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Abstract: Factory safety inspections are crucial for maintaining a secure production environment.
Currently, inspections are predominantly performed manually on a regular basis, leading to low
efficiency and a high workload. Utilizing inspection robots can significantly improve the reliability
and efficiency of these tasks. The development of robot localization and path planning technologies
ensures that factory inspection robots can autonomously complete their missions in complex envi-
ronments. In response to the application requirements of factory inspections, this paper investigates
mapping, localization, and path planning methods for robots. Considering the limitations of cameras
and laser sensors due to their inherent characteristics, as well as their varying applicability in different
environments, this paper proposes SLAM application systems based on multi-line laser radar and
visual perception for diverse scenarios. To address the issue of low efficiency in inspection tasks, a
hybrid path planning algorithm that combines the A-star algorithm and time elastic band method is
introduced. This approach effectively resolves the problem of path planning becoming trapped in
local optima in complex environments, subsequently enhancing the inspection efficiency of robots.
Experimental results demonstrate that the designed SLAM and path planning methods can satisfy the
inspection requirements of robots in complex scenarios, exhibiting excellent reliability and stability.

Keywords: complex scenes; inspection robot; SLAM; path planning

1. Introduction

With the introduction of “Industry 4.0”, robotics technology has rapidly advanced.
Among such technologies, inspection robots have been extensively used in aerospace, man-
ufacturing, agriculture, service industries, and other fields due to their superior flexibility,
mobility, and functionality [1,2]. Xu et al. proposed the pulsed eddy current testing (PECT)
method, which is sensitive to defects in brazed foils. By using a robotic arm, the PECT
probe is scanned above the panel specimen in motion. This method can effectively detect
incomplete brazing defects in local areas of stainless steel core panels [3]. Foumani et al.
proposed a method to minimize the partial cycle time of such cells for three different in-
spection scenarios: in-process, post-process, and in-line. This method was used to evaluate
a basic two-machine robotic rework cell and determine whether it is technically profitable
to replace an in-process (or post-process) inspection scenario with an in-line inspection sce-
nario [4]. As inspection application scenarios become more diversified and complex, higher
requirements are placed on the autonomous navigation performance of robots. Robot
navigation technology mainly consists of SLAM technology and path planning technology.
Simultaneous Localization and Mapping (SLAM) is the process by which a mobile robot
determines its own position and creates a map through sensors carried in the surrounding
environment. Path planning technology creates the optimal navigation path for the robot
to reach the target location based on different task goals and requirements.

SLAM technology can be classified into two categories based on different sensors:
vision-based and LiDAR-based. The MonoSLAM method proposed by Davison et al. es-
timates the camera pose by extracting sparse feature points frame by frame, which was
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the first real-time visual SLAM system using a single camera [5]. Subsequently, Klein et al.
proposed the PTAM method, which introduced nonlinear optimization and a keyframe
mechanism [6], solving the problem of high computational complexity in MonoSLAM.
Newcombe et al. proposed a dense per-pixel method based on an RGB-D camera, which
can achieve real-time tracking and reconstruction [7]. As for LiDAR-based SLAM meth-
ods, Grisetti et al. proposed a 2D SLAM algorithm based on particle filtering, which
solved the problem of particle dissipation caused by resampling by reducing the number
of particles [8]. Konolige et al. proposed the first open-source algorithm based on graph
optimization by using highly optimized and non-iterative square-root factorization to spar-
sify and decouple the system [9]. Kohlbrecher et al. designed the Hector SLAM algorithm,
which matches the current frame’s LiDAR data with the factor graph and optimizes the
pose using the Gauss–Newton method to obtain the optimal solution and bias [10]. Sensor
fusion is also crucial. Xia et al. proposed an autonomous vehicle sideslip angle estimation
algorithm based on consensus and vehicle kinematics/dynamics synthesis, which solves
the observability issue of the heading error by utilizing a multisensor fusion framework
incorporating GNSS, IMU, and onboard sensors. This approach enhances the reliability
and accuracy of sideslip angle estimation under various automated driving conditions [11].
Xia et al. proposed a method for the IMU and automotive onboard sensors to estimate
the yaw misalignment autonomously by analyzing the observability of yaw misalignment
through the piece-wise constant system (PWCS) and singular value decomposition (SVD)
theory, addressing the difficulty of directly measuring yaw misalignment [12]. Liu et al.
proposed a new YOLOv5-tassel algorithm, which introduced the attention mechanism of
SimAM. This improves the accuracy of tassel detection in UAV-based RGB imagery [13].
Xia et al. proposed a data acquisition and processing platform for automated driving sys-
tems (ADSs) based on connected automated vehicle (CAV) cooperative perception, which
is utilized for vehicle trajectory extraction, reconstruction, and evaluation, addressing
challenges such as noise, outliers, and ID switches in object detection and tracking [14].

The aim of path planning is to plan an optimal collision-free path from the starting
point to the destination point in the mapped environment. Path planning can be divided
into global and local path planning according to whether the environmental information is
known in advance. Dijkstra et al. proposed the shortest path planning algorithm, which
uses a breadth-first search to search for paths [15]. Hart et al. proposed the A-star algorithm,
which reduces the search nodes by using a heuristic evaluation function and improves the
efficiency of path searching [16]. Fox et al. proposed DWA, which dynamically samples the
velocity in the robot’s sampling space according to the robot’s kinematic model and current
motion parameters and selects the best trajectory [17]. To address the insufficient evaluation
function of DWA, Chang et al. proposed an improved DWA algorithm based on Q-learning,
which modifies and extends the evaluation function and adds two evaluation functions to
improve the navigation performance and achieve a higher navigation efficiency and success
rate in complex unknown environments [18]. Rösmann et al. proposed the time elastic
band algorithm based on multi-objective optimization, which ensures that the robot can
output a smooth trajectory under the premise of satisfying its kinematic constraints [19].

Both LiDAR and camera sensors are essential for factory inspections, but their appli-
cability depends on the specific application scenarios and factory environments. LiDAR
is suitable for long-distance and high-precision measurements, such as inventory man-
agement in large warehouses and position control in robot operations. However, LiDAR
has limitations in processing details and colors, making it unsuitable for scenes with high
visual requirements. Camera sensors, with functions such as image recognition, detection,
and tracking, are ideal for environments that require high-precision visual detection and
recognition, such as detecting product dimensions, shapes, and colors and performing
automated visual inspections during assembly processes on production lines. In addition,
camera sensors have strong processing capabilities for details and colors, providing more
detailed image information. However, camera sensors are highly dependent on ambient
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light, which can limit their effectiveness in poor lighting conditions or when obstacles
are present.

This article describes the navigation system of an inspection robot designed for com-
plex real-world scenarios, as shown in Figure 1. We designed two sets of SLAM systems
based on multi-line LiDAR and vision sensors to meet the inspection needs of robots in
different environments. For the visual SLAM system, RGB-D images were first collected
as external inputs, and then the features of the images were extracted, loop-closure detec-
tion was performed, and global mapping optimization was used to obtain a point cloud
map. For the laser SLAM system, laser radar scans of the environment were collected first,
and then features such as corners and edges were extracted from the scans. Finally, these
features were used to construct a 3D point cloud map of the environment. After obtain-
ing the point cloud map of the visual or laser SLAM system, the A-star algorithm was
used for global path planning to improve navigation efficiency and help the robot quickly
plan the optimal path. Then, the time elastic band algorithm was introduced to perform
real-time path planning based on changes in the environment and obstacles. Ultimately,
autonomous navigation and obstacle avoidance of the inspection robot were achieved in
complex scenarios. The main contributions are listed as follows:

• We designed a SLAM application system based on multi-line laser radar and vision
that can be applied to different scenarios.

• We propose a hybrid path planning algorithm that combines the A-star algorithm and
time elastic band algorithm. It effectively solves the problem of local optima in path
planning in complex environments, improving robot inspection efficiency.

• The two SLAM application systems share a set of hybrid path planning algorithms to
achieve high-precision navigation inspection tasks.

The overall structure of this article is as follows. Section 2 presents the SLAM systems
based on visual sensors and multi-line LiDAR sensors. Section 3 introduces a hybrid
path planning algorithm that combines the A-star algorithm as the global path planning
algorithm and the TEB algorithm as the local path planning algorithm. Section 4 describes
the performance evaluation of visual SLAM, LiDAR SLAM, and hybrid path planning
algorithms on the ROS platform. Finally, Section 5 concludes this work and provides
future outlooks.

Visual SLAM

Laser SLAM

Path Planning

RGB-D Image

Add Key-Frame to Graph

Loop Closure Detection

Graph Optimization

Map

Point Cloud

Segmentation

Feature Extraction

 Lidar Mapping

Downsampling

Scan-to-map

Pose

Target Position Current Location Map Location

A-star Algorithm

Initialization Path Local Map

Build Hypergraph

TEB Algorithm

Iterative Optimization

Global Costmap

Expected AccelerationExpected Speed

Feature Extraction

Figure 1. System framework.

2. Inspection Robot SLAM System
2.1. Visual SLAM Algorithm Design and Implementation

In the factory environment, the position and motion of inspection robots and equip-
ment may undergo rapid changes, thus requiring the real-time acquisition and processing of
sensor data for accurate localization and mapping. To achieve this, we chose an appearance-
based localization and mapping method that is invariant to time and scale, as shown in the
structural diagram in Figure 2.
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Figure 2. Vision-based SLAM system structure diagram.

In Figure 2, it can be seen that RGB-D images are used as external input, and the ORB
algorithm is used to extract feature points from the RGB-D images [20]. Then, a Bag-of-
Words-based image matching method is used to match feature points between adjacent
frames. The loop-closure detection mechanism is introduced to eliminate drift. When
the robot returns to an area previously visited, loop-closure detection can identify the
area and match the newly observed data with the previous map data, thus addressing the
cumulative drift problem. Next, graph optimization is performed, where the robot’s poses
are represented as nodes in the graph, and the observed data are represented as edges.
Then, the least-squares method is used to optimize the positions of all nodes, minimizing
the error between observed and predicted data. Finally, a dense map can be generated.

This vision-based mapping and localization algorithm utilizes global and local loop-
closure detection techniques, which can identify and handle errors and drift in sensor data,
improving the robustness and accuracy of localization and mapping and enhancing the
efficiency and real-time performance of inspection robots.

2.2. Multi-Line LiDAR-Based SLAM Algorithm Design and Implementation

In indoor factory environments, lighting conditions can vary with time and location,
which may lead to the misidentification of objects or inaccurate positioning by visual
sensors. However, laser sensors do not require an external light source, as they emit
their own laser beams and are not affected by lighting issues. Therefore, we adopted a
lightweight and ground-optimized laser odometry and mapping method, whose structural
diagram is shown in Figure 3. Firstly, the laser point cloud data are dimensionally reduced
by projecting the 3D laser onto a 2D depth image, segmenting the ground according to the
pitch angle, clustering non-ground point clouds, and obtaining labeled point cloud data.
Then, feature extraction is performed based on smoothness, resulting in four sets of feature
point clouds. Constraint relationships are established for the feature point cloud sets,
and the 6-DOF pose transformation matrix is solved using the Levenberg–Marquardt (LM)
optimization method. Subsequently, loop detection is conducted using the Iterative Closest
Point (ICP) algorithm, and finally, the current point cloud is mapped to the global map
based on graph optimization, completing the establishment of a high-precision map [21].

Mapping Location

 Lidar Mapping Scan-to-map

SegmentationPoint Cloud Feature Extraction

Pose

Downsampling

Figure 3. Multi-line LiDAR-based SLAM system structure diagram.



Electronics 2023, 12, 2178 5 of 16

(1) Point cloud segmentation: Due to the complexity of the inspection environment
and other factors, noise may exist in the laser point cloud data. We first use point cloud
segmentation to filter out noise. By projecting a frame of the 3D point cloud onto a 2D
depth image using a projection method, ground segmentation is performed to separate
non-ground points [22]. Let Pt = p1, p2, . . . , pn be the point cloud data obtained by the
LiDAR at time t, where Pi is a point in Pt. These points are projected onto a depth image,
and the 3D points in space become 2D pixels in space. After projection, the Euclidean
distance ri of point Pi to the sensor is obtained. Since the 3D point cloud contains a large
amount of ground information, it is necessary to filter the point cloud to improve the
efficiency and accuracy of feature extraction. Firstly, the ground points are labeled, and the
labeled ground points will no longer be segmented in subsequent steps. After separating
ground points and non-ground points, the non-ground points are processed by clustering.
After this module, each point has its own segmentation label (ground or non-ground), row
and column indices in the depth image, and the Euclidean distance ri to the sensor.

(2) Feature extraction: According to the smoothness, the projected depth image is
horizontally divided into several sub-images. For each sub-image, the following process is
performed [23]: Let S be the set of continuous points in the same row in the depth image,
and calculate the smoothness c of point Pi.

c =
1

|S| · ‖ri‖

∥∥∥∥∥ ∑
j∈S,j 6=i

(
rj − ri

)∥∥∥∥∥ (1)

where ri and rj are the Euclidean distances from points Pi and Pj to the sensor. According
to Equation (1), the smoothness of each point can be calculated, and then the smoothness is
sorted. After sorting, feature points are selected. Different types of features are segmented
based on the set threshold cth. The edge points with a smoothness c greater than cth are
selected as set Fme, and the plane points with a smoothness c less than cth are selected as set
Fmp. The largest nFme edge points with the maximum c value and the smallest nFmp plane
points with the minimum c value are selected from all sub-images to form the edge feature
point set Fme and the plane feature point set Fmp. Then, nFe edge points not belonging to
ground points with the maximum c value are selected from set Fme to form set Fe, and nFp

plane points belonging to ground points with the minimum c value are selected from set
Fmp to form set Fp. Obviously, Fe ⊂ Fme and Fp ⊂ Fmp.

(3) Radar odometry: The odometry module estimates the robot’s pose change between
adjacent frames using a radar sensor. In the estimation process, tag matching is used to
narrow down the matching range and improve accuracy, and a two-step LM optimization
method is used to find the transformation relationship between two consecutive frames [24].
The first step uses ground feature points Fp to obtain

[
tz, troll , tpitch

]
, and the second step

matches the edge features extracted from the segmented point cloud to obtain the trans-
formation

[
tx, ty, tyaw

]
. Finally, by fusing

[
tz, troll , tpitch

]
and

[
tx, ty, tyaw

]
, a 6-DOF pose

transformation matrix
[
tx, ty, tz, troll , tpitch, tyaw

]
is obtained.

(4) Radar mapping: After obtaining the pose change between adjacent frames with
radar odometry, the features in the feature set Ft

me, Ft
mp at time t are matched with the

surrounding point cloud Qt−1 to further refine the pose transformation. Then, using LM
optimization, the final transformed pose is obtained, and the pose graph is sent to GTSAM
for map optimization to update the sensor-estimated pose and the current map [25].

In addition, noise may exist in the collected laser point cloud data. In order to achieve
high-precision localization on the map, it is necessary to preprocess the high-precision map.
We use a statistical-based robust filter to remove outliers, a pass-through filter to clip the
point cloud within a specified coordinate range, and a voxel grid filter to downsample the
point cloud. For an inspection task that requires high-precision real-time localization, we
perform real-time localization on the constructed high-precision map through point cloud
registration. First, the reference point cloud (i.e., high-precision map) is transformed into
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a multivariate normal distribution [26]. If the transformation parameters can accurately
match the reference point cloud and the current point cloud, the transformed points in the
reference frame have a high probability density. Therefore, an optimization method can be
used to calculate the transformation parameters that maximize the sum of the probability
densities. In this case, the two sets of laser point cloud data match best. The specific
algorithm steps are as follows:

(1) Given the current scanning point cloud S and the reference point cloud T, the space
occupied by the T point cloud is divided into voxel grids of a specified size, and the
expected vector ~µ and covariance matrix Σ of N points in each voxel grid are calculated.

~µ =
1
N

N

∑
k=1

~xk (2)

Σ =
1

N − 1

N

∑
k=1

(~xk −~µ)(~xk −~µ)T (3)

Here, ~xk represents the three-dimensional coordinates of the point cloud in the
voxel grid.

(2) Initialize the transformation parameters to be solved, with zero values or odometry
data. For each sample ~xk in the S point cloud, transform it into the T point cloud according
to the transformation parameters. Let ~x′k be the coordinate of ~xk in the T point cloud
coordinate system. Find the grid where ~x′k falls in the T point cloud, and combine the
probability density function of each grid in the T point cloud to calculate the corresponding
probability distribution function p(~x′k).

p
(
~x′k
)
∼ exp

(
−
(
~x′k − µk

)T
∑−1

k
(
~x′k − µk

)
2

)
(4)

(3) Add up the probability densities calculated for each mapped point to obtain the
registration score.

score(p) = ∑
k

exp

(
−
(
~x′k − µk

)T
∑−1

k
(
~x′k − µk

)
2

)
(5)

Use the Newton optimization algorithm to optimize the objective function until the
optimal transformation parameters are found that maximize the registration score, complete
convergence, and solve the best rigid body transformation between the target and source
point clouds to achieve accurate localization.

3. Inspection Robot Path Planning System
3.1. Sports Model

Currently, the chassis of inspection robots mainly consists of legged, tracked, and
wheeled types, each with its advantages and disadvantages in different environments.
Legged inspection robots have strong terrain adaptability, but their structure and control
system are complex. Tracked inspection robots have high traction and strong applicability
in complex terrains such as outdoor, sandy, and muddy areas, but their speed is relatively
low, and they have high motion noise. Wheeled inspection robots have fast speed, high
efficiency, and low motion noise and are widely used. In this paper, we focus on the
complex indoor factory environment and adopt a two-wheel differential wheeled robot,
whose kinematic model is shown in Figure 4 [27].
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Figure 4. Two-wheel differential robot model.

In Figure 4, the motion of robot Ri(i = 1, 2, . . . , n) is completed by two independently
driven wheels. Let the radius of the driving wheel be ri, and define the midpoint of the
two driving wheels as Oi. The distance between the two wheels is 2bi, where {O, X, Y} is
the inertial Cartesian coordinate system, and {Oi, X, Y} is the local coordinate system of
the robot. vl is the speed of the left driving wheel, vr is the speed of the right wheel, and vc
is the speed of the center of the robot. If vl 6= vr, the angular velocity ωi can be obtained.
According to the robot model, the forward speed depends on the speed of the wheels.

vc =
vl + vr

2
(6)

The angular velocity ω is determined by the difference in speed between the left and
right driving wheels and the distance between them.

ω =
vl − vr

2bi
(7)

In the ideal case, according to the principle of rigid motion, the trajectory of the robot
is a circle, and the radius can be expressed as

R =
vc

ω
=

bi(vl + vr)

(vl − vr)
(8)

The kinematic equation of the robot can be expressed as

q =
[

x y θ
]Tu (9)

V =
[

vc ω
]T (10)

[
ẋ ẏ θ̇

]T
=

 cos θ 0
sin θ 0

0 1

[ 1
2

1
2

1
b − 1

b

][
vl
vr

]
(11)

The above formula is the pose state matrix and motion state matrix, and the final
formula can be written as follows:

q̇ = S(q)V =

 cos θ 0
sin θ 0

0 1

[ vc
ω

]
(12)

where S(q) is a 3 × 2 smooth linearly independent matrix, and V is the motion matrix of
the robot.
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3.2. Path Planning

The path planning of inspection robots mainly relies on the constructed grid map to
generate a safe and collision-free path by specifying the start and target locations. Path
planning for robots can be divided into global path planning and local path planning.

(1) Global path planning

To ensure that the patrol robot can effectively avoid obstacles globally and locally,
and considering that the grid map of the actual road scene is relatively simple, the A-
star algorithm is used as the global path planning method to provide accurate obstacle
avoidance directions for the robot through real-time planning [28,29]. A-star combines a
heuristic search with a breadth-first algorithm to select the search direction through the cost
function f (n) and expands around the starting point. The cost value of each surrounding
node is calculated by the heuristic function h(n), and the minimum cost value is selected as
the next expanding point. This process is repeated until the endpoint is reached, generating
a path from the starting point to the endpoint. In the search process, since each node on the
path is the node with the minimum cost, the cost of the path obtained is also minimum.
The cost function of the A-star algorithm is

f (n) = g(n) + h(n) (13)

where f (n) is the cost function at the current position, g(n) is the cost value from the
starting position to the current position in the search space, and h(n) is the cost value
from the current position to the goal position. In the A-star algorithm, the selection of the
heuristic function is crucial. Since the mapped environment is a grid map with obstacles,
the Manhattan distance is used as the heuristic function, which is given by:

h(n) = |x1 − x2|+ |y1 − y2| (14)

where (x1, y1),(x2, y2) represent the coordinates from the current position to the target
position. In the path planning of the A-star algorithm, the nodes are stored in two lists,
Closelist and Openlist. The nodes that have been searched and generated cost values
are stored in Openlist. The node with the minimum estimated cost is stored in Closelist,
and the moving trajectory is formed by processing the trajectories of each node in Closelist.
The specific steps are as follows:

Step 1. The starting point s of the robot is the first calculated point, the surrounding nodes
are added to Openlist, and the cost function f (n) of each point is calculated.

Step 2. Openlist is searched, and the node with the smallest cost value f (n) is selected as
the current processing node n, removed from Openlist, and put into Closelist.

Step 3. If the real cost value g(n) of the adjacent node from the current processing node
to the starting point s is smaller than the original g(n) value, the parent node of
the adjacent node is set to the current processing node; if it is larger, the current
processing node is removed from Closelist, and the node with the second-smallest
value of f (n) is selected as the current processing node.

Step 4. The above steps are repeated until the target point g is added to Closelist; each
parent node is traversed, and the obtained node coordinates are the path.

(2) Local path planning

The working environment of inspection robots is not always static. In the process of
moving along the global path, real-time obstacles may appear. To avoid collisions, the timed
elastic band (TEB) algorithm, which introduces local path planning with time elasticity,
is used on the basis of global path planning to achieve real-time obstacle avoidance [30].
The TEB algorithm is an optimization algorithm that follows the path generated by the
global path planner. The local trajectory it generates is composed of a series of continuous
time and pose sequences, and the robot’s pose is defined as:

Xi = [xi, yi, βi]
T (15)
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where Xi represents the i-th pose in the robot coordinate system, including the position
information xi, yi and angle βi. The time interval between adjacent poses Xi and Xi+1 is
denoted by ∆Ti, as shown in Figure 5.

Y

X	 O 	 O

Y

Y

X
θ

x

y


R

Figure 5. Time interval and pose sequence of the TEB.

In the optimization process, the TEB algorithm applies graph optimization to the
adjacent time intervals and states of the robot as nodes and uses the velocity, acceleration,
and non-holonomic constraints of the robot as edges. It also considers obstacle information,
the discrete interval of the planned trajectory, and adjacent temporal and spatial sequence
constraints. Finally, the G2O solver is used to calculate the control variable V(v, ω) (where
v and ω represent the linear and angular velocities of the robot, respectively) to obtain the
optimal trajectory. The TEB algorithm obtains the optimal pose points through weighted
multi-objective optimization [31,32], where the mathematical description of the objective
function is:

f (B) = ∑
k

γk fk(B) (16)

B∗ = arg min
B

f (B) (17)

where f (B) is the objective function that considers various constraints, fk(B) is the con-
straint function, γk is the weight of each item, and B∗ is the optimal TEB trajectory. The TEB
algorithm has four constraint functions.

1. Path following and obstacle constraint objective function

The TEB algorithm aims to avoid collisions with static or dynamic obstacles while
following the path. The algorithm treats piecewise continuous and differentiable functions
as constraints and punishes behaviors that do not conform to the constraints. Specifically:

eΓ(x, xr, ε, S, n) ≈
{
((x− (xr − ε))/S)n x > xr − ε

0 other
(18)

fpath = eΓ
(
dmin,j, rpmax , ε, S, n

)
(19)

fob = eΓ
(
−dmin,j,−rpmin , ε, S, n

)
(20)

Building on Equation (18), penalty functions fpath and fob are constructed. Here, xr
denotes the boundary, ε is the offset factor, S is the scaling factor, n is the order, dmin,j is the
independent variable representing the distance between the path point and obstacle, rPmax

is the maximum distance of the trajectory deviation from the path point, and romin is the
minimum distance between the trajectory and obstacle.

2. The velocity and acceleration constraint functions of a robot

According to the dynamic equation, the constraint functions of the robot’s velocity
and acceleration are expressed as Equations (21)–(24):
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Linear velocity:

vi ≈
1

∆Ti

(
xi+1 − xi
yi+1 − yi

)
(21)

Angular velocity:

wi ≈
θi+1 − θi

∆Ti
(22)

Linear acceleration:

ai ≈
2(vi+1 − vi)

∆Ti + ∆Ti+1
(23)

Angular acceleration:

αi =
2(wi+1 − wi)

(∆Ti + ∆Ti+1)
(24)

3. Non-holonomic constraint

The robot used in the algorithm simulation and experiment is a differential drive
structure with two degrees of freedom, which cannot perform translational motion along
the y-axis of the robot coordinate system. The curvature of the circular arc between two
adjacent robot poses is approximately constant, and the outer product of the direction
vector di,i+1 and the turning angle θi between adjacent poses in the robot coordinate
system is equal to the outer product of the turning angle θi+1 and the direction vector
di,i+1. βi represents the orientation of the robot in the global coordinate system, and the
corresponding relationship equation and non-holonomic constraint are: cos βi

sin βi
0

× di,i+1 = di,i+1 ×

 cos βi+1
sin βi+1

0

⇔ θi = θi+1 (25)

di+1 :=

 xi+1 − xi
yi+1 − yi

0

 (26)

fk(Xi, Xi+1) =

∥∥∥∥∥∥
 cos βi

sin βi
0

+

 cos βi+1
sin βi+1

0

× di,i+1

∥∥∥∥∥∥
2

(27)

The objective function fk(Xi, Xi+1) punishes the quadratic error for violating this
constraint, ensuring that the output velocity of the robot follows the non-holonomic con-
straint. However, when the vehicle experiences significant lateral motion, the fidelity of the
non-holonomic constraint in the lateral direction is lost. A combined vehicle dynamics/
kinematics-based lateral velocity estimation algorithm can be applied, which leverages the
advantages of the vehicle dynamics model under low dynamic driving conditions and the
kinematic model under high dynamic driving conditions [33].

4. Fastest-path constraint

The TEB algorithm incorporates the time interval information between poses, and the
total time is the sum of all time intervals. The relevant objective function is:

fk =

(
n

∑
i+1

∆Ti

)2

(28)
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After optimizing the TEB sequence, the objective function of the constraints is opti-
mized to ensure that the path planned by the algorithm achieves the best results in terms
of obstacle avoidance, time, and distance.

(3) Path planning based on fusion algorithm

The A-star algorithm yields a navigation path consisting of only the start point, key
points, and destination point, but it cannot avoid unknown obstacles in the environment.
The TEB algorithm exhibits good local obstacle avoidance ability, but with only a single
final goal point as a guide, it is prone to becoming trapped in local optima. Therefore, we
propose a hybrid path planning algorithm that combines the strengths of both algorithms.
The specific algorithm process is shown in Figure 6.

Location

A-star Algorithm

Global Costmap Local Map

Initialization Path
Build Hypergraph

TEB Algorithm

Input

Current Location

Hybrid path planning algorithm

Iterative 
Optimization

Output

Expected Acceleration

Expected SpeedTarget Position

Map

Figure 6. Hybrid path planning algorithm flow chart.

Global path planning takes a static obstacle cost map as input and does not consider
the robot’s mechanical performance and kinematic constraints when planning the path. It
uses the A-star algorithm to plan the optimal path from the robot’s current position to the
desired target position and provides an initial value for local planning.

Local path planning collects path nodes on the global optimal path and optimizes
the global path subset between the robot’s current node and the collected path nodes. It
combines the static obstacle cost map and dynamic obstacle cost map and uses the TEB
algorithm to continuously adjust the pose and orientation of the robot during its movement,
taking into account its shape, dynamic model, and motion performance in the scope of local
planning. When encountering dynamic obstacles, it removes the old robot pose and adds a
new robot pose so that a new path can be generated in each iteration, and an optimized
path can be obtained through continuous iteration.

By fusing navigation algorithms, we achieve optimal global path planning and real-
time obstacle avoidance functionality in the process of mobile robot navigation.

4. Experiment and Analysis
4.1. Experimental Settings

In order to verify the effectiveness of navigation systems in practical applications, we
conducted experiments using a Turtlebot3 mobile robot in different types of scenarios built
using the Gazebo simulation platform within the ROS on a 64-bit Ubuntu 18.04 operating
system with 4GB of running memory. As shown in Figure 7, we constructed a home
environment and a factory warehouse environment to simulate real-world environments.
Using the real-time localization and mapping capabilities in Rviz, we scanned the simulated
environments, constructed corresponding maps, and performed path planning. The code
used in this article is open source and can be accessed at https://github.com/Mxiii99/
RSPP_CS.git (accessed on 7 February 2023).

https://github.com/Mxiii99/RSPP_CS.git
https://github.com/Mxiii99/RSPP_CS.git
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(a) (b)

Figure 7. Simulation environment. (a) House scene; (b) factory warehouse scene.

4.2. Performance Evaluation
4.2.1. Visual SLAM Algorithm Performance Evaluation

This paper presents a method for constructing a corresponding point cloud map using
a depth camera in a ROS environment. The depth camera data are first read in the ROS
environment, and then the front-end and back-end threads are executed to construct a
sparse feature point map, which is continuously updated to create a real-time point cloud
map. Keyframes from the front-end are passed into the point cloud construction thread to
generate the point cloud map. The effectiveness of the proposed algorithm for generating
maps is validated by the corresponding point cloud map in Figure 8, which demonstrates
good 3D effects for constructing maps in indoor environments. As shown in Figure 8,
the algorithm detects the object’s motion trajectory, which is consistent with the actual
trajectory. Although there are deviations between the detected trajectory and the actual
trajectory, there are no serious deviations, which satisfies the perception requirements of the
robot. When the object’s motion trajectory changes significantly, there are still no serious
deviations, which also meets the perception requirements of the robot.

(a) (b)

Figure 8. Vision-based mapping results. (a) House scene; (b) factory warehouse scene.

4.2.2. Multi-Line LiDAR-Based SLAM Algorithm Performance Evaluation

From the comparison between point cloud mapping and visual mapping, it can be
observed that maps constructed using multi-line laser scanning are clearer than those
constructed using visual algorithms, which reduces accumulated errors and provides
better handling of edge contours. Furthermore, the mapping time, mapping effective-
ness, and CPU utilization were compared in order to validate the feasibility, reliability,
and accuracy of the algorithm.

To ensure the accuracy of the experiments, multiple tests were conducted. The robot
was fixed at a certain position, denoted as the origin (0,0), and the output object motion
data were compared with the actual object motion data. The results are shown in Figure 9.
The algorithm detected that the point cloud map was generally consistent with the simu-
lated scene and that the detected trajectory did not significantly deviate from the actual
trajectory, which satisfies the perception requirements of the robot. As shown in the figure,



Electronics 2023, 12, 2178 13 of 16

when there were large changes in the object’s motion trajectory, there was a slight deviation
between the detected trajectory and the actual trajectory, but no serious deviations occurred,
which still satisfies the perception requirements of the robot.

(a) (b)

Figure 9. Laser-based mapping results. (a) House scene; (b) factory warehouse scene.

4.2.3. Path Planning Performance Evaluation

Through testing, the path planned by the A-star algorithm maintains a certain distance
from obstacles, which prevents the robot from colliding with them. At the same time,
global path planning has a good effect and can accurately reach the set target point location,
satisfying the requirement for precise navigation. The robot moves along a square path.
When encountering obstacles, it autonomously avoids them through local path planning.
The process and result of local path planning are shown in Figure 10. After configuring
the relevant parameters, the 3D view area of robot navigation was observed in Rviz.
The environment of the map is displayed as a global cost map, and the environment around
the robot is a local cost map. The blue area is the expansion layer of the obstacle, which
is expanded outward on the map to avoid a collision between the robot and the obstacle.
By adding the Path plugin in RViz, the path along which the robot moves can be seen.
The green line is the route of global path planning, and the red line is the route of local path
planning. It can be seen in Figure 10 that the local path planning route of the inspection
robot is smooth, and the planned route does not enter the expansion layer of the obstacle, so
it can reasonably avoid the surrounding obstacles and has a good obstacle avoidance effect.
The global path planning route is shown in Figure 11. After testing, the inspection robot
can accurately achieve autonomous obstacle avoidance and complete local path planning
for the set target point, satisfying the requirement for precise navigation.

(a) (b)

Figure 10. Local path planning map. (a) House scene; (b) factory warehouse scene.
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(a) (b)

Figure 11. Global path planning map. (a) House scene; (b) factory warehouse scene.

5. Conclusions and Outlook

The utilization of intelligent inspection robots has been shown to enhance production
efficiency and reduce costs. However, the complex factory environment, filled with ma-
chinery equipment, pipelines, cables, and other obstacles, can pose a challenge to accurate
inspections. To address this, we developed a high-precision navigation inspection system
that is specifically designed for complex factory scenes. The system is equipped with
two types of sensors, visual and LiDAR, to allow for rich environmental information and
localization and mapping. Optimal path planning is achieved by combining the A-star
algorithm and TEB algorithm for dynamic programming. To evaluate the performance of
the navigation system, simulations were conducted in two scenarios using Gazebo simula-
tion software in the ROS system: a residential area and a factory warehouse. The results
indicate that the navigation system provides real-time localization and map construction,
can navigate mobile platforms, and implements real-time obstacle avoidance in different
scenarios. As such, this technology can be applied to the localization and navigation system
of wheeled inspection robots in various complex environments and has significant reference
value. As inspection scenarios become increasingly complex, a single mobile robot may find
it difficult to complete navigation tasks accurately. Therefore, in the future, further research
can be conducted on the problem of cooperative navigation and obstacle avoidance among
multiple mobile robots.
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