of customer engagement of a commercial airline [44], linear regression
model for predicting flight-related web searches [45], and increasing customer satisfaction
and improving aviation service quality by utilizing BD from different sources [46]

Solutions for the Industry Improving source localization in industrial facilities by using UAV BD [48] and BD analytics
for supply chain efficiency based on UAV BD [49]

Solutions for Infrastructures

Detection of electrical transmission towers based on BD from UAVs [50], BD-based
methodology for optimizing 5G service provisioning from UAVs [51], optimized BD
management leading to better disaster management [52], EMS based on BD analytics for
minimizing operating costs of UAVs [53], and BD data management optimization in
applications with UAV base stations [54]

Supporting Military Operations
BD analysis for characterizing if an aircraft is commercial or military [55], using ADS-B BD for
real time classification of aircrafts [56], and improving knowledge management and analysis
for testing and evaluation processes of the Joint Strike Fighter program using BD analysis [57]

Increasing Air Force Safety
BD-based architecture for improving military flight safety [58], improving military aircrafts’
health management systems by utilizing heterogeneous BD [59], and role of BD in improving
military campaign simulation capabilities [60]

Aviation Big Data related to
Health Aspects

Flattening the curve of COVID-19 by using BD analysis from diverse sources [61], BD-based
methodology for the early detection of the reactivation of tourist markets [62],
multidimensional framework illustrating the importance of BD in fighting major health
incidents [63], and utilization of BD for controlling the introduction and spread of the
Chikungunya virus [64]
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Table 2. Cont.

Subcategory Specific Application

Aviation Big Data related to
Environmental Aspects

Using BD to calculate the emissions of different pollutants during landing and takeoff [65],
BD model for reducing fuel consumption and pollutant emissions of aircrafts [66], monitoring
urban air quality based on BD and UAVs [67], and UAV BD analysis for improving
surveillance for wildfire prevention and management [68]

Supporting Space Missions

BD-enabled architecture for supporting launches at rocket launch sites [69], BD analytics
visualization methodology for improving clinical decision systems in space [70], BD analytics
for space medicine decision support [71], and BD-based Bayesian framework for estimating
the remaining lifetime of operating satellites [72]

Solutions Utilizing Spaceborne
Big Data

BD-based theoretical framework for facilitating the study of the Milky Way [74], BD
management for improving earth observation [75], BD for ocean wave observation [76], oil
spill detection from spaceborne SAR BD [77], satellite BD for supporting humanitarian relief
operations [78], image decompression tool for BD deriving from a telescope [79], Python
library for processing astronomical catalogues and spaceborne BD [80], utilizing BD for
detecting open clusters [81], and optimization of settling insurance claims of farmers based on
satellite BD [82]

4. Discussion of the Results/Conclusions

The present literature review surveyed a wide range of publications related to the
use of BD in aerospace. A total of 67 publications were analyzed, and a 6-fold main
categorization was formed, followed by a subsequent subcategorization for the analyzed
publications, covering important aerospace aspects. A total of 15 subcategories were
utilized. The main aim of this categorization was to provide the reader with a clear
overview of how BD can be applied in aerospace and what benefits it can provide.

In the first category (i.e., Big Data in Aviation Technology), we saw many BD-enabled
applications that greatly facilitated aircraft design and manufacturing processes, and
helped in the detection of manufacturing errors as well as in increasing efficiency. BD from
a multitude of heterogeneous sources enabled us to extract useful parameters and indicators
related to the safety, efficiency, and engine health of aircrafts and could importantly reduce
potential unstable approaches and accidents. BD also contributed to extracting correlations
among seemingly irrelevant variables.

In the second category (i.e., Big Data in Aviation Management), BD-based applications
were described which helped in effective air flow management, in creating and visualizing
aircraft trajectories, in reducing flight delays, in determining the causes of flight delays, in
having a more effective resource allocation, in optimizing maintenance procedures and
reducing maintenance costs, in gaining insights for aviation based on social media BD as
well as in collecting feedback from customers and in increasing customer satisfaction.

Due to the nature of UAV-based applications, the benefits of BD in such applications
were examined in a separate category (i.e., 3. Big Data and UAVs). The usefulness of BD
in different UAV-based publications was highlighted in many examples, e.g., in executing
inventory tasks or facilitating manufacturing processes in industrial environments, in
effectively identifying poles and wires in power distribution systems, in providing network
communications in distant places or in cases of disasters, in reducing UAV charging costs,
as well as in improving their service coverage.

Regarding the fourth category (i.e., Big Data in Military Aviation), BD was utilized
in applications for the characterization of if an aircraft is military or not, for facilitating
decision making in air force operations, in simulating military campaigns, for improving
the maintenance procedures of military aircrafts and for increasing the safety of military
aircrafts’ pilots.

Moving on to the fifth category (i.e., Aviation Big Data related to Environmental and
Health Aspects), publications mainly revolved around tackling major health incidents,
reducing the spread of diseases, measuring air quality, reducing aircraft emissions, as well
as in preventing and managing natural disasters.
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Finally, in the sixth category (Big Data in Space Technology) which contained
13 publications, we saw how BD-enabled applications, can support rocket launches, sup-
port clinical decision systems in space, estimate the remaining lifetime of satellites, help in
earth and space observation, contribute to advanced analysis of spaceborne data as well as
support humanitarian operations or resolve insurance claims based on satellite data.

In the publications we analyzed, heterogeneous data sources were used (e.g., QAR
data, ADS–B messages, data from the OpenSky network, GPS data, engine data, healthcare
data, data from the social media, satellite image data, and weather data) and diverse
ML models have been implemented (e.g., SVM, LSTM, Bayesian Networks, RF, CNN,
Multilayer Perceptron, and Linear Regression). Examples of BD sources and ML models
found in the analyzed papers as well as the main categories of the categorization we
introduced are summarized in Figure 2 below.

1 

 

 

Big Data Sources

Machine 
Learning Models

Applications in 
the Aerospace 

Domain

QAR data, ADS–B messages, OpenSky network data, GPS data, Engine data, Healthcare
data, Social media data, Satellite imagery, Weather data, TCAS data, FlightGear
simulation data, Drive shaft vibration data, Air traffic data, Surveillance data, AOTP data,
Air quality data, Images from UAVs, SAR data, Wave mode data, etc.

LSTM, SVM, SVR, Decision Trees, RF, CNN, RNN, Multilayer Perceptron, Linear 
Regression, Gradient Boost Trees, Hidden Markov Models, etc.

Big Data in Aviation Technology, Big Data in Aviation Management, Big Data and UAVs,
Big Data in Military Aviation, Aviation Big Data related to Environmental and Health
Aspects, Big Data in Space Technology, etc.

Figure 2. Examples of BD sources and ML models used in the analyzed papers.

In conclusion, approaches based on BD and BD analytics have gained momentum
over the last few years and can play a vital role in different fields of the aerospace sector. As
future research directions, we propose literature review approaches based on all or some of
the categories stated in the current review. A review focusing on the application of BD in
Space Technology only, or another review using a categorization based on the ML models
used in BD-enabled aerospace applications would also be interesting. Finally, we would
also suggest a literature review on the challenges posed by the utilization of BD and BD
analytics in the aerospace domain.
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