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Abstract: Accurate power load forecasting can facilitate effective distribution of power and avoid
wasting power so as to reduce costs. Power load is affected by many factors, so accurate forecasting
is more difficult, and the current methods are mostly aimed at short-term power load forecasting
problems. There is no good method for long-term power load forecasting problems. Aiming at
this problem, this paper proposes an LSTM-Informer model based on ensemble learning to solve
the long-term load forecasting problem. The bottom layer of the model uses the long short-term
memory network (LSTM) model as a learner to capture the short-term time correlation of power
load, and the top layer uses the Informer model to solve the long-term dependence problem of
power load forecasting. In this way, the LSTM-Informer model can not only capture short-term time
correlation but can also accurately predict long-term power load. In this paper, a one-year dataset of
the distribution network in the city of Tetouan in northern Morocco was used for experiments, and
the mean square error (MSE) and mean absolute error (MAE) were used as evaluation criteria. The
long-term prediction of this model is 0.58 and 0.38 higher than that of the Istm model based on MSE
and MAE. The experimental results show that the LSTM-Informer model based on ensemble learning
has more advantages in long-term power load forecasting than the advanced baseline method.

Keywords: ensemble learning; energy consumption forecasting; neural networks; long-term load
forecasting

1. Introduction
1.1. Background and Literature Review

In 2021, the share of electricity in global final consumption increased by 0.2 points,
reaching 20.4% [1]. Electricity consumption has been increasing in recent years. It can
be seen that electricity is becoming more and more important in our daily life. With the
increasing demand for electricity, the country needs to build more power stations to meet
the needs of human production. The purpose of the establishment of the national power
system is to meet the power demand [2]. If there is no accurate prediction of long-term
power load, it will lead to too many power generation facilities or insufficient power
generation facilities. Excessive establishment of power generation facilities will lead to a
waste of electricity and affect economic decision-making. The lack of power generation
facilities is more serious, which may lead to insufficient power supply and affect people’s
daily life. Nowadays, the main task of power companies is to predict the power load so
as to adjust the power supply and study the expansion planning of power generation
facilities. This paper studies the long-term power forecasting, aiming to solve the problem
of expansion planning and transformation of the power system.

Because the electric energy in the power grid system cannot easily be stored in large
quantities and the power demand changes all the time, the power company needs the
system to generate electricity and charge changes to achieve dynamic balance. In order
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to realize the dynamic balance between power generation and charge change, researchers
mostly study the power load based on the time series [3] for power load forecasting. Until
now, there have been traditional models [4] and artificial intelligence (AI) models [5]
for prediction.

Traditional modeling is based on statistical analysis and has good interpretability. The
autoregressive moving average model (ARMA) is a classical statistical modeling method [6].
Nowicka-Zagrajek et al. [7] applied the ARMA model to California’s short-term power
forecasting and achieved good results. However, ARMA is only suitable for stationary
stochastic processes [7]. Most sequences in nature are non-stationary. Therefore, the
researchers proposed an autoregressive integrated moving average (ARIMA) model [8],
which converts non-stationary sequences into stationary sequences based on differential
operations. Valipour et al. [9] used the ARIMA model to predict the monthly inflow of
Deziba Reservoir, and the prediction results are better than ARMA model. In addition,
traditional modeling can achieve good results in solving linear problems [10], but it cannot
solve nonlinear problems well and cannot deal with multivariate time series problems.

Al modeling is data-driven, which has been widely used in power load forecasting,
such as back propagation (BP) [11] and artificial neural network (ANN) [12]. In general,
power load forecasting needs to be abstracted into time series forecasting, while traditional
BP neural networks cannot deal with time series problems well. A.S. Carpinteiro et al. [13]
proposed the use of ANN models to make long-term predictions of future power loads
using data obtained from North American Electric Power Corporation. The recurrent neural
network (RNN) is a special kind of ANN [14], which retains a small amount of previous
information through a self-connected structure, so as to establish the relationship between
the past and the present. Tomonobu et al. [15] applied RNNs to long-term forecasting of
wind power generation. This model is more accurate than the feed-forward neural network
(FNN) model. However, because the RNN model is prone to gradient disappearance or
gradient explosion problems, it is not effective in solving long-term dependence problems
and can only deal with short-term dependence problems. However, in the LSTM model,
the use of gating unit design alleviates the problem to a certain extent. Therefore, the
LSTM model has the ability to deal with both short-term dependence and long-term
dependence [16]. Jian et al. [17] proposed a periodic long-term power load forecasting
model based on the LSTM network. The performance of this model is better than that of the
ARIMA model. With the introduction of the Transformer model, the Attention mechanism
has become a useful tool for solving problems in the natural language processing (NLP)
field. Vaswani et al. [18] proposed an attention mechanism to solve machine translation
problems, and looked forward to the future, believing that the attention mechanism can
be applied to other fields. The attention mechanism can solve the long-term dependence
problem of input and output, which makes researchers try to apply the Transformer
model in the long-term prediction of time series. Wu et al. [19] proposed the Autoformer
model. This model added the seasonality of data and other factors on the basis of the
Transfomer, carried out LTLF for the power consumption of 321 customers, and achieved
good performance.

Due to the complexity of power load data, the researchers found that the accuracy of a
single model is difficult to improve, so they began to explore ensemble learning. Divina
et al. [10] elaborated the concept of the Stacking Ensemble Scheme and divided ensemble
learning into three categories: Bagging, Boosting, and Stacking. The model constructed
by the author in this paper is based on Evolutionary Algorithms (EAs), Random Forests
(RF), ANN [20], and Generalized Boosted Regression Models (GBM), which improves the
accuracy of power prediction. Kaur et al. [21] used the RNN-LSTM integrated learning
model to manage the smart grid, which improves the prediction accuracy. Jung et al. [22]
proposed using the LSTM-RNN model to predict long-term photovoltaic power generation
for 63 months of data collected from 167 PV sites, and achieved good performance.

From the time range of prediction, the prediction of power load is divided into
short-term power forecasting (STLF), medium-term power forecasting (MTLF), and long-
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term power forecasting (LTLF) [23]. LTLF allows people to find and evaluate suitable
photovoltaic power generation locations on a large scale. In the above papers, the authors
found that the ensemble learning model has better performance after comparing the effects
of the ensemble model and the single model. In addition, economic, environmental, and
other factors also affect the consumption of power load [24]. Fan et al. enhanced the
precision of power load by adding weather multivariate variables [25]. It can be seen that
multivariate prediction has improved power prediction.

1.2. Reasearch Gap

Through the background investigation of Section 1.1, the advantages of the traditional
model are simple and interpretable. However, the performance on nonlinear and non-
stationary sequences is not ideal. Even if the ARIMA model enhances the ability to solve
non-stationary sequences, it still does not have the ability to solve nonlinear sequences
well. Although the ARIMA model can solve the non-stationary problem, its parameters are
difficult to adjust. At the same time, traditional algorithms cannot handle multivariate time
series problems. In AI modeling, the BP neural network [26] model cannot capture time
domain information. The RNN [27] model can capture time-domain information, but due
to the problem of gradient vanishing and gradient exploding, the RNN model does not
perform well in long-term prediction. The LSTM model alleviates the problem of gradient
vanishing and gradient exploding to a certain extent by adding gating units, and has the
ability of long-term prediction, but there are also large errors. The Attention mechanism
solves the long-term dependence of input and output by calculating the correlation of all
data and has good long-term prediction ability. However, it is not sensitive to short-term
sequence features, resulting in large errors in the final results.

In summary, a single model always has its limitations, and the ensemble models
can compensate for the shortcomings of a single model by integrating the advantages
of multiple individuals. In previous studies, most of the work focused on the use of a
single model for tuning and failed to combine the advantages of each model to improve
performance.

1.3. Contribution

In the past, Al modeling was applied to power load forecasting research. Due to
the inability to solve the gradient problem, most studies focused on STLE. LTLF articles
only accounted for 5% [28], but long-term power forecasting has practical production
significance. Therefore, this paper proposes the LSTM-Informer model to solve the LTLF
problem. This paper introduces the Transformer model which has achieved excellent
results in other fields and uses the Attention mechanism to solve the long-term dependence
of input and output data. At the same time, the integrated LSTM model captures short-
term features, making up for the insensitivity of the Transformer model to short-term
dependencies. Finally, the LSTM model and the Informer model were integrated to form
the LSTM-Informer model, and the experiment proves that the LSTM-Informer model has
excellent performance in long-term power load forecasting.

e  The Pearson model and the RF model were used to process multivariate data to find
the variables most relevant to electricity forecasting.

e A relatively new integrated learning LSTM-Informer model was constructed. The
bottom layer of this model uses the LSTM model as a learner to capture the short-term
time correlation of power load, and the top layer uses the Informer model to solve
the long-term dependence of input and output. The model can accurately predict
long-term power load while capturing short-term time correlation.

e  For the analyzed data, the model proposed in this paper has good performance in
accuracy and fitting degree.
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2. Problem Statement

o

In this work, we assume that we can obtain the weather data (W) of the power load

during N years and the Correspondlng power load data (P) The available weather data
—

are temperature (Temp), humidity (H um), wind speed (Ws) etc.

This work proposes a new ensemble learning method for the accurate forecast of power
load. The time stamp (in ten minutes) was used to deal with the correlation of time. Suppose
that the power load at t minute on day d is P(t, d). The influencing factors of power load fore-

— — — —
casting weather variables W(t —i,d) = [Temp(t —i,d), Hum(t —i,d), Ws(t — i, d)], Follow-

ing that, the vector input by the ensemble method is: (- i,d) = [P(t—1i,d), (t —i,d)],
and the power load to be predicted is: y(t,d) = P(t,d).

3. Deep Learning Forecast Model
3.1. Long Short-Term Memory Networks

RNN is a type of ANN that takes care of dependencies among data nodes [29]. The
concept of the hidden state is introduced into the RNN model. The hidden state can extract
the eigenvalues of the data and output after transformation. RNNs excel on short-term
dependencies issues. However, the model can not deal with the long-term dependence
problem well [30]. LSTM network was invented with the goal of addressing the vanishing
gradients problem [31]. The LSTM model introduces a gate control mechanism [32]. The
forgetting gate determines the information of cell state loss, the input gate determines the
cell state to store new information, and the output gate determines the information to be
output [33]. Figure 1 shows the structure of LSTM. ¢; is the state of the cell at ¢, c;_; the
state of the cell at t — 1. f; denotes the forget gate. i; denotes the input gate. o; denotes the
output gate. Its mathematical formula is:

fr = oc(Wp-[x1s_stus 1] + bis_s)

it = 0(Wis i-[his_1—1-X1s ¢) + brs i)
tanh(wls_c’ [hls_tfl 'xls_t] + bls_c)
Ct = fr*ci_1+ it %t

0r = 0(Wis o [hys 4—1-X¢] + bis o)

hy = o x tanh(c;)

Ct =

o~

)

N

Output
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b 1 1 o X AE
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Figure 1. The structure of LSTM.
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3.2. Informer

The Informer structure is shown in Figure 2. It consists of an encoder and a decoder.
When the Informer model inputs the vector, it will add position encoding (timestamp)
information to mark the position relationship at different times to deal with the correlation
of time. Compared with the Transformer model, the multi-head attention mechanism of
the Informer model focuses more on data with more obvious degradation trends so as to
better solve the long-term dependence problem. The input of the decoder consists of two
parts—one from the hidden intermediate data features of the output of the encoder and
the other from the original input vector. The value to be predicted is assigned to 0, so as to
prevent the previous position and pay attention to the information of the position to be
predicted in the future. Following that, the data were connected to the multi-head attention
mechanism. Finally, the full connection was performed to obtain the final output.

+“Output N

I i / . : . k |

Concatenated Feature Map t

Multi-head
Attention

A\ 4

Multi-head
ProbSparse
Self-attention

Masked Multi-head
ProbSparse
Self-attention

Decoder

] - -

o5 = 1
Inputs: Xpos_input_en Inputs: Xpoq input in = {Xioken » Xo}

Figure 2. Structure of Informer.

Q, K, V vector constitutes the attention mechanism. Suppose g;, k;, v; is the ith row of
matrix QKV. The line i of the final output z can be expressed as:

1/

(q:
Algi, K, V) Z):z ql,kz vj = Ep(ilq;) [0] b))

The evaluation of the ith query sparsity is:

Lk ‘71 ] LK %kT
qll —ITIZEW _72 (3)
The final attention mechanism is:
KT
A(Q,K, V) = Softmax( & v @)

Vd

The Informer model encodes the data and adds position coding through the timestamp
so that the data have time series dependence. EncoderStack is composed of multiple
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Coding layer 1

K-heads
Attention block 1

Encoder layers and distilling layers. The EncoderStack structure is shown in Figure 3. The
Layer Normalization [34] formula is expressed as:

o = LayerNorm(x + Sublayer(x)) )

Distillation layer 1 Coding layer 2 Distillation layer 2 Coding layer 3

= G A (X
= = ) —
! [} ! =)
: (|SE ™ » |z S = »’
o | |88 o | B8

=~ = T

K-heads K-heads
Attention block 2 Attention block 3

Figure 3. Structure of EncoderStack.

In the formula, LayerNorm is a Layer Normalization function [35]. The distilling mech-
anism improves robustness and reduces the use of network memory by a one-dimensional
Convolution Layer, Activation Layer, and Pooling Layer in the time dimension. The
distilling function formula is:

X]t.Jrl = MaxPooZ(ELU(Corwld([X;]AB))) (6)

3.3. LSTM-Informer

Up until now, ensemble learning has gained an increasingly important position in
regression, classification, and time series problems. For example, Jamali et al. [36] proposed
a new hybrid model for solar heating. Mishra et al. [37] proposed using LSTM and wavelet
transform to predict photovoltaic power generation, and the accuracy was improved
compared with a single model. These methods fuse different models to improve the results
of a single model. Ensemble learning transforms multiple weak learners into a strong
learner. The process of ensemble learning is usually as follows: new feature data were
generated through the training of the first-layer base learner, and then these new feature
data were used as the input of the second layer and trained with the original data in the
second layer learner. By synthesizing multiple single learners, a composite learner will
have better performance than any single learner constructed. Its prediction level will be
improved accordingly.

LSTM can effectively capture the correlation of data time. Since the LSTM model intro-
duces the design of the door, the gradient vanishing problem is slowed down. Compared
with other models, it also has a good effect on long-term dependence problems. Therefore,
the underlying learner of this article is the LSTM model. The Informer model can effectively
solve the long-term dependence problem. Therefore, the top-level learner in this article is
Informer. The framework is used to preprocess data with the underlying LSTM model to
solve the short-term dependence problem, and then the top-level Informer model is added
to solve the long-term dependence problem.

The final model of this paper is shown in Figure 4. The original data were preprocessed
by DataHandle data, and then data standardization [38]. After standardization, the data
were divided into historical data vector and power load data to be predicted. The length of
historical data is h, and the length of power load to be predicted is w. The whole data were
divided into three parts according to the proportions. The training set and the validation
set were put into the LSTM model for training to capture the short-term time correlation
of power, and new eigenvalues were generated. The new eigenvalues were added to
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the Informer model, and the overall data were trained to generate the final power load
forecasting. Table 1 shows the architecture of the LSTM in this article.

Original dataset
--- Dat normalization
\ ata )
Handle
Test [
Input

Predict Jo
Result [« | bley

Informer Train

Figure 4. Power load forecasting architecture based on LSTM-Informer.

Table 1. LSTM architecture.

History data  Predict data
x X, B b
R Xpsw  Prowa B

LSTM
Predictions
generate
new
features

Predict

] Train

1 valid

}

LSTM Train

Predict

LSTM Train

Predict

LSTM Train

Hidden_Size

Num_Layers

Batch_Size

15

2

4. Experiment
4.1. Datasets

The data set is the power consumption data of the power grid in the three regions
of Quads, Smir, and Boussafou in the city of Tetouan, Morocco. The data are made up
of 52,416 pieces of data in a 10 min window from 2017. Each datapoint contains nine
feature values. In the work of this paper, we used weather and other factors, the power
generation of region one and region two as input variables to predict the power generation

of region three.

Data sets are susceptible to various factors [29]. These data will affect the prediction
results of the model. Therefore, the data need to be processed first. The model will be able
to predict more accurately using the processed data. As shown in Figure 5, the process of
data processing is in this paper.

! Data Preprocessing
Data Data
Statistic Presentation

Date Clean

Input: Dataset

Figure 5. Structure of data handle.

Data Analysis

"

Date Stability Analysis:
ACF and PACF

rd

\

Correlation Analysis

& &

Pearson RF

Output: Dataset
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Table 2 shows the statistical results of the data. For the nine variables, the count is
completely consistent, indicating that there is no missing value. The mean value reflects
the mean level of the number of variables with symmetrical normal distribution.

Table 2. Data statistics.

Temperature Humidity Wind Speed General DiffuseFlows PowerC_Zonel PowerC_Zone2 PowerC_Zone3
Q) (%) (m/s) DiffuseFlows (w/m?) (w/m?) (kw) (kw) (kw)
count 52,416.00 52,416.00 52,416.00 52,416.00 52,416.00 52,416.00 52,416.00 52,416.00
mean 18.81 68.26 1.96 182.70 75.03 32,344.97 21,042.51 17,835.41
Std 5.82 15.55 2.35 264.40 124.21 7130.56 5201.471 6622.17
min 3.25 11.34 0.05 0.00 0.01 13,895.70 8560.08 5935.17
max 40.01 94.80 6.48 1163.00 936.00 52,204.40 37,408.86 47,598.33

Datetime and Temperature

As shown in Figure 6, the first five pictures show the data on weather factors during
the year, while the next three are statistical maps of power load consumption in the three
regions. It can be seen that temperature and power load consumption are related.

Datetime and Humidity Datetime and WindSpeed Datetime and GeneralDiffuseflows

Tem

1200

1000

Time

Datetime and DiffuseFlows

2017-01 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01 201701 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01 2017-01 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01 2017-01 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01

Time Time e

les Datetime and PC_Zonel 1es Datetime and PC_Zone2 1es Datetime and PC_Zone3

2017-01 2017-03 2017-05 201707 2017-09 2017-11 2018-01 2017-01 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01 2017-01 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01 2017-01 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01

Time

Time Time Time.

Figure 6. Statistics of weather factors and electricity consumption in three regions.

Data preprocessing processes the outliers of the data and allows us to visually see the
basic characteristics of the data set. However, seeing only the basic features is not enough
to better analyze the correlation between the data set and the model used, so we will enter
the data analysis stage.

4.2. Variable Selection

In this paper, the Pearson coefficient and RF algorithm were used to analyze the
relationship between this data set and the power load forecasting of area three that needs
to be predicted. Select the associated variables to predict the power load consumption.

Pearson correlation coefficient [39] can measure the degree of non-linear correlation
and correlation. Therefore, the Pearson coefficient can be used to calculate the correlation
between power load of region 3 and other characteristics. If the power load of region 3 is X
and the other characteristics are Y, the coefficient equation is:

B E(XY) — E(X)E(Y)
PXY = VE(X?) — E2(X)/E(Y?) — EX(Y)

@)
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In the formula px y € (—1,1), denotes the correlation strength of X, and Y, A positive
value indicates that the relationship between this feature and power load is positively
correlated, and the closer to 1, the stronger the correlation. A negative value indicates
that the feature is negatively correlated with the power load. The closer the value is to 0
indicates that the selected eigenvalue is independent of the power load.

As shown in Table 3, temperature, wind speed, GeneralDiffuseFlows, and charge
consumption in regions 1 and 2 are positively correlated with charge consumption in
region 3. Humidity is negatively correlated with the charge consumption of DiffuseFlows
and Region 3.

Table 3. Correlation analysis of power load value from region 3.

Feature o] Correlation
Temperature 0.49 +
Humidity —0.23 -
WindSpeed 0.28 +
GeneralDiffuseFlows 0.063 +
DiffuseFlows —0.039 —
PowerConsumption_Zonel 0.75 +
PowerConsumption_Zone2 0.57 -

Figure 7 shows the relationship between the power load of region 3 and other char-
acteristics more obviously. It can be seen that the temperature, region 1, and region 2 are
related to the charge consumption of region 3.

Temperature - jjoe

Humidity

-06

WindSpeed | 0.48 R K -0.00097

SeneralDiffuseFlows J 10.46

DiffuseFlows .2 -0.00097 i 0.039

Zonsumption_Zonel

Zonsumption_Zone2

Consumption_Zone3 -

=
Y
©

Temperature -
Humidity
WindSpeed
GeneralDiffuseFlows
DiffuseFlows
PowerConsumption_Zonel -
PowerConsumption_Zone2
PowerConsumption_Zone3 -

Figure 7. On the regional three power consumption correlation coefficient heat map.

RF correlation coefficient analysis:

Breiman (2001) proposed random forests, which add an additional layer of randomness
to bagging [40]. RF is a forest formed by multiple decision trees in a random way. Different
trees in a random forest may classify new incoming samples into different belongs [41]. We
counted which category was judged the most and predicted this sample for this category.
The structure is shown in Figure 8:
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The original dataset

Bootstrap Resampling \\
/ N
‘ Sample 1 | ’ Sample 2 | ’ Sample 3 | ------

! | [ |

Class tree ‘ Class tree ’ Class tree | Class tree
1 2 3 i

Vote for the best

Figure 8. Random forest structure diagram.

| Class tree
_n

RF mainly selects feature principle: the OOB (out of bag) principle [42]. Adding ran-
dom noise to important features will have a great impact on the precision of the algorithm
during RF training [43]. Out-of-bag data were selected in each decision tree and the error
is calculated, and record it as: OOBley [44]. Randomly add noise interference to all the
sample features X obtained from the out-of-bag data, and calculate the out-of-bag data
error again, recorded as: OOB2¢;; [45]. Supposing that there are N trees, the X formula is
as follows:

1 N
Ximportance = NZ|OOB23” - OOBlerrl (8)
i=1

Through the analysis of the Pearson coefficient and RF (Table 4), it can be known
that the power load consumption of region 3 is related to the power consumption of
the other two regions, that is, the power consumption of people’s daily habits is more
relevant. The second is the effect of temperature. It shows that the weather factor is also an
important factor affecting power consumption, which provides reference conditions for
feature selection of power load forecasting.

Table 4. Correlation analysis of power load value from region 3.

Feature The Importance of Feature X
PowerConsumption_Zonel 0.580088
PowerConsumption_Zone2 0.137847

Temperature 0.135731
GeneralDiffuseFlows 0.046054
DiffuseFlows 0.035704
WindSpeed 0.033177
Humidity 0.031397

4.3. Data Normalization

The results of data partitioning are shown in Figure 9. First, the data were standardized
by Z-Score. Convert different orders of magnitude into the same order of magnitude.
Following that, the data can be compared [46]. Its formula is:

x/:x_y (9)

After normalization, the data were divided into training set, validation set, and test

set, accounting for 70%, 10%, and 20%, respectively. The data of a timestamp is ; The
length of the required historical data is h. The length of the power load to be predicted is w.
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Original dataset History data  Predict data
izati x, x, B, - B _
--- Data normalization 1 ) 1 " Train
—) —) o X Brwa " Py
Handle )
Ao N2 J 3w ] Valid
Test [| o oo
x=[P.W] P: power

w: weather

Figure 9. Data set preprocessing.

4.4. Methods for Comparison

This paper selects the more advanced models for comparison.

Informer [47]: The model improves on the basic Transformer model and is more
suitable for long-term prediction problems.

Transformer [18]: At the beginning, it was a very famous text processing model. It first
introduced the attention mechanism and was later applied to various fields, thus promoting
the development of various fields. For the time series problem, the Transformer model
shows superior performance in capturing the relationship of the gas dependence problem.
The transformer model shows great potential in solving the LSTF problem [35].

Autoformer [19]: The model based on Transformer introduces seasonal and periodic
terms to better solve the long-term prediction problem.

Reformer [48]: The use of locality-sensitive hashing instead of the original dot product
Attention reduces the time complexity of Transformer, but the performance is comparable.
It has higher memory efficiency and speed in long sequences.

LSTM [49]: A classical algorithm for dealing with time series problems which slows
down the vanishing gradient and exploding gradient problems so that it can better capture
long-term dependence problems.

4.5. Evalution Metrics

In this chapter, we used the LSTM-Informer model to test and summarize the data
set in Section 4.1. This paper selects MAE and MSE to contrast the precision of different
algorithms. MAE refers to the average absolute value of the absolute deviation of each
measurement. MSE is a measure of the difference between the estimator and the estimated
quantity [34]. The formula of the above indicators is:

18
MAE = —) |9 = yil (10)
i=1
1 n
MSE = Y (i = yi)° (11)

i=1
In the above equation: n represents the time points of predictions, iJ; represents the
result of the ith model prediction, and y; represents the true value of the.

4.6. Method Comparison and Analysis
4.6.1. Experimental Result

In this paper, the proposed LSTM-Informer model was compared with advanced single
models for prediction accuracy, including Informer model, Transformer model, Autoformer
model, Reformer model, and LSTM model. The data used in this paper were sampled
once every ten minutes. In order to comprehensively analyze the model performance, two
comparison schemes were used here. The first comparison scheme is that the input length
is shorter than the output length. The second comparison scheme is that the output length
is longer than the input length. In the first comparison strategy, we used 288 pieces of data
(48 h) to respectively predict the power load in Region3 of 24 pieces of data (4 h), 48 pieces
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of data (8 h), 72 pieces of data (12 h), 96 pieces of data (16 h), and 120 pieces of data (20 h)
that can evaluate the performance of the model’s short-term dependence problem. The
results are shown in Table 5.

Table 5. Using 48 h forecast 4 h, 8 h, and other short-term power load forecasting.

Methods LSTM-Informer Informer Autoformer Transformer Reformer LSTM
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
24 0.0617 0.1988 0.0597 0.1929 0.2464 0.3997 0.1153 0.2943 0.2983 0.4738 0.0787 0.2245
48 0.0846 0.2431 0.0910 0.2424 1.2121 0.9072 0.1855 0.3766 0.3196 0.4922 0.1057 0.2533
72 0.0856 0.2415 0.0964 0.2584 0.2771 0.4115 0.1866 0.3779 0.4423 0.5895 0.1299 0.2988
96 0.1064 0.2755 0.1165 0.2879 0.8902 0.7659 0.2354 0.4396 0.4228 0.5731 0.1233 0.2879
120 0.1098 0.2802 0.1159 0.2848 0.4739 0.5371 0.2106 0.4043 0.4412 0.5858 0.1372 0.3157
Count 3 0 0 0 0

From the data in Table 5, we can notice the characteristics of each model in short-term
power load forecasting. The autocorrelation mechanism of the Autoformer’s model is
based on Period-based dependencies and Time delay aggregation. In STLE, it is not easy
to find its cycle, so the performance of the Autoformer model is not stable. Because the
LSTM model can capture the time correlation of short-term power load, its performance
is relatively stable. As the time to be predicted increases, the performance of the model
in STLF decreases slightly. In fact, the LSTM-Informer model performs better than other
models in predicting short-term dependent power loads. On the issue of STLEF, the Informer
model is the closest to the model performance proposed in this paper.

In order to analyze these methods intuitively, we drew six models of STLF by ranking.
They were used to better observe the effect of each model on short-term power load. The
MSE and MAE results of the six STLF models are shown in Figure 10. Through the ranking
of MSE index, we can see that LSTM-Informer model and Informer model have the best
performance in STLE. The LSTM model and the Transformer model rank relatively stable
in STLFE. Through the ranking of MAE indicators, we found that the Informer model and
the LSTM-Informer model have similar performance in STLE. Through the ranking of MAE
indicators, we found that the Informer model and the LSTM-Informer model have similar
performance in STLE. Through two graphs, we found that the time complexity of the model
optimized based on the Transformer model framework is reduced. However, half of the
short-term power load forecasting problem was due to the basic model, and the other half
of the effect ranking lagged behind the Transformer model. Since then, we have analyzed
the model and the Informer model in detail on the issue of STLE.

Short-term power load forecasting MSE ranking Short-term power load forecasting MAE ranking
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Figure 10. Comparison results of six short-term power load models via MSE and MAE metric.

In the second comparison strategy, we used 48 pieces of data (8 h) to respectively
predict the power load in Region3 of 144 pieces of data (24 h), 192 pieces of data (32 h),
240 pieces of data (40 h), 288 pieces of data (48 h), and 432 pieces of data (72 h) that can
evaluate the performance of the model’s short-term dependence problem. This is shown
in Table 6.
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Table 6. Using 8 h forecast 24 h, 32 h, and other long-term power load forecasting.

Methods  LSTM-Informer Informer Autoformer Transformer Reformer LSTM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
144 0.2085 0.3963 0.2690 0.4561 0.7061 0.6181 0.2692 0.4517 0.8949 0.8672 0.7509 0.7675
192 0.2644 0.4477 0.2979 0.4813 1.0563 0.7284 0.2736 0.4566 0.8762 0.8449 0.8128 0.8054
240 0.2407 0.4253 0.2691 0.4542 0.4664 0.5451 0.2510 0.4353 0.8868 0.8447 0.5970 0.6731
288 0.2490 0.4232 0.2544 0.4305 1.3293 0.7713 0.2111 0.3920 0.9092 0.8578 0.7085 0.7285
432 0.2030 0.3783 0.2786 0.4440 0.4519 0.5148 0.2357 0.4173 0.9253 0.8592 0.7808 0.7629

Count 8 0 0 2 0 0

Table 6 shows that the precision of Transformer architecture model generally tends
to be stable in the long-term forecast of power load, but LSTM’s precision is gradually
deteriorating by the increase of the forecast time. It shows that the LSTM model alleviates
the gradient disappearance problem but does not completely solve the gradient disappear-
ance problem, while the Transformer architecture model can generally solve the long-term
dependence problem of power load prediction. The LSTM-Informer model can still be
superior to other models in the long-term power load forecasting problem. At this time, the
Transformer model is the closest to the performance of the LSTM-Informer model. After
that, we will compare the precision of the two methods of LTLFE.

The MSE and MAE results of the six LTLF models are shown in Figure 11. Through
ranking, we can observe that the performance of LSTM model in LTLF problems has
declined. Transformer’s model has improved the performance of long-term power load
forecasting problems. It is close to the performance of the LSTM-Informer model, while the
LSTM model drops seriously. It shows that the model architecture based on Transformer has
better performance for LTLF. At this time, the closest performance to the LSTM-Informer
model is the Transformer model. After that, we will compare the precision of the two
methods concerning LTLE.

Long-term power load forecasting MSE ranking Long-term power load forecasting MAE ranking
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Figure 11. Comparison results of six long-term power load models via MSE and MAE metric.

Combining the results of the two tables, we can conclude that the LSTM-Informer
model has improved the performance of the base learner on the short-term dependence
problem. It has relatively good performance compared with other more advanced models
with similar architectures. On the issue of long-term dependence, in most cases, it is
superior to other single models. Although the Transformer model performs well in long-
term prediction, its accuracy in short-term prediction is less than 50% of the LSTM-Informer
performance. If a model is needed for power load forecasting, the LSTM-Informer model
has the best performance. It is optimal in both STLF and LTLE.

4.6.2. Results Analysis

In order to further compare the differences between the LSTM-Informer model, In-
former model, Autoformer model, Transformer model, Reformer model, and LSTM model,
we will analyze the results in detail.



Electronics 2023, 12, 2175

14 of 19

The experimental results of MAE of our selected model are shown in Figures 12 and 13.
Figure 12 shows the MAE index of the selected model using 48 h of data to predict the
power load of 4 h, 8 h, 12 h, 16 h, and 20 h, respectively. We can see that in the issues of STLE,
the LSTM model is superior to most of the Transformer structure models, indicating that
preserving past information through hidden states is more important for STLE. The LSTM-
Informer model uses the LSTM model at the bottom to better find the time correlation
between data, so that it pays attention to the time correlation of short-term data when
training in the Informer model. Therefore, in short-term power load forecasting, the
LSTM-Informer model has achieved good results. Figure 13 shows the MAE index of the
selected model using 8 h of data to predict the power load of 24 h, 32 h, 40 h, 48 h and
72 h respectively. In the comparison models, the Informer model, Autoformer model, and
Reformer model are all improved models based on the Transformer model. The transformer
model is mainly composed of an encoder and decoder. Its internal self-attention mechanism
enables data at each time point to pay attention to the data at other time points. In solving
the time series problem, it embeds the time-tamp into the data through position encoding.
The self-attention mechanism and position coding make it independent of the past hidden
state to capture the dependence on the previous data, so it does not produce the gradient
vanishing problem. At this time, the improved model based on Transformer has achieved
good results, and as the time of power load to be predicted increases, the performance is
also in a good state. However, as the time of the power load to be predicted increases, the
accuracy of the LSTM model gradually decreases, indicating that the LSTM model has a
gradient vanishing problem. However, the accuracy of the LSTM-Informer model proposed
does not show a significant trend that the performance gradually deteriorates with the
increase of the prediction length, indicating that when the LSTM model is capturing short-
term event correlation, the Informer model successfully solves the long-term dependence
problem. Therefore, in long-term power load forecasting, the LSTM-Informer model can
still achieve the greatest results.

MAE for short-term power load forecasting

LSTM-Informer
Informer
0.8 4 Autoformer
Transformer
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Figure 12. The MAE index of the selected model using 48 h of data to predict the power load of 4 h,
8h,12h,16 h, and 20 h.

In the above experiments, we can conclude that the performance of the STLF Informer
model is close to the LSTM-Informer model proposed in this paper. Therefore, we will
further test the performance of the two models in STLF. In the evaluation model perfor-
mance in this paper, the two models are similar in numerical value. Therefore, we further
compared the differences between the two models from the degree of fitting. As shown in
Figure 14, the Informer model predicts the power load consumption value of 8§ h with 48 h
of power load value and fits the predicted power load value of 8 h with the true value. As
shown in Figure 15, it shows that the LSTM-Informer model predicts the 8-h power load
consumption value with 48-h power consumption and fits the 8-h power load consumption
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prediction value with the true value. As shown in Figures 14 and 15, for STLF, the predicted
value of the LSTM-Informer model is smoother than the predicted value of the Informer
model. The predicted value of the Informer model for the power load consumption trend
is roughly the same, but compared to the real value, its predicted value is not so smooth,
and the prominent value is higher. The power load consumption value predicted by the
LSTM-Informer model is relatively smooth, and the trend of the real value is well-fitted.
It shows that the LSTM-Informer model for STLF is not only superior to other models in
the performance index of the judgment model in this paper but is also superior to other
models in terms of the real value.

MAE for long-term power load forecasting
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Figure 13. The MAE index of the selected model uses 8 h of data to predict the power load of 24 h,

32h,40h,48h, and 72 h.
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Figure 14. Informer model 48 h forecast 8 h power load consumption.
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Figure 15. The LSTM-Informer model uses 48 h to predict 8 h of power load consumption.
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From the above experiments, the Transformer model has the closest performance to
the LSTM-Informer model proposed in this paper in long-term power load forecasting.
Therefore, we will compare the performance of the two models in LTLF on the other hand.
In the evaluation model performance in this paper, the two models are similar in numerical
value. Therefore, we further compared the differences between the two models from the
degree of fitting. Figure 16 shows the fitting degree of the LSTM-Informer model using
8-h power load consumption to predict 20-h power load. Figure 17 shows the fitting
degree of the Transformer model using 8-h power load consumption to predict 20-h power
load. Through the comparison of the two graphs, we can find that when the Transfomer
model predicts long-term power load, and its peak easily exceeds the real value. The slight
fluctuation of the real value will cause the predicted value to fluctuate greatly. Therefore, the
fitting degree of the predicted value relative to the real value is not very good. Compared
with the Transfomer model, the LSTM-Informer model has a better fitting degree for the
peak when predicting long-term power load. In the red circle in Figure 16, it can better
fit the real value at the peak, and basically does not exceed the real value. Even if some
areas do not reach the peak, the error is still smaller than the error in Transformer model.
Its predicted value does not change greatly with the slight change of the real value, but it
fits the fluctuation trend of the real value well. This is due to the use of hidden states in
the LSTM model, so that the LSTM is good at extracting short-term temporal correlations.
Thus, we can better capture the trend of power load consumption and then capture the
long-term power load consumption trend through the Informer model. The combination of
the two models makes the LSTM-Informer model better predict the value of real power
load consumption.
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Figure 16. The LSTM-Informer model uses 8 h to predict the fitting degree of 20 h of power load.
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Figure 17. The Transformer model uses 8 h to predict the fitting degree of 20 h of power load.

5. Conclusions

For the nonlinear power load forecasting problem, the model based on artificial
intelligence is one of the effective methods to solve the problem. This paper proposes
a new ensemble learning (LSTM-Informer) model. The method is based on a two-layer
structure. Its underlying learner first learns the training and validation sets based on the
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LSTM model to capture the time correlation of short-term power load consumption and
generate new features. Following that, the new features were added to the next layer of
the learner Informer model. While obtaining the time correlation of short-term power load
consumption, the Informer model does not depend on the past hidden state to capture the
dependence on the previous data, so it will not produce the gradient disappearance problem
s0 as to better predict the long-term power load consumption. Comparing the results of
the LSTM-Informer model with several more advanced single models, it was found that
the LSTM-Informer model outperforms other models on short-term and long-term power
forecasting problems.
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