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Abstract: Implicit sentiment analysis (ISA) can be distinguished from traditional text sentiment
analysis by the fact that it does not rely on emotional words as emotional clues, and the expression is
usually vaguer. Identifying implicit emotions is more difficult, as it requires a deeper understanding
of the context, even when emotional words are absent. Researchers have focused on context feature
modeling and developing sophisticated feature extraction mechanisms instead of starting from the
emotional perspective. Enhancing the difference in emotional features of text samples is an intuitive
method to address this challenge. We proposed a supervised contrastive learning (SCL) method
during training that enables the model to conduct contrastive learning based on emotion labels
even while training on weak emotion features. SCL training can strengthen the average embedding
distance between texts with different emotion labels and enhance implicit emotion discrimination.
Moreover, research indicates that contextual information can improve implicit emotion classification
ability. Therefore, we applied a straightforward context feature fusion method (bi-affine) over a
more complicated context feature modeling approach. To evaluate the effectiveness of our proposed
method, we conducted experiments on the SMP2019-ECISA (Chinese implicit sentiment analysis)
dataset. The results show a 2.13% enhancement in the F1 value compared to the BERT baseline,
proving the effectiveness of our methods.

Keywords: implicit sentiment; sentiment analysis; supervised contrastive learning

1. Introduction

Implicit emotion expression is defined as “language fragments (sentences, clauses, or
phrases) that express subjective emotions but do not contain explicit emotion words” [1].
People tend to use subtle expressions, such as irony, metaphors, and humor, to convey their
sentiments without using explicit emotion words, e.g., “When we arrived at the North Pole
Village, it was already midnight. Although I was fatigued, I could not help but look up at
the sky and keeps looking...”. The objective description is used without specific emotional
words to express the speaker’s positive feelings of being attracted by the scenery of the
North Pole Village, even forgetting the fatigue of the journey.

According to statistics in the Chinese sentiment dataset, about 15% to 20% of sentences
utilize objective or rhetorical statements to convey emotional information implicitly [1,2].
For English sentiment analysis datasets, such as SemEval-2014 Task 4 [3] for Aspect-Based
Sentiment Analysis (ABSA) in restaurant and laptop reviews, implicit emotions account for
approximately 27.47% and 30.09%, respectively [4]. These findings suggest that implicit
emotional expression is widely present across different cultures. Recent research has mainly
focused on the explicit sentiment analysis field and has yielded many practical applications
[5,6]. However, research on implicit emotions is just beginning. Further research on implicit
emotions will continue to promote the development of sentiment analysis tasks.

Since implicit sentiment does not include emotional words as sentiment features,
traditional methods for sentiment analysis relying on sentiment dictionary-based regu-
larization techniques or statistical machine learning based on sentiment features are not
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applicable. Recent research on implicit sentiment has mainly focused on deep learning
methods. Researchers have proposed two approaches to address the problem of missing
emotional words as sentiment features. The first approach involves designing sophisticated
feature extraction mechanisms, such as orthogonal attention and multi-pooling operations,
that capture more semantic features, even when emotion words are absent [7,8]. The second
approach involves recognizing implicit emotions with contextual assistance. For instance,
researchers have encoded contextual information into heterogeneous graphs consisting of
words and sentences using graph neural network models to incorporate contextual infor-
mation features [9,10]. However, these studies have rarely dealt with implict sentiment
problemfrom an emotional perspective. Augmenting differences in emotional features in
text samples is an intuitive method to address this problem.

To address the problem mentioned above, we propose an implicit sentiment analysis
method based on supervised contrastive learning(SCL) [4]. Contrastive learning imitates
the learning strategy of human beings. When we classify a sample, we tend to compare
it with similar samples to find commonalities and other dissimilar classes to find their
differences, which correlates with the process of human generalization.

Supervised contrastive learning aligns the representation of feature embeddings based
on a sample’s emotion label. Features with the same label are grouped together, and those
with different label samples are separated in vector space. Accordingly, we add orthogonal
constraints in the supervised contrastive learning process, which can increase the distance
of different sample clusters. This approach can reduce the fuzziness of feature embeddings
in the vector space, particularly for tasks such as implicit sentiment analysis, for which
label-based discrimination is not so clear.

In addition, research shows that contextual features can improve the performance
of implicit emotion analysis. We use a simple feature fusion method called the bi-affine
[11,12] module to leverage the context features. Compared to graph-based methods [13,14],
this method can reduce the workload of complicated context feature modeling.

The main contributions of this paper are summarized as follows:

• We propose an improved supervised contrastive learning method. During training,
samples with the same emotional label are aggregated, and samples with different
emotional labels are separated with orthogonal constraints;

• Considering the role of context in implicit sentiment analysis, we propose a bi-affine
feature fusion module that does not rely on complicated syntactic structures or context
feature modeling;

• The experimental results show that the proposed model can achieve significant im-
provements over state-of-the-art baseline models.

2. Related Work

Existing research has mainly focused on explicit sentiments, and only limited work
has been conducted on implicit sentiment analysis. In this section, we analyze relevant
research on implicit sentiment analysis, then introduce the supervised contrastive learning
method and its application in natural language processing, especially in text sentiment
analysis. Eventually, this paper’s research motivation is expounded based on previous
research.

2.1. Implicit Emotion Analysis

Implicit sentiment analysis started much later than traditional text sentiment analysis
tasks. Early researchers observed that certain emotions could only be deduced within the
context of comments [15]. Subsequently, researchers attempted to find implicit emotions
in events. Deng and Wiebe [16] analyzed implicit sentiments via the detection of explicit
sentiment expression clues and the inference of events. Choi et al. [17] used +/- Effect-
WordNet lexicon to identify event-related implicit emotions by assuming that emotional
expression is usually associated with states and events that have positive/negative/inef-
fective effects on entities. In recent years, independent emotion analysis tasks have been
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studied. Liao et al. [1] constructed a small-scale factual implicit emotional corpus and
proposed a multilevel semantic fusion model; they studied the identification of factual
implicit emotions in sentences and proposed a multi-level semantic fusion method that inte-
grates emotional target representation, structural embedding representation, and semantic
contextual representation. Researchers now use deep learning methods more to solve this
problem. Wei et al. [8] proposed a BILSTM model with multipolar orthogonal attention for
implicit emotion analysis. Unlike traditional single-attention models, multipolar attention
can identify differences between words and emotional orientations. Zuo et al. [9] obtained
features of implicit emotional sentences and contexts through GCN and proposed a context-
specific heterogeneous graph convolutional neural network (CsHGCN) to address the
lack of emotional words. Zhou et al. [18] inferred the emotional polarity of sentences by
utilizing emotion perception events. They represented events as a combination of their
event type and event triplet. Based on this representation, they proposed a model with a
hierarchical tensor composition mechanism to detect emotions in text.

2.2. Supervised Contrastive Learning

Contrastive learning is mainly applied in computer vision; according to the choice
of contrast objectives, such methods can be divided into self-supervised and supervised
learning methods. The main task of contrastive learning is to learn similar/dissimilar
representations from a dataset composed of pairs of similar/dissimilar data.

Self-supervised contrastive learning is a variant of contrastive learning that makes
use of both labeled and unlabeled data to improve performance on tasks. One of the key
advantages of self-supervised contrastive learning is that it can be used to overcome the
challenge of limited labeled data. This is particularly relevant for tasks for which labeled
data are scarce or expensive to obtain. By leveraging unlabeled data to augment the la-
beled data, self-supervised contrastive learning can improve model performance without
requiring a large amount of labeled data. Inspired by the performance achieved by discrim-
inative approaches based on latent space comparison learning, Chen et al. [19] proposed a
simple visual representation contrastive learning framework (SimCLR). The performance
of SimCLR on 10 out of 12 datasets is comparable to or better than the supervised baseline.
In the same year, the semisupervised learning framework SimCLRv2 [20] greatly improved
the result of self-supervised contrastive learning (SimCLR). SimCLRv2 only uses 10% of
the labeled data to achieve a better effect than supervised learning.

The supervised contrastive learning approach involves training a model to differentiate
between similar and dissimilar examples in a supervised manner through the use of a
contrastive loss function. The advantage of supervised contrastive learning is that it can
improve the ability of a model to discriminate between different classes or categories of
data. Khosla et al. [21] proposed a supervised comparison method with two forms. The
self-supervised comparison method is extended to supervised learning to create orthogonal
pairs between instances with the same class labels and combine their representations.
SOTA results were obtained with ResNet-50 and the ResNet-200 backbone on ImageNet.
This method led to better classification and prediction performance in NLP tasks such as
sentiment analysis, document classification, and machine translation. Gunel et al. [4] used
supervised contrastive learning loss instead of cross-entropy loss to fine-tune pretrained
language models. The fine-tuned language models achieved significant improvements in
evaluation metrics such as GLUE with few shots. One specific implementation of this is
expressed by the following formula:

LSCL =
N

∑
i=1
− 1

Nyi − 1

N

∑
j=1

1i 6=j1yi=yj log
exp

(
Φ(xi) ·Φ

(
xj
)
/τ

)
∑N

k=1 1i 6=kexp(Φ(xi) ·Φ(xk)/τ)

where N is the batch size of training examples, the sample denoted as {xi, yi}i=1,. . . N . Nyi

is the total number of examples in the batch that have the same label as yi, Φ(xi) ·Φ
(

xj
)
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represents a comparison of the similarity of hidden states of samples xi and xj, and τ is the
temperature hyperparameter.

Li et al. [22] found that previous ABSA research has rarely focused on implicit sen-
timent. Using supervised contrastive pretraining to learn implicit sentiment knowledge
models from large-scale sentiment-annotated corpora, they achieved state-of-the-art perfor-
mance and were able to effectively learn implicit sentiment.

The abovementioned studies demonstrate that implicit emotions can be better rep-
resented by supervised contrastive learning, thereby improving the accuracy of implicit
emotion analysis [22]. However, the cost of retraining on a large-scale sentiment corpus is
relatively high, although using cross entropy and fine-tuning pretrained language models
can also achieve good results [4]. It has also been found that the bi-affine module [12] can
also play a role in feature fusion. Therefore, we used supervised contrastive learning to
fine-tune the pretrained model and bi-affine for contextual feature fusion in a study of
Chinese implicit emotion analysis.

3. Methodology

Implicit sentiment analysis tasks are similar to explicit sentiment tasks in predicting the
implicit emotional polarity of a given target sentence as positive, negative, or neutral. The
structure of our model is shown in Figure 1, and the general processing flow is described
as follows.

Figure 1. The architecture of our model.

1. Input the target sentence and context sentence into BERT to obtain the corresponding
text hidden state;
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2. Supervised contrastive learning can cluster emotional features based on emotion
labels to obtain good emotional representations, while adding orthogonal constraints
to different class features enhances feature discrimination;

3. The Bi-Affine module is used to fuse the target feature and context features. The
aggregated feature of the entire context is obtained through pooling and summation
operations;

4. The aggregated feature obtained in the previous step is concatenated with the emo-
tion feature learned by supervised contrastive learning, forming the final feature
representation;

5. Finally, a fully connected layer and softmax layer are used to calculate the probability
of target emotion classification.

3.1. Model Inputs

The initial word node features of the model come from the BERT encoder, and the
position information comes from positional embedding. Batch B includes n sentences
{s1, s2, · · · , sn}. The label of the i-th sentence (si) is denoted as yi. Each sentence (si)
includes its implicit sentiment sentence (st

i ) and its context sentence (sc
i ). To control the

length of context, we limit it to no more than three sentences before and after the target
sentence (sc

i ).
Context-Relative Position Coding (CPOS): Location information helps to locate context-

related target sentences, especially when there are multiple context sentences between a
target sentence. Therefore, we explicitly encode the relative position of the context relative
to the target sentence.

BERT Encoder: We used the pretrained BERT baseline model as the encoder to obtain
the word representation. Specifically, we constructed the input as “[CLS]+sentence+[SEP]”
and input the context and target sentence into BERT. For the context sentence, we added
contextual relative position encoding (CPOS) before adding it to BRET. The hidden state
representation (ht

i ) of the target sentence (st
i ) and the hidden state representation (hc

i ) of the
context (sc

i ) are obtained.

3.2. Improved SCL

Supervised Contrastive Learning: SCL encourages models to learn label-based feature
representations. Here, we used supervised contrastive learning to encourage the sample to
learn the implicit emotion sample representation of the same labels to improve familiarity.

First, we extracted the emotional representation (si = Ws h̄i) from the sentence rep-
resentation. Ws can be seen as a trainable sentence emotion perceptron. h̄i is the hidden
representation of the target sentence sc. Specifically, for (si, yi) in batch B, we define the
supervised contrastive loss as follows:

Lsup
B = ∑

i∈B
− 1

Nyi − 1 ∑
yi=yj ,i 6=j

log
exp(si · sj/τ)

∑b∈B,b 6=i exp(si · sb/τ)

where Nyi represents the number of samples with label yi in the same batch (B). We use
si · sj as a measure of similarity. The temperature (τ) is used to control the aggregation rate
of sample points.

Add orthogonal constraints: In order to separate the emotional characteristics of
different emotions, an orthogonal constraint is added to the emotional feature vectors of
different labels in the same batch (B). We developed the following process:

Lorth
B = ∑

∣∣∣∣∣ si · sj

|si| ·
∣∣sj

∣∣
∣∣∣∣∣ (i, j ∈ [0, 1, 2], i 6= j)
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3.3. Bi-affine Attention

We used the bi-affine attention module to effectively fuse the features of the target
sentence and the context sentenced; the specific process is expressed as follows:

hc′
i = softmax

(
hc

i Wc
(
ht

i
)T

)
ht

i

ht′
i = softmax

(
hc

tWt(hc
i )

T
)

ht
i

where Wc and Wt are trainable weights.
After pooling the target sentence and contextual features transformed by bi-affine, they

are combined and normalized to obtain the aggregated feature (ri) for the entire context.

ri = Norm(pooling(hc′
i ) + pooling(ht′

i ))

The pooling method uses average pooling to reduce the dimensions of features, and
the norm is the standardization layer.

3.4. Emotional Feature Fusion

Finally, we concatenated the context-aggregated features obtained from the bi-affine
module with the emotion features learned through supervised contrastive learning to
obtain a final feature representation for the implicit emotion analysis task.

f = tanh(Wc[si‖ri] + bc)

where Wc and bc are learnable parameters.

3.5. Sentiment Classification

Then, the obtained feature ( f ) is sent to a linear layer, followed by the softmax function,
to generate an emotion probability distribution (p). Lc is the standard cross-entropy loss
used to evaluate the accuracy of predictions.

p(a) = so f tmax(Wp f + bp)

Lc = − ∑
c∈C

logp(a)

where Wp and bp are trainable weights and biases, respectively, and C = 0, 1, 2 is the set of
different emotional polarity samples in the same batch (B).

3.6. Loss Function

Our training goal is to minimize the following objective function:

Lt = Lc + λ1Lsup
B + λ2Lorth

B

where λ1 and λ2 are regularization coefficients, Lc is the standard cross-entropy loss for
sentiment polarity classification, Lsup

B represents supervised contrastive loss, and Lorth
B is

the added orthogonal constraint.

4. Experiments
4.1. Dataset

We conducted experiments using the Chinese implicit sentiment dataset SMP-ECISA 2019
https://conference.cipsc.org.cn/smp2019/smp_ecisa_SMP.html (accessed on 11 March 2023)
(the Eighth National Conference on Social Media Processing of the Chinese implicit sentiment
assessment). The dataset primarily comprises Weibo posts (Chinese social media platform),
covering various topics, such as the Spring Festival Gala, tourism, haze, etc. A large-scale

https://conference.cipsc.org.cn/smp2019/smp_ecisa_SMP.html
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sentiment lexicon was used to filter the dataset, ensuring that no text samples contained explicit
sentiment words. The data are published in the form of chapters of cut sentences, which retains
the complete contextual content information. Such data samples are categorized into three
types: positive, negative, and neutral. The specific statistics are shown in Table 1. The data are
published in XML format. An instance of a text sample is presented below.

<Doc ID="5">
<SentenceID="1">because you are old lady</Sentence>
<SentenceID="2" label="1">Finished watching, full of memories many
elements of that era</Sentence>
</Doc>

Table 1. Statistics of the SMP_ECISA2019 dataset.

Dataset Positive Negative Neutral Total

Train 3828 3957 6989 14,774

Validation 1232 1358 2553 5143

Test 919 979 1902 3800

4.2. Implementation Details

We implemented our model with the pretrained bert-base-uncased https://huggingface.
co/bert-base-uncased (accessed on 11 March 2023) in pytorch transformers https://huggingface.
co/docs/transformers/ (accessed on 11 March 2023). The supervised contrastive loss uses the
online version https://github.com/HobbitLong/SupContrast (accessed on 11 March 2023).
The bug of only one positive or negative class was fixed in the batch, resulting in no other
samples for comparison error.Then, we added a data normalization operation to maintain
numerical stability.

The Adam optimizer uses a learning rate of 1× 10−5, with a batch size of 16 and
dropout set to 0.1 during training. To identify the optimal hyperparameters, we conducted
a grid search on λ and supervised contrast learning temperature (τ), with possible values of
{0.1, 0.3, 0.5, 0.7, 0.9}. In all experimental setups, models that achieved the best test accuracy
used τ = 0.3, λ1 = 0.3, and λ2 = 0.5.

4.3. Baseline

We selected some models that performed well in implicit emotion analysis tasks as
the baseline. The description and specific details are as follows.

MPOA [8]: This model is based on the multihead attention model of BILSTM. Adopt-
ing orthogonal and score attention constraints encourages multiple-head attention dis-
persed to different parts of the text.

MPOAC [7]: This model proposes a multipolarity orthogonal attention mechanism
to embed implicit sentiment sentences, establishing a multipolarity attention layer that
integrates contextual information in model the context.

HAN [23]: This method adopts a hierarchical attention mechanism at the word and
sentence levels so that the model can provide extra attention to the ability of sentences
and words of different importance in the text. The method is divided into two parallel
models, and the target sentence is spliced into the final representation through two layers
of attention mechanisms.

CsHGCN [9]: This model proposes a context-specific heterogeneous graph convolu-
tional network framework that can combine all context representations. It has a full context
that comprehensively reflects the information of documents.

BERT [24]: This is the vanilla BERT model that uses the representation of CLS%for
predictions.

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/docs/transformers/
https://huggingface.co/docs/transformers/
https://github.com/HobbitLong/SupContrast
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BERT-SPC: This models composes the input sequence format as “[CLS] context sen-
tence [SEP] target sentence” to the BERT model; the length of the context is limited to three
sentences, using the [CLS] token for prediction.

4.4. Results and Analysis

We employed macro-P, macro-R, and macro-F as the performance metrics to assess
our implicit sentiment analysis model. The main experimental results are shown in Table 2.
Employing an attention module for LSTM(MPOA, MPOAC) leads to a 2–3% increase
in F1 score compared to the vanilla LSTM model. For the method based on modeling
a heterogeneous structure, the graph neural-network-based approach (CsHGCN) yields
a substantial increase of 5.39% in the F1 score compared to the Bi-GRU method (HAN).
This suggests that graph neural networks have better feature aggregation capabilities for
heterogeneous data structures. BERT-based methods (BERT and BERT-SPC) outperform
the other two methods based on LSTM attention (MPOA and MPOAC) and heterogeneous
structure modeling methods (HAN and CSHGCN). In contrast to BERT, BERT-SPC shows a
decline of 0.13% in the F1 score, implying that feeding context directly into the BERT model
does not enhance its ability to detect implicit emotions. One plausible reason for this is that
implicit emotions are highly context-sensitive and can be susceptible to more noise. Our
proposed approach increases the f1 score from 80.47% to 82.6% compared to the vanilla
BERT. This suggests that our proposed method, which combines supervised contrastive
learning and bi-affine contextual feature fusion, can enhance the discriminative power of
implicit emotions.

Table 2. Experimental result of the comparison model.

Model macro-P (%) macro-R (%) macro-F1 (%)

LSTM 68.93 70.92 69.91

MPOA - - 73.3

MPOAC - - 74.6

HAN 72.69 71.91 72.3

CsHGCN 79.46 76 77.69

BERT 79.69 81.27 80.47

BERT-SPC 79.49 80.81 80.14

Proposed model 82.36 82.84 82.6

4.5. Ablation Study

To further explore the role of each module in the our model, a series of ablation studies
was conducted. The experimental results are shown in Table 3.

Table 3. Experimental result of the ablation study.

Model macro-P (%) macro-R (%) macro-F1 (%)

ours 82.36 82.84 82.6

w/o scl&orth 80.03 81.22 80.62

w/o orth 82.11 81.76 81.93

w/o biaffine 81.75 82.23 81.99

w/o scl&orth indicates that we removed both supervised contrastive learning and
orthogonal restrictions, resulting in a 1.98% decrease in the F1 value. This is much more
than the 0.61% decrease observed when removing the bi-affine module (w/o biaffine),
indicating that supervised contrastive learning plays a more important role in our model.
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When only removing orthogonal restrictions (w/o orth), we can see that the F1 value drops
by 0.67%, which is comparable to the results of our double-context fusion model (w/o
biaffine). This demonstrates the effectiveness of adding orthogonal restrictions.

4.6. The Impact of Contrast Feature

To examine the impact of contrast features in supervised contrast learning on experi-
mental results, we employed three different pooling strategies to select contrast features—
[MEAN], [MAX], and [CLS]—corresponding to mean polling, max pooling, and using
the [CLS] token as the whole implicit sentiment representation, respectively. As shown
in Table 4, the [MEAN] and [CLS] pooling methods outperform [MAX] pooling, as they
improve the final F1 score by 0.81% and 0.93%, respectively. This result suggests that using
max-pooling as a comparative feature may result in losing more sample features, leading to
poor performance. The difference in performance between [CLS] and [MEAN] is insignif-
icant. The [CLS] method achieves a higher F1 score by 0.12%, implying that satisfactory
results can be attained solely by using [CLS] without any extra pooling operations.

Table 4. The impact of contrast features.

Label macro-P (%) macro-R (%) macro-F1 (%)

[Mean] 82.52 81.95 82.23
[MAX] 82.17 81.17 81.67
[CLS] 82.36 82.84 82.6

4.7. Difference of Label Distribution

To explore the performance of the model under different labels, we conducted the
corresponding experiments. The results are shown in Table 5. The neutral tag sample
performs the best in terms of accuracy, outperforming the positive and negative tags by
6.66% and 7.71% in the F1 score, respectively. This is due to the fact that the neutral samples
constitute more than twice the number of positive or negative samples and therefore
receive sufficient training. The F1 value of negative samples is 0.82% lower than that of
positive samples, and its recognition accuracy is also lower. This may be because in implicit
emotions, the use of metaphors and irony make it more difficult to distinguish negative
emotional polarity.

Table 5. Results of different label distributions.

Label Precision (%) Recall (%) F1 (%)

Neutral 85.46 87.02 86.23

Positive 79.39 79.76 79.57

Negative 78.11 79.32 78.71

4.8. Comparison of Runtime to the BERT Baseline

To ensure accurate comparisons, we maintained a consistent hardware and software
environment throughout the experiments and utilized the same contextual conditions for
the original input. Table 6 presents a comparison between our model and the baseline BERT
in terms of the average runtime over 10 epochs on the SMP2019 dataset. Our supervised
contrastive learning method did not involve additional parameters, resulting in our model
having a similar number of parameters to BERT (around 100 million). During training,
BERT takes an average of 6.81 minutes to complete one batch, while our model takes 12.85
minutes to complete one epoch. This difference is due to the fact that we input BERT in
two segments to obtain the features of the context and target sentence separately, with the
main time spent on BERT. In the prediction stage, the difference between our model and
BERT is only 1.1 minutes because we do not need to calculate the supervised contrastive
loss during the prediction phase. Therefore, the time difference is relatively small.
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Table 6. The average runtime per epoch.

Model Parameters Train (min) Predict (min)

Bert 102,269,955 6.81 3.1

Ours 104,630,786 12.85 4.2

4.9. Visualization of Hidden Representations

In order to understand the impact of supervised contrastive learning on implicit
sentient analysis, we used t-SNE [25] to perform dimensionality reduction and visualize
the hidden state of the sentiment representation. As shown in Figure 2, the hidden state
corresponding to the [CLS] token trained by SCL can learn feature representations by
sentiment labelmore closely.

Figure 2. Visualization of the hidden sentiment representation.

5. Conclusions

In this paper, we investigated the implicit sentiment analysis task based on the SCL
method. We argue that the relatively low accuracy of implicit emotion classification is due
to weak emotional features caused by missing emotional words. Prior research has not fully
utilized the available sentiment information. Hence, we employed supervised contrastive
learning to minimize the embedding distance between sample features based on labels to
help the model find a better sentiment representation. Our experiments demonstrate that
our model outperforms the baseline, indicating the effectiveness of our approach. However,
the improvement of the context fusion module on experimental results is limited. Our
future research will focus on exploring more effective methods utilizing context.

In the future, our aim is to conduct more fine-grained research on implicit sentiment
analysis. Employing prompt learning enables the alignment of pretrained tasks and down-
stream tasks. By setting templates, we can identify absent sentiment words in implicit
sentiment sentences and align them with explicit emotional analysis tasks.

Author Contributions: Data curation, L.K.; funding acquisition, W.Y.; investigation, L.K. and F.W.;
methodology, L.K.; project administration, L.K.; software, L.K.; supervision, L.K. and F.W.; validation,
L.K. and F.W.; writing—original draft, L.K.; writing—review and editing, L.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of China grant number
202204120017, the Autonomous Region Science and Technology Program grant number 2022B01008-2,
and Autonomous Region Science and Technology Program grant number 2020A02001-1.



Electronics 2023, 12, 2172 11 of 12

Data Availability Statement: The data used in this study are public datasets, which can be obtained
from the following link: https://conference.cipsc.org.cn/smp2019/smp_ecisa_SMP.html. (accessed
on 11 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liao, J.; Wang, S.; Li, D. Identification of Fact-Implied Implicit Sentiment Based on Multi-Level Semantic Fused Representation.

Knowl.-Based Syst. 2019, 165, 197–207. [CrossRef]
2. Jian, L.; Yang, L.; Suge, W. The Constitution of a Fine-Grained Opinion Annotated Corpus on Weibo. In Proceedings of the Chinese

Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data; Sun, M., Huang, X., Lin, H., Liu,
Z., Liu, Y., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 227–240.
[CrossRef]

3. Pontiki, M.; Galanis, D.; Pavlopoulos, J.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S. SemEval-2014 Task 4: Aspect
Based Sentiment Analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin,
Ireland, 23–24 August 2014; Association for Computational Linguistics: Dublin, Ireland, 2014; pp. 27–35. [CrossRef]

4. Gunel, B.; Du, J.; Conneau, A.; Stoyanov, V. Supervised Contrastive Learning for Pre-trained Language Model Fine-tuning. arXiv
2021, arXiv:2011.01403.

5. Pang, B.; Lee, L. Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr. 2008, 2, 1–135. [CrossRef]
6. Liu, B. Sentiment Analysis and Opinion Mining. Synth. Lect. Hum. Lang. Technol. 2012, 5, 1–167.
7. Wang, H.; Hou, M.; Li, F.; Zhang, Y. Chinese Implicit Sentiment Analysis Based on Hierarchical Knowledge Enhancement and

Multi-Pooling. IEEE Access 2020, 8, 126051–126065. [CrossRef]
8. Wei, J.; Liao, J.; Yang, Z.; Wang, S.; Zhao, Q. BiLSTM with Multi-Polarity Orthogonal Attention for Implicit Sentiment Analysis.

Neurocomputing 2020, 383, 165–173. [CrossRef]
9. Zuo, E.; Zhao, H.; Chen, B.; Chen, Q. Context-Specific Heterogeneous Graph Convolutional Network for Implicit Sentiment

Analysis. IEEE Access 2020, 8, 37967–37975. [CrossRef]
10. Yang, S.; Xing, L.; Li, Y.; Chang, Z. Implicit Sentiment Analysis Based on Graph Attention Neural Network. Eng. Rep. 2022, 4,

e12452. [CrossRef]
11. Li, R.; Chen, H.; Feng, F.; Ma, Z.; Wang, X.; Hovy, E. Dual Graph Convolutional Networks for Aspect-based Sentiment

Analysis. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), Virtual Event, 1–6 August 2021; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 6319–6329. [CrossRef]

12. Xu, M.; Wang, D.; Feng, S.; Yang, Z.; Zhang, Y. KC-ISA: An Implicit Sentiment Analysis Model Combining Knowledge
Enhancement and Context Features. In Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju,
Republic of Korea, 12–17 October 2022.

13. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
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