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Abstract: In this study, a microscopic model for a swarm of mobile robots is developed to implement
self-organized aggregation behavior. The proposed model relies on the concept of subjective expecta-
tion, which is defined as the “minimum wished cluster size” of a robot in the swarm. During the
whole process, a robot’s expectation constantly changes based on context awareness. This awareness
is obtained by employing a low-cost communication system commonly found in swarm robot studies:
infrared-based communication. Robots can make their own decisions by comparing their expected
and estimated observed cluster sizes, which leads to macroscopic swarm aggregation. However, due
to the limitations of local communication and mobility, robots are restricted in their ability to perceive
global information, particularly regarding cluster size. Inspired by the slime mold aggregation
process, a wave-based communication mechanism is implemented to help robots estimate a cluster
size. Moreover, each transmission includes a modulated message that allows robots to explicitly
share their knowledge with others. In this way, despite the fact that the robot may not belong to
that cluster due to its perception range, it can easily grasp the cluster size when passing the cluster.
Once a robot detects a desired cluster, it can approach this cluster with its direction determined by
using average origin of wave (AOW) method. The performance of the aggregation algorithm was
tested both in simulation and with a real swarm robot. Dispersion metrics and cluster metrics were
employed to evaluate the proposed algorithm’s performance. The results show that the proposed
microscopic model utilizes collective behavior which aggregates all randomly distributed robots into
a single aggregate cluster with a reasonable swarm density and evaluation time.

Keywords: self-organized behavior; aggregation; swarm robots; self-organized aggregation; mobile
robots

1. Introduction

The success of collective behaviors exhibited by many species living in groups called
“swarms” in nature has highly attracted many robotic researchers in recent decades. The
term “swarm robots” can be derived from “swarm intelligence” as the emergence of macro-
level behavior in a whole swarm that can be formed from the collaboration of many simple
micro-level behaviors of individuals [1]. Swarm robots can do collective tasks without the
intervention of a central controller during their operation through cooperation between
individuals. Hence, swarm robots have many advantages compared to other types of
robot systems: scalability, flexibility and robustness [2]. The robot intercommunication and
interaction rules must be appropriately implemented in order to construct a protocol by
which a group of robots can cooperate and achieve a global goal. In general, these materials
are mostly inspired by the characteristics of society from insects and animals, such as flocks
of birds, school fish, ant colonies, and honeybees to unicellular life forms such as slime
molds, bacteria, and blood cells.

One of the most basic behaviors of swarms in nature, which can be seen in a wide
variety of biological systems ranging from unicellular organisms to social insects and
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humans, is aggregation. It is crucial for the formation of functional groups of individuals,
as it lays the foundation for the establishment of diverse forms of collaboration [3]. In
fact, it can be considered a precondition for completing a variety of collective tasks, such
as enabling them to resist against natural hazards and strengthening them with sensing
capabilities to seek food, resources, and escaping routes, among others. Environmental
cues are known to enhance some aggregation behaviors, such as honeybees aggregating
on optimal temperature areas (which inspired BEECLUST [4]) and dry wood termites
responding to temperature and light gradients [5]. However, other natural aggregations
are purely self-organized. Cockroach aggregation [6], aggregation in chick penguins [7],
and slime mold multicellular development [8] are fascinating instances of this kind of
behavior. This form of aggregation is unique in that it can occur at irregular areas without
any environmental stimuli and in the absence of a central controller. Furthermore, it
is frequently accomplished in a coherent manner by individuals utilizing very simple
navigation strategies and local interaction rules.

The self-organized aggregation behavior has been addressed in numerous swarm
robotics projects based on these biological investigations. It is regarded as a precursor
to more complicated behaviors, including flocking, self-assembly, and pattern formation.
In swarm robotics, there are currently three techniques for self-organized aggregation in
swarm robotic systems: the probabilistic approach, evolutionary approach, and potential
field approach [9].

The artificial potential field approach is frequently used in robot navigation. It involves
calculating the forces that influence how robots move in the workspace with respect to the
location of the surrounding robots and obstacles. Inspired by birds and frogs, Melhuish et al.
proposed a method which used a chorus consisting of individuals who can approximate
the size of the aggregates using variations in sound [10]. Electrical limitations, on the
other hand, cause the so-called saturation effect in robot sensors, which restricts the upper
bound of input signal intensity which is used to control robot behavior. To avoid suffering
from the input signal saturation problem, Belkacem et al. proposed Distance-Weighted
K-Nearest Neighbors topology which is revealed in studies in birds flocking and fish
schooling [11]. The self-organized aggregation is the result of a method based on an intra-
virtual physical connection between neighboring robots. The improved version using the
Minkowski metric was introduced in [12]. However, the naive potential field approach
does not provide the balance of exploration and exploitation, which results in swarms that
may aggregate into many smaller clusters instead of the unique one due to local minimum
convergence. A probability approach is often applied to enhance the exploration behavior
of the aggregation process.

In the probabilistic approach, the behavior of each robot has a random component
that is adjusted in the process of the robot’s interaction with the environment. This ap-
proach often relies on probabilistic finite state machines (PFSMs) [13–17]. This type of
behavior is often found in the natural world in social insects such as bees or cockroaches.
Jeanson et al. [18] investigated aggregation in cockroach larvae and developed a model of
their behavior. The cockroaches were reported to join and leave clusters with probabilities
correlated to the sizes of the clusters.

In the case of the evolutionary control method, aggregation dynamics is achieved by
using robot controllers, the parameters of which are selected in the process of artificial
evolution. Examples of the controllers, using this method, are neural networks [19]. De-
pending on the algorithm being used, the inputs of the evolutionary process may include
devices able to receive information about the environment, and the outputs may include
devices allowing robots to move and communicate with each other. Instead of using neural
networks, Katada introduced the implementation of particle swarm optimizer (PSO) to
evolve parameters of PFSM [14].

In conclusion, a single aggregate cluster emerges from the continuous aggregation
and disaggregation of clusters. In order for a single aggregate cluster to emerge, the
behavior of the participating individuals needs to change as a function of cluster size.
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In this study, the swarm aggregation is approached in a different way. The key idea of
the proposed approach is to create the biggest aggregate cluster; robot always have a
desire to join a bigger cluster. Based on these ideas, a microscopic behavior for a swarm of
robots is designed that relies on two main factors: subjective expectation which stands for
“minimum wished cluster size” and actual cluster size. The first parameter of the proposed
approach, subjective expectation, is driven only by the local awareness of each individual.
The effects of awareness on robot expectation are simplified into three: disappointment
effect, motivation effect and influence effect. These effects change robot expectations over
time. By comparing the robot expectation and cluster size, robots can determine their
actions: join or leave the cluster.

In this study, the main contribution is to propose a novel microscopic model for
randomly placed robots in a closed workspace that allows them to aggregate into a unique
cluster. The model does not require robots to have prior knowledge of the workspace, to
form a connected communication network, or to have localization capabilities. Furthermore,
the communication mechanism inspired by the slime mold aggregation process has been
modified and applied to the proposed robot platform, allowing robots to estimate and
transfer cluster size. This communication mechanism was often considered as a built-in
function of robots in many previous articles [14,16,17]. The Average of Origin Wave (AOW)
approach is employed to help the robot estimate the heading to move toward the cluster [20].
Then, the robot can navigate itself to the cluster when the cluster size is desirable. The AOW
approach has also been modified to adapt to the proposed communication mechanism.
Both simulations and real experiments were used to test the performance of the aggregation
behavior. Simulation results show that the proposed microscopic model emerges from
collective behavior in which a single aggregate cluster can be formed. The proposed
model is applicable with a large-scale swarm of robot in a large arena with the appropriate
parameter setting.

The structure of this paper is outlined below. In Section 2, a brief formulation of
the aggregation problem studied is provided. Section 3 introduces the new microscopic
model proposed. The communication mechanism, inspired by slime mold aggregation, is
presented and modified in Section 4. Section 5 explains the navigation algorithms, including
the roaming strategy and AOW approach. The experimental setup used to evaluate the
proposed model and results are discussed in Section 6. Lastly, in Section 7, future plans
will be discussed, and the study will be concluded.

2. Problem Formulation

Let us consider a swarm of homogeneous robots S = {R1, R2, . . . , RN} that consists
of N individuals where Ri denotes the ith robot. The individual is based on a two-wheel
different-drive platform consisting of two separately controlled wheels. The global position
of Ri, Pi =

[
xP,i yP,i

]T can be indicated based on the relationship between the reference
frame fixed in the workspace and the local frame attached to the center of the physical
body of the considered robot. Let considered robot Ri have

.
θl,i and

.
θr,i, which are the

angular speed of the left and right wheels, respectively. Let lw be the distance between two
controlled wheels with size of rw; the instantaneous linear speed Vi and angular speed ωi
of Ri with respect to the local frame can be deduced from Equation (1).[ .

θr,i.
θl,i

]
=

[
1

rw
− lw

rw
1

rw
lw

2rw

][
Vi
ωi

]
(1)

To enable the perception of the surrounding environment and intercommunication
between individuals, each robot is equipped with a communication system consisting of
m infrared modules installed around the periphery of the robot. Each module has one IR
light-emitting diode (LED) and one IR phototransistor. These modules are symmetrically
arranged with fixed spacing of 2π/m radians, providing full 2π radians coverage. Let rs
and rc be the environment sensing range and communication range of the robot. Let Ni be
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the neighbor set of Ri where a neighbor is defined as a robot which can communicate with
Ri. The robot does not have knowledge about Ni , since robots in a swarm do not have any
identification. However, the number of neighbors, |Ni|, can be estimated by counting IR
modules which received a message in a specific time. Due to the light-of-sight properties
of infrared modules, each robot just can communicate with a limited number of robots
within their range, despite the presence of in-range neighbors. Hence, the interference is
also significantly reduced.

The introduced algorithm’s aim is to have all of the randomly distributed robots in S
congregate somewhere in the closed area with a size of A that is not predetermined. Hence,
the proposed microscopic model implemented in robots must be capable of navigating
the robots to emerge in a single aggregate cluster based on local information from Ni for
Ri. In order to determine the characteristics of the proposed algorithm, some assumptions
are clarified:

• Robots do not have information regarding the scenario, including: size and shape
of the arena, obstacles position, their global position, and swarm size. However, the
maximum size of swarm Nmax is stated, i.e., the proposed algorithm is scalable with
an upper bound constraint.

• rs and rc can be significantly smaller than the size of the arena that leads to individuals
not necessarily forming a connected graph according to their initial placement.

• During the aggregation process, individuals can be added or removed at any time.

3. Self-Organized Aggregation Behavior

As a result of the assumptions in Section 2, only the spectators know when the
aggregation process is complete. Meanwhile, robots with local information are unable to
identify the end of the process. Hence, even if they are already in the largest cluster, robots
should continue to search the arena for larger clusters. That means the algorithm should
maintain the balance between the robot’s exploration and exploitation behaviors. Almost all
previous efforts have used a probabilistic technique in which the robot’s chances of leaving
and staying vary as a function of cluster size, implying that the larger the cluster, the less
likely the robot will leave [13–17]. However, in terms of local information, robots cannot
acquire this knowledge on their own without a suitable information exchange technique
among them. The communication mechanism which provides this kind of knowledge
will be considered in next section. In this section, the size of a cluster is assumed to have
been estimated by individuals who are members of the considered cluster and successfully
transferred to others within the communication range. Let ni and ñi be the actual size and
estimated size of cluster which Ri belongs to.

In the proposed control strategy, there are two main states: the roaming state and
aggregating state. Let si represent a state of Ri where si = 1 stands for the aggregating state
and si = 0 stands for the roaming state. Admit that when si = 0, then ni = ñi = 0. The main
idea of the proposed approach is to make randomly distributed swarm robots congregate
into a single aggregate cluster based on the subjective expectation of each individual instead
of using probabilistic parameters. In this study, the subjective expectation of Ri, ne,i, is
defined as the minimum size of a cluster where Ri wants to join. The expectation of Ri is
changed over time based on many factors related to the robot’s local awareness. Let ςi be
the rate of change of expectation of Ri, ne,i at time step t can be determined by employing
Equation (2).

ne,i(t) = ne,i(t− 1) + ςi(t) (2)

The value of ςi at instant time is determined based on the following effects formulated
in Equation (3):

• Disappointment effect: When robots do not meet their desired cluster, their expectation
decreases over time with a rate of ςd.

• Motivation effect: When robots meet their desired cluster, their expectation increases
over time with a rate of ςm.
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• Influence effect: In aggregating state, the expectation of Ri decreases over time with a
rate of ςs,i which is related to |Ni|.

ςi = si(ςm + ςs,i) + (si − 1)ςd (3)

The behaviors of robot in each state can be brief as follows. In the beginning, all
the randomly placed robots start in the roaming state, and their expectation is randomly
assigned in the range of (1, n0] where n0 is the maximum initial value of ne,i. Then, the
robots randomly traverse in the arena to look for the desired cluster. Let ñi,j be an estimated
cluster size of Ri,j where Ri,j ∈ Ni and Ei are a set of cluster sizes estimated by neighbors
of Ri, which is obtained via the intercommunication between robots. A cluster is said to
be a desired cluster or expected cluster of Ri if ∃ñi,j ∈ Ei

∣∣ñi,j + 1 ≥ ne,i or ñi + 1 ≥ ne,i in
case ñi is determined. As soon as the robot finds the desired cluster, the robot will shift to
an aggregating state and move to this cluster. However, in the beginning, all robots in the
swarm are in a roaming state, which means there are no aggregations in the arena. However,
the expectations of robots are now under disappointment. Hence, their expectations have
decreased over time. In case Ri does not meet any expected cluster and ne,i < 1, each robot
automatically shifts to an aggregating state since obviously ni = ñi = 1, which is satisfied
given condition ñi + 1 ≥ ne,i.

In an aggregating state, robots communicate with others to estimate the cluster size
and transfer the estimated cluster size to their neighbors. According to a given idea, to
create the biggest cluster, robots always have a desire to join bigger clusters. Hence, the
robot expectation is now under a motivation effect. This effect raises robot expectations
over time with a rate of ςm and helps balance the exploration and exploitation of the
aggregate processes.

However, if the expectations of robots constantly increase over time, a cluster is more
likely to vanish. When an interior robot’s expectation is large enough, they want to leave
the cluster. However, due to collision avoidance, they may not have a chance to leave the
cluster, and they will be stuck inside. Then, the disappointment effect takes place, which
reduces the expectations of these robots. When the robot expectation drops below the
estimated cluster size of their neighbors, they switch back to an aggregating state. This
process is repeated over and over, causing their expectations to fluctuate around cluster
size. Gradually over time, more and more robots that stay inside a cluster will fall into this
situation. Hence, if the robots within a cluster boundary leave the cluster, then the cluster
is more likely to vanish.

To avoid this situation, an influence effect is introduced. An influence effect reduces
expectation over time based on the relative position of a robot with respect to the cluster.
If the robot is located more inside the cluster, it will have less chance to leave and hence
less incentive to leave. In a cluster, the relative location of each robot can be indicated
by counting the number of its neighbors. Robots that stay in the periphery of a cluster
have few neighbors and vice versa. Hence, based on number of neighbors, the change of
expectation caused by the influence effect can be determined through Equation (4). Hence,
if |Ni| = m, i.e., neighbors completely surround Ri, then ςs,i = −ςm, which results in
eliminating the motivation effect.

ςs,i = −ςm
|Ni|
m

(4)

After the swarm size is estimated and expectation is calculated, individuals can
determine whether to stay or leave the aggregate. If the difference of expectation and
swarm size is greater than a given threshold ∆ni, then a robot will switch back to its
roaming state and leave an aggregate. A given threshold ∆ni should be large enough in
order to give the robot enough time to actually leave the aggregate, or the robot will be
stuck in an infinite loop of state transition. In order to increase the lifetime of a large cluster,
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∆ni should be positively correlated to ni. In the proposed model, ∆ni can be calculated by
employing Equation (5).

∆ni =
√

ñi + 3 (5)

The pseudo-code in Algorithm 1 describes the whole basic aggregation process of Ri.

Algorithm 1: Aggregation algorithm. Basic pseudo-code for robot Ri used for the aggregation
process. This algorithm uses two parallel threads: main_thread and communication_thread. This
code below represents main_thread that uses the results of communication_thread

Inputs: ςd, ςm
Global variables: si, ñi, ne,i
Initialization: si ← 0 , ñi ← 0 , ne,i ← random ∈ (1, n0]
While true do

If si = 0 then
Execute roaming_motion;
Ei ← communication_thread
If max

ñi,j
(Ei) ≥ ne,i + 1 or ne,i < 1 then si ← 1

Else
Execute aggregating_motion;
ñi ← communication_thread
∆ni ←

√
ñi + 3

If ne,i > ni + ∆ni then si ← 0
end
ςi ← si

(
ςm − ςs,i

)
+ (si − 1)ςd

ne,i ← ne,i + ςi
end

4. Communication Mechanism

In the previous section, an IR-based communication mechanism was proposed to help
robots perceive the size of clusters and exchange this knowledge among robots. Actually,
the instantaneous cluster sizes are almost impossible to be determined by individuals due
to their mobility and communication constraints. This information can only be estimated.
To estimate the cluster size, analogy-measurable cues such as sound intensity or light
intensity are aided to the swarm system [13,15]. However, these measurement systems are
often saturated when the size of a cluster is large. In the absence of cues, a communication
system with an appropriate information exchange strategy still can extract cluster size
but with the presence of latency. According to infrared-based communication, there are a
few estimation methods which can be applicable [21–23]. Nevertheless, these techniques
require the communication of complex modulated messages, which do not optimize the
communication system in terms of time.

Inspired by the slime mold aggregation process [8], wave-based approaches were
introduced. This mechanism promises to reduce latency in robot networks. Varughese et al.
introduced a vast range of behaviors of swarm robots by utilizing a communication mecha-
nism called the wave-oriented swarm paradigm, which is inspired by fireflies and the slime
mold [24]. There are other nature-inspired communication mechanism options available,
such as pheromone communication [25,26] and bioluminescence [27]. However, the wave-
oriented swarm paradigm offers a unique approach to the problem of aggregation, and has
been shown to be effective in a wide range of behaviors [24]. However, this method requires
the swarm robots to form a connected graph at the beginning, since the intercommunica-
tion between robots allows only single-bit information signal in each transmission, i.e., the
content of message is not explicit. If a robot is not in a cluster but within a communication
range, it should pay attention to a cluster for a while to estimate cluster size before deciding
whether to join or proceed. This process can be redundantly repetitive, since robots cannot
distinguish among many clusters. Hence, the communication mechanism should help
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robots have the capability to explicitly transfer their estimated cluster size to overcome
this situation.

In this study, a communication mechanism is proposed that is inspired by the slime
mold aggregation process but uses modulated messages instead of single-pulse information
like in ordinary mechanism. Each transmission of robot is modulated onto the medium by
using binary amplitude shift keying (B-ASK). Each transmission contains n+1 bits, including
1 start bit and n-message bits. Connectionless protocol is implemented to optimize the
transfer time. The transmission is said to be successful if n + 1 bits are completely received.
The overview of the proposed mechanism used to estimate the cluster size is outlined
briefly as follows.

As soon as a robot switches to the aggregating state, it will begin the process of
estimating the cluster size. During this process, the robot’s communication system will go
through three states: active, inactive and refractory. At the beginning, the robot is in an
inactive state, in which it waits for a message from its neighbors. If any message is received
and recognized, the robot will enter the active state. In this state, the robot broadcasts its
currently estimated cluster size to its neighbors for a time interval Tact, which is the required
time for message transmission. This state transition will trigger a series of transmissions
throughout the entire cluster. To avoid a broadcast storm across the cluster, due to the signal
bouncing back and forth between robots, instead of going back to an inactive state, robots
will enter the refractory state. In the refractory state, the robot’s communication system is
disabled for a time interval Tre f after successfully transmitting its message. Then, the robot
switches back to an inactive state and continues to wait for messages from its neighbors.

Moreover, in an inactive state, robots have a chance to switch to an active state with
probability pt to self-trigger a message that is equivalent to initializing a wave in a cluster.
The self-triggered message of a robot causes all the remaining robots in the cluster who
are in the inactive state to be triggered to broadcast their owned knowledge, resulting in a
wave-like propagation of messages. This kind of wave have three main characteristics:

• A wave has only one source;
• A wave spreads away from the source;
• A wave is eliminated by colliding with refractory robots.

From the first two wave properties, it can be derived that a wave is capable of affecting
all robots in the cluster but only once per robot. From there, the idea of estimating cluster
size is given by counting the number of waves between the two adjacent self-triggered
messages. By this idea, a robot should take the effect of N − 1 waves before initializing a
wave in a cluster of N robots. Hence, each individual can estimate cluster size by counting
the number of messages relayed between its own self-triggered messages. However, the
durations between two self-triggered messages Tp,i has the form of a Poisson distribution,
so the estimated value significantly fluctuates over time. For this reason, ñi is determined
by taking the average value of mb successfully estimated processes.

However, the wave may not propagate throughout the whole cluster due to suspension
by refractory robots caused by other waves. In this way, the estimated cluster size is often
smaller than the actual cluster size. This effect cannot be eliminated due to the strong
randomness of the method. However, a select priorate pt can reduce this effect in each
individual. Furthermore, the estimated cluster sizes received from neighbors can be used
to reduce the effect of a stochastic component of the proposed method over the cluster.

By employing the proposed mechanism, robots which are in an aggregating state can
estimate the cluster size, and roaming robots can obtain the information when they are in
the communication range with aggregated robots. The overall process is implemented to
communicate threads that provide the estimated cluster size. The communication thread is
described in the form of pseudo-code in the next section.

5. Navigation Algorithm

In roaming state, a simple finite state machine is implemented for robot motion to
avoid collision based on measuring the reflective infrared signal. Let pthresh be the proximity
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sensor threshold and pi, f ront, pi,le f t and pi,right denote the measured value of reflective IR
light pulse from the front, left and right sensors of Ri, respectively. All infrared sensors’
measured values are positively correlative to distance to obstacles. In this way, the FSM
implemented for the proposed robot platform used for roaming is described in Algorithm 2.

Algorithm 2: Roaming_motion.

Input: pthresh
pi, f ront, pi,le f t, pi,right← communication_thread
If pi, f ront > pthresh then

If pi,le f t > pthresh then
If pi,right > pthresh then Move forward
Else Turn left

Else
If pi,right > pthresh then Turn right
Else Move backward

Else
If pi,le f t < pi,right then Turn right
Else Turn left

End

Note that the process of measuring pi, f ront, pi,le f t and pi,right would be performed if
there is no received message for a while. The value of these measurements can be incorrect
due to incoming infrared signals from other sources. However, since these measurements
require very short time to acquire value, the fault probability is also very small.

During the roaming state, a robot observes many clusters and checks expectations to
make a decision. Even if the robot has already determined the cluster to join, there are
still other problems that need to be solved in order for the robot to successfully aggregate.
The most major problem is navigating the robot to the desired cluster. In this study, the
navigation algorithm that utilizes the proposed communication mechanism to help robots
identify the direction from where most signals originate from, which will be referred to as
the average origin of wave (AOW) [24], is applied. Each time robot in cluster receives a
message, they will store the direction of the source in a list αi =

{
αi,1, αi,2, . . . , αi,k

}
where

k = ñi. αi,j, where j ∈ {1, 2, . . . , k} is defined as the estimated bearing angle with respect to
the local frame of Ri.

αi,j = atan2

(
m

∑
l=1

pi,l sin(βi,l),
m

∑
l=1

pi,l cos(βi,l)

)
(6)

where pi,l and βi,l are the peak of the signal measured from the received message on the lth
sensor and heading of the lth sensor with respect to the local frame of Ri. Each time a robot
triggers a wave, the estimated origin of the wave is determined by finding the mean value
of αi, which is denoted as α̃i.

α̃i = atan2

(
1
k

k

∑
l=1

sin(α̃i,l),
1
k

k

∑
l=1

cos(α̃i,l)

)
(7)

Due to the randomness of cycle length, the values of α̃i significantly fluctuate. Hence,
the estimated AOW is obtained by the average list of value α̃i throughout mc-cycles.
However, this approach relies on parameters from the communication mechanism. The
wave initiation probability pt should be large enough for every agent to ping in a slot
in which to keep the waves from colliding with each other as low as possible, therefore
providing a more accurate estimation of the average origin of message. The proposed
AOW method is implemented in the communication thread, which is described briefly in
pseudo-code below (Algorithm 3).
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Algorithm 3: Communication_thread. Pseudo-code used to operate communication system of Ri

Input: pt, Tact, Tre f , mb, mc
Global variables: state, ñi, list_ñi, ntemp,i, αi, list_α̃i, ãtemp,i
While true do

While si = 0 do Update Ei, pi, f ront, pi,le f t, pi,right
state← inactive , bu f fi ← {0} , ntemp,i ← 0 , ñi ← 0
While si = 1 do

If state = re f ractory then
If tre f ≤ 0 then state← inactive Else tre f ← tre f − ∆t

If state = active then
If tact ≤ 0 then state← re f ractory , tre f ← Tre f Else tact ← tact − ∆t

If state = inactive then
If receive message then

Update pi,1, pi,2, . . . , pi,m
Wait for message;
If message is recognized then

state← active , tact ← Tact , ntemp,i ← ntemp,i + 1
Append estimated bearing angle to αi

Else if pt < random ∈ [0, 1] then
state← active , tact ← Tact
If |list_ñi| ≥ mb then pop first element of list_ñi

append ntemp,i to list_ñi
ñi ← average value of list _ñi + 1
ãtemp,i ← mean value of αi

If |list_α̃i| ≥ mc then pop first element of list_α̃i
append ãtemp,i to list_α̃i
ãi ← mean value of list _α̃i

Else Update pi, f ront, pi,le f t, pi,right
End

End
End

End

According to α̃i, a robot can approach the desired cluster. Note that α̃i is considered
as the desired heading with respect to the local frame of Ri since the components that are
used to calculate α̃i are also with respect to the local frame of Ri. Hence, α̃i can be directly
used as the desired heading deviation. By using the proportional parameter κ, the angular
speed ωi can be determined by employing Equation (8).

ωi = κα̃i, α̃i ∈ (−π, π] (8)

By the naive approach, the aggregating motion is basically formed by a sequence of
three motions (Algorithm 4). Firstly, the robot will turn with a rate of ωi until the required
heading is within the desired heading error tolerance α̃thresh. Then, the robot will move
forward until pi, f ront is less than some threshold. Finally, the robot will stop. However,
because agents determine the desired heading from which they receive the most pings,
the AOW rarely provides a geometrical center of the swarm [24], resulting in a loosely
connected cluster. In order to create a tighter form (without obstacles, they usually create a
circle form), after turning with a rate of ωi, a robot will perform a roaming motion for a
while. That leads to the robot having a greater chance of moving deeper inside the cluster
instead of becoming stuck after approaching its neighbors.
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Algorithm 4: Aggregating_motion

Input: κ

If |α̃i| > α̃thresh then ωi ← κα̃i , Turn with rate of ωi
Else Perform roaming_motion for a while

6. Performance Evaluation

The performances of the proposed model are evaluated through tests conducted in
both simulation and real experiments. All tests use the same robot platform, which is
shown from a top and perspective view in Figure 1. The robot platform is cylindrical in
shape with a radius rR of 25 mm and height of 40 mm, respectively. The inter-wheel lw
and radius of each wheel rw are 40 mm and 20 mm, respectively. The robot is equipped
with six infrared modules with the order shown in Figure 1. With six infrared modules,
the maximum number of neighbors of each robot obviously is six also. Without adding
information, the default communication range rc and default sensing range rs of these
infrared modules are approximately 180 mm and 20 mm, respectively. For convenience, the
proximity sensor threshold pthresh is set to a value which is equivalent to the sensing range
rs. Finally, the robot linear speed can reach 35 mm/s. However, due to the communication
speed not being fast enough, hence, the maximum linear speed VR,max is set to 20 mm/s
according to the experiments.
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To evaluate the proposed model, two performance evaluation metrics that were
proposed in [28] and have been used in many previous studies [14,25,29] were employed
in this study. They are the dispersion metric and the cluster metric. The dispersion metric
evaluates the model by measuring the total distance between the individuals’ position Pi
and the centroid of swarms, which is defined as the average value of the robots’ position
1
N

N
∑

i=1
Pi. In this way, the aggregation process aims to minimize the dispersion of the swarm.

However, since the distance between robots depends on the physical size rR and negative
feedback caused by proximity sensor threshold pthresh, hence, the dispersion of the swarm
is normalized by 1

4(rR+rs)
2 . Let qd be the dispersion of swarm at time t. The qd can be

determined by employing Equation (9).

qd =
1

4(rR + rs)
2

N

∑
i=1

∥∥∥∥∥Pi −
1
N

N

∑
i=1

Pi

∥∥∥∥∥
2

(9)

The second employed metric is a cluster metric, which is indicated by the ratio of the
largest cluster size in the arena and the swarm size. If two robots are in an aggregating
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state and the distance between them is less than rR + rc, they are said to be two adjacent
robots. Based on this condition, a cluster size can be determined by a recursive search
algorithm implemented in observers. By sorting cluster sizes, the largest one is determined.
Let qc be the cluster metric of the swarm. The qc value can be determined by employing
Equation (10).

qc =

Argmax(S)
ni

N
(10)

However, the focus is on the steady state of the aggregation process in which a swarm
robot forms a single aggregate cluster which is equivalent to qc = 1. The aggregation
process is not directly analyzed in this study based on these parameters. There are two
evaluated parameters derived from the proposed metrics: time to complete aggregation
process tcap and dispersion of aggregation at steady-state qds. In some cases, when a single
aggregate cluster cannot be formed, qds can be considered as the mean of qd for the whole
process. The tcap is defined as the time in which 75% of robots in a swarm form a single
cluster the first time or qc = 0.75. The reason for choosing 75% is to balance the exploitation
and exploration behavior. Due to the balance of exploitation and exploration behavior, the
dynamic cluster is formed in which it is almost impossible to archive qc = 1 in any case.
Meanwhile, qds is applied to evaluate the dispersion of the swarm cluster and is defined as
the mean of qd when a single aggregate cluster is formed.

6.1. Simulation

In this test, robots are simulated in a 2D environment where each robot is considered
as a disk with the same parameters described above. The default size of the test arena is
5000 × 5000 mm2. The simulation was conducted with the default swarm size N = 100.
The robot is programmed to have a 3% loss rate for receiving messages from its neighbor
due to noise. The message transmission time is fixed to 10 ms.

Due to the strong randomness of experimental contexts and the communication
mechanism, the results of the aggregation process based on the proposed metrics are
significantly deviated. Hence, to investigate any context parameters or controller parameter,
the final result should be based on the statistics of data of many experiments. Moreover,
the limitation of computational time per experiment can take up to more than one hour
to complete the aggregation process. To evaluate the proposed approach, only 20 runs of
each experiment were performed. The statistics values of these evaluations are reported,
which gives an estimated general performance regarding the introduced metrics. However,
to accelerate the evaluations, evaluating tcap and qds is performed in different conditions.
When evaluating tcap, the default condition is employed. Meanwhile, to evaluate qds,
swarm robots will be distributed in a very small area in the arena to force them to form
a connected communication network in the whole swarm. The default initial constant
and parameters used in simulation are listed in Table 1. In this way, four evaluations are
conducted: the effect of swarm density, effect of the communication range, presence of
obstacle and flexibility of the proposed algorithm. By these default settings, if the swarm
robot randomly distributed in the arena, then qds > 380. The single aggregate cluster
should have qds < 100 and can be maintained with qc > 0.75 over time.

Table 1. Constants and default parameters used in simulations and real experiments.

Parameter Description Value

ςd Rate of change of desire under disappointment effect 0.3/s
ςm Rate of change of desire under motivation effect 1/s
pt Wave initiation probability 0.004

Tactive Duration of active state 10 ms
Tre f ractory Duration of refractory state 15 ms
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Table 1. Cont.

Parameter Description Value

κ Proportional parameter in heading control 0.2
pthresh Distance between robots in cluster rs

mb Estimated swarm size buffer length 10
mc Average origin of wave buffer length 5

6.1.1. Effect of Expectation Rate

The rate of change of expectation ςi is under three effects, which are represented by
two parameters: ςd and ςm, which can be considered as controller parameters. Hence,
in this section, the parameters are analyzed to optimize the aggregation process in terms
of time. The first parameter ςd causes ςi to decrease over time during the roaming state.
Hence, ςd should be selected appropriately to help robots have enough time to explore
the arena but should not produce a redundant exploration time. If ςd is too small or even
zero, the convergence of the aggregation process emerges in a short time. However, the
motivation effect keeps each robot’s expectation growing over time during the aggregating
state, causing robots to gradually leave the single aggregate cluster. That leads to the swarm
disbanding, which is an undesirable phenomenon. On the other hand, if ςd is too large,
robot expectation drops rapidly. That leads each robot to easily return to the cluster it just
left, and there will be many small clusters in the arena. However, if the roaming speed is
high enough, it can remain in the same explored space. Hence, to optimize the process in
terms of time, the test is performed with the roaming speed set to VR,max when ςd varies in
a given set {0.001, 0.01, 0.1, 1.0, 10.0}. The results of this test are shown in Figure 2.
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According to the results in Figure 2, the effect of ςd on the swarm aggregation behavior
is predictable. The larger ςd is, the slower the convergence rate of the aggregation behavior.
Moreover, a single aggregate cluster can be formed in any range of ςd but cannot be
maintained in any range. Here, ςd should have a minimum value of 1 to satisfy the single
aggregate cluster conditions.

Based on the results shown in Figure 2, ςd = 1 is chosen to optimize the aggregation
process in terms of time. However, selecting ςm is more complicated. ςm both increases and
decreases robot expectation, depending on the number of neighbors. ςm has an impact on
the life cycle of the cluster. If ςm is too small, the robot’s behavior is more inclined toward
exploitation and vice versa. If the aggregation process has not finished yet, large ςm values
accelerate the convergence. However, with large ςm, the robot returns to leaving the cluster,
forming a high dynamic cluster. That leads to suboptimal aggregation behavior.

In conclusion, high motivation results in fast convergence but unstable aggregation.
According the results in Figure 3, ςm should be chosen smaller than or at most equal to 1 to
satisfy the qds condition. The simulation with ςm > 3 is difficult to converge in most cases,
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and tcap cannot be recorded. This situation also occurs when ςm < 3; the convergence of
the aggregation process takes a very long time, which cannot be performed in the given
simulation hardware. In order to optimize the process in terms of time, ςm = 1 is chosen.
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Generally, ςm is also positively correlated to ςd in order to balance between exploration
and exploitation behaviors. Hence, ςm and ςd should be investigated simultaneously.
However, due to the limitation of computational time, ςd is investigated while ςm is set
to 1.

6.1.2. Effect of Swarm Size

In this section, the aggregation performance is examined to see how it is affected by
the swarm size. During this test, the swarm size is varied when the arena size is constant.
Eight sets of experiments with N ∈ {25, 50, 75, 100, 125, 150, 175, 200} are investigated. In
this section, the aggregation behavior is evaluated using only tcap, since the dispersion
metric depends on the swarm size. The results of the test are shown in Figure 4.
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In a low-density swarm, the aggregation process seems to converge faster despite
having the same communication range. However, the trend remains the same as long as
N ≥ 50. Due to high motivation, the robot cannot stay long in a small cluster, and hence, it
can easily switch back to a roaming state. For swarms with a size lower than 50, the robot
is unlikely to form large clusters, and so the aggregation process is almost impossible with
a low robot density. Hence, the tcap value of a swarm with a size of 25 cannot be recorded.

The interquartile range of results in the low-density swarm is also lower. Generally,
the interquartile range of tcap is caused by the local convergence in the aggregation process.
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This phenomenon appears when many clusters of the same size emerge. The maximum
value of tcap is archived when the swarm forms two clusters of equal size. Moreover, this
phenomenon will become more common as the size of the swarm increases. However, if
the size is increased enough for the swarm to form a continuous network at the beginning,
this phenomenon seems to be absent or occurs with very little frequency. As the results
in Figure 4 show, the swarm which has a size of larger than 150 almost converges at the
beginning of the aggregation process.

Thus, with the initially selected parameters, the aggregation process can be completed
with a large swarm size of 50. For swarms with a size of less than 50, ςm and ςd should be
small enough to help robots have enough time to explore in an arena with a low swarm
size and increase the lifetime of the cluster.

To illustrate the quality of the aggregation method, the captures of the aggregation
process of typical cases in a set of experiments with swarm sizes of 50, 100 and 200 are
shown in Figure 5. In case of N = 50, the convergence of the process is very fast. However,
due to the swarm size being small compared to ςm, the aggregation of the swarm is unstable.
This problem is solved when N = 100, but tcap also increases rapidly.
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6.1.3. Effect of Communication Range

In this section, the effect of communication range rc on the aggregation process is
evaluated. This factor has a great influence on capability of the proposed model. By
increasing rc, a single aggregate cluster can be archived in a swarm with a size of less than
50. By the default settings, a communication range rc varies in a set {175, 263, 350, 438, 525},
and tcap values are evaluated. The results of this test are recorded in Figure 6.

According to the result, the effect of rc on the aggregation process follows the same
trend as that of swarm size N. For short transmission distances, small clusters will have
less chance of contacting roaming robots than large clusters. So, in this case, the large
clusters grow very quickly, and the process quickly converges. As the transmission distance
increases, the probability of the robot participating in small and large clusters also gradually
becomes equal, so the possibility of local convergence is also more likely. This leads to
an increase in the interquartile range of tcap. However, when the propagation distance is
increased to a large enough value that the swarm can form a continuous network involving
most of the robots at the beginning, both the mean of tcap and its deviation decrease rapidly.
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As the results in Figure 6 show, with the given arena size, if rc ≥ 525, a single aggregate
cluster can be formed immediately after the process starts.
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6.2. Experiments

The simulation results are reviewed in this section, which are obtained by conducting
experiments with robots, as shown in Figure 1. The aggregation studies are carried out
with 16 robots on a 120 ∗ 240 mm2 white flat arena. The expectation rates obtained from the
simulation cannot be applied in the case of low swarm sizes, as described in the effect of
the swarm size section. Additionally, the arena size limitation has a significant impact on
the method’s performance. As a result, several tests must be carried out in order to achieve
adequate qc and qd that adapt to small swarm sizes before an evaluation can be made.

The systems utilized to track and observe robot information are used to derive values
of qc and qd in these tests. These devices are just used to monitor and track robot states
throughout the aggregation process and have no impact on the swarm’s performance. One
camera, hung upside down 200 mm from the arena, and a server make up the tracking
system. The camera connects wirelessly and sends streaming photos to the server, which
processes the images to track the movement of swarm robots. Furthermore, each robot
is equipped with a Wi-Fi module that is built into the robot’s main board. These Wi-Fi
modules are used to send the state of the robot and its neighbors to the server in order to
obtain the qc and qd values.

To test the effect of ςd to qc and qd, five sets of experiments which consist of
ςd = {0.001, 0.01, 0.1, 1, 10} are performed with 10 trials per set. The results shown in
Figure 7 have trends similar to the one in simulation (Figure 2). However, because the
arena and swarm sizes are so small in comparison to the simulation, the time it takes for
robots to explore the arena is cut in half, and local convergence is infrequent, resulting in
lower tcap. When ςd < 0.1, tcap is only about 70s, but the single aggregation cluster has
quickly vanished. To optimize the aggregation process, ςd = 0.1 is selected.
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The influence of ςm is also investigated with values of 0.001, 0.01, 0.1, 1 and 10, with
the results divided into two cases. In the first one, when ςm ≤ 1, the relationship between
ςm and tcap in experiments is virtually constant with values comparable to those shown in
Figure 7a with corresponding ςd. This is due to the fact that the size of the arena and the
size of the swarm in tests are unlikely to generate local optimal results. That means that
throughout their exploration, swarm robots are more likely to identify a single aggregate
cluster rather than construct a single member cluster. As a result, with ςm ≤ 1, the robot has
enough time to participate in the single aggregation cluster before members of this cluster
leave due to increasing expectations. Meanwhile, when ςm = 10, the expectation growth of
members in the single aggregation cluster is very large compared to the default value of ςd.
Hence, the swarm will always rapidly fill in their expectations and leave a cluster, and the
swarm will spend the majority of its time roaming. As a result, tcap is unable to be recorded
and qds grows exceedingly huge. The relationship between ςm and qds may be observed in
Figure 8. Furthermore, ςm ≤ 0.1 provides a high-quality aggregation cluster with qds < 80.
Based on these observations, ςd can be an arbitrary chosen value less than 0.1. However, to
avoid the case of local optimization, where many clusters of the same size are formed, ςd
should be large enough to promote the emergence of a single aggregation cluster. Hence,
ςm = 0.1 is chosen to optimize the aggregation process in both a typical case and a local
optimization case.
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Figure 9 shows captures of a typical aggregation process in a real scenario with
ςm = 0.1 and ςd = 0.1. This process has tcap = 75s and qds ≈ 60, which meet the
requirements of the aggregation process results. In the first capture, when T = 0, the robots
used in the process were manually distributed in the arena with qd > 400. After receiving
the aggregation instruction from the server, all of the robots in the swarm undertake the
aggregate task at the same time. In the first 20 s, robots generate a slew of small, disjointed
clusters. However, due to the tiny arena size, these clusters immediately linked with one
another, resulting in a single aggregation cluster after around 60 s. The process continues
until the collection stabilizes, and then, qds is recorded.
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7. Conclusions

In this study, the microscopic model for the aggregation behavior of swarm robots has
been proposed with the presence of two main control parameters: subjective expectation
and estimated cluster size. The proposed model consists of the communication mechanism
which helps robots estimate the cluster size and navigate them to the desired cluster. All of
the test is based on the results of two factors tcap and qds that derived from the cluster metric
and dispersion metric, respectively. Model parameters have been chosen by employing
simple statistical methods and perspicuous analysis. Some scenario parameters are also
investigated to evaluate the performance of aggregation behavior when the proposed
model is implemented.

The introduced model is scalable, but it still has some constraints due to the constant
control parameters. According to the given value of the control parameters in the previous
section, the proposed model cannot help a swarm with size of below 50 aggregate into
a single aggregate cluster. However, a single aggregate cluster can be truly formed by
employing this model with reasonably selected parameters.

The proposed model can be improved to remove its limitation, but it is out of the
scope of this study. In the future, the proposed model can be extended as follows:
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• Control parameters ςd and ςm can be varying over time based on a history log of the
previous estimated cluster sizes and the ratio of roaming time and aggregating time.
In this way, proposed model can adapt to a low-density swarm size;

• By analyzing the effect of wave initiation probability pt on the cluster size estimating
performance and the history log of the previous estimated cluster size, pt can be
controlled by an individual instead of initializing it from the beginning.

• Previously studied models would be applied in experiments to evaluate and compare
their performance to the one of the proposed models. The robustness of the model
will be further assessed in more complex and realistic environments.
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17. Soysal, O.; Şahin, E. A macroscopic model for self-organized aggregation in swarm robotic systems. In International Workshop on
Swarm Robotics; Springer: Berlin/Heidelberg, Germany, 2006.

18. Jeanson, R.; Rivault, C.; Deneubourg, J.L.; Blanco, S.; Fournier, R.; Jost, C.; Theraulaz, G. Self-organized aggregation in cockroaches.
Anim. Behav. 2005, 69, 169–180. [CrossRef]
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