
Citation: Shi, L.; Li, T.; Wei, L.; Tao,

Y.; Li, C.; Gao, Y. FASTune: Towards

Fast and Stable Database Tuning

System with Reinforcement Learning.

Electronics 2023, 12, 2168.

https://doi.org/10.3390/

electronics12102168

Academic Editors: Franco Cicirelli

and Manohar Das

Received: 10 March 2023

Revised: 2 May 2023

Accepted: 7 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

FASTune: Towards Fast and Stable Database Tuning System
with Reinforcement Learning
Lei Shi 1,2,3,* , Tian Li 2, Lin Wei 1 , Yongcai Tao 2, Cuixia Li 1,* and Yufei Gao 1,3

1 School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China;
yfgao@zzu.edu.cn (Y.G.)

2 School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China;
202022172013213@gs.zzu.edu.cn (T.L.)

3 Songshan Lab, Zhengzhou 450046, China
* Correspondence: shilei@zzu.edu.cn (L.S.); lcxxcl@zzu.edu.cn (C.L.)

Abstract: Configuration tuning is vital to achieving high performance for a database management
system (DBMS). Recently, automatic tuning methods using Reinforcement Learning (RL) have been
explored to find better configurations compared with database administrators (DBAs) and heuristics.
However, existing RL-based methods still have several limitations: (1) Excessive overhead due to
reliance on cloned databases; (2) trial-and-error strategy may produce dangerous configurations
that lead to database failure; (3) lack the ability to handle dynamic workload. To address the above
challenges, a fast and stable RL-based database tuning system, FASTune, is proposed. A virtual
environment is proposed to evaluate configurations which is an equivalent yet more efficient scheme
than the cloned database. To ensure stability during tuning, FASTune adopts an environment proxy
to avoid dangerous configurations. In addition, a Multi-State Soft Actor–Critic (MS-SAC) model
is proposed to handle dynamic workloads, which utilizes the soft actor–critic network to tune
the database according to workload and database states. The experimental results indicate that,
compared with the state-of-the-art methods, FASTune can achieve improvements in performance
while maintaining stability in the tuning.

Keywords: database tuning; reinforcement learning; decision making; deep learning

1. Introduction

A database has numerous tunable parameters [1], which can significantly affect perfor-
mance metrics, such as latency and throughput. Appropriate configurations can improve
the database performance. Database tuning is an NP-hard problem [2,3], making the search
for optimal configurations a challenging task for DBAs. In recent years, some studies have
focused on automatic database tuning, including rule-based methods [4–6] and learning-
based methods [3,7–12]. Rule-based methods search for optimal configurations based
on fixed rules, which have previously been observed to improve database throughput
compared to default configurations on OLTP (Online Transaction Processing) workloads.
However, the rule-based method fails to utilize experience from previous tuning processes
and thus needs to restart the search process for each new tuning request. Learning-based
methods, e.g., Ottertune [8], utilize a machine-learning model to select knobs, map the
workload, and recommend configurations to improve database performance. However,
these methods have two limitations.

Firstly, their reliance on the pipelined approach can result in sub-optimal performance,
as the optimal solution for a particular stage may not guarantee the optimal solution for
the subsequent stage, and different stages may not complement each other effectively.
Consequently, an end-to-end optimization of overall performance becomes unfeasible.

Secondly, the models depend on large-scale, high-quality training samples, which can
be difficult to access. For instance, the performance of cloud databases is influenced by

Electronics 2023, 12, 2168. https://doi.org/10.3390/electronics12102168 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12102168
https://doi.org/10.3390/electronics12102168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1170-3911
https://orcid.org/0000-0002-5678-3417
https://orcid.org/0000-0002-2356-0700
https://doi.org/10.3390/electronics12102168
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12102168?type=check_update&version=1

Electronics 2023, 12, 2168 2 of 22

various factors, such as memory size, disk capacity, and workloads. Capturing all these
conditions and accumulating high-quality samples present challenging tasks.

In this case, conventional machine learning approaches have poor adaptability and
the model requires retraining to adapt to the new environment.

Another family of learning-based methods, e.g., Qtune [2], CDBTune [7] and HUNTER [3]
address the tuning problem using reinforcement learning [13,14]. They consider the
database an environment and use an agent to find optimal configurations through a
trial-and-error strategy, which alleviates the burden of collecting a large number of samples
in the initial modeling stage. However, applying these methods in the real world still has
several challenges:

First, the agent updates the policy according to an evaluation of configurations, which
depends on a time-consuming stress test on the database.

Second, a trial-and-error strategy is adopted in RL to exploit optimal configurations.
Thus, the agent may recommend dangerous configurations that can cause performance
degradation or database crashes which is unacceptable.

Third, the workload is assumed constant, so the tuning aims to improve performance
on a specific workload. However, as shown in Figure 1, the real-world workload can be
varied so that the tuning result may be delayed.

Figure 1. Statistics of different query types over time in the workload of the BusTracker application
(a mobile phone application for live-tracking of the public transit bus system).

To address the above problems, FASTune is proposed to prevent dangerous configura-
tions, accelerate the tuning process and adapt to the dynamic workload. To boost efficiency
and ensure the stability of the database during the tuning process, FASTune implements an
environment proxy. Environment proxy achieves this goal through: (i) Discarding actions
that could cause a dramatic drop in database performance or database failure. (ii) Reducing
inefficient evaluation of the action. In contrast to the existing methods that enable direct
interaction between the agent and the environment, our research incorporates a wrapped
environment with a proxy, through which the agent interacts with the environment. The
evaluation of action is also handled by environment proxy. Environment proxy has three
key components: Filter, Virtual Environment, and Dispatcher. Filter excludes dangerous
actions to avoid fluctuations and database failures. The Filter uses rule-based and learning-
based methods to evaluate dangerous actions. The Filter extracts rules from the documents
(e.g., the database manual), and actions that match these rules will be considered dangerous
and excluded. Using rules is straightforward and effective but can not cover all situations
because there are non-linear correlations between knobs and database performance. So
Filter utilizes a classification model to detect a dangerous action, reduces the dangerous
action significantly, and contributes to the stability of the database.

Electronics 2023, 12, 2168 3 of 22

FASTune employs a virtual environment to evaluate configurations more effectively.
A virtual environment is a model that mimics the behavior of the environment as closely
as possible while being computationally feasible. The virtual environment estimates the
evaluation of the action, which reduces unnecessary stress tests on the database. Virtual
Environment can reduce tuning time more efficiently and does not require additional
memory and storage compared to cloned database. However, since the estimation is based
on historical data, predicting the performance of actions can be difficult when there are
insufficient relevant data. To address this issue, the dispatcher is proposed, dispatcher
divides the actions into two groups: “common” and “uncommon”. Common actions
mean that the action is numerically close to the previous action so that the performance
of the action can be predicted based on historical data. Conversely, for an uncommon
action, deploying it on the database and performing a stress test is necessary to acquire
its performance. Therefore, the environment (i.e., the database instance) is required. The
details of the Virtual Environment will be discussed in Section 5.

Since several studies have shown that different workloads are sensitive to differ-
ent knobs [10,15], it is necessary for agent to consider workload characteristics during
the tuning. A Multi-State Soft Actor–Critic model (MS-SAC) is proposed to handle dy-
namic workloads. Different from previous work, MS-SAC finds optimal configurations
according to both environment state and workload state. FASTune continuously collects
workload arriving at the database and constructs a model to predict future workload. The
predicted results will be provided to the agent as workload state. The paper makes the
following contributions:

1. Environment Proxy is proposed in Reinforcement Learning for database tuning, which
improves the efficiency and stability of tuning;

2. FASTune utilizes a combined approach to exclude dangerous configurations;
3. MS-SAC model is proposed, which utilizes the soft actor–critic network to find optimal

configurations based on both the environment and workload state;
4. Experimental evidence demonstrates that FASTune can considerably reduce tuning

time and ensure the stability of database tuning.

2. Related Works
2.1. Database Tuning

Automatic database tuning systems have been studied for decades [2,8,16–36]. They
can be broadly classified into the following categories.

2.1.1. Rule-Based Methods

Rule-based methods use rules or heuristics to find optimal configurations for the
database. iTuned [12] utilizes statistical methods to select essential knobs and find correla-
tions between these knobs and performance. Wei et al. [6] propose a method that generates
rules and uses them for tuning. BestConfig [4] splits the high-dimension search space into
sub-spaces and recommends configurations using a recursive bound-and-search algorithm.
DB2 proposes a self-tuning memory model that uses heuristics to allocate proper memory
to the components of database [37], Tran et al. [38] used linear and quadratic regression
models for buffer tuning. The DBSherlock helps DBA to diagnose faults by comparing slow
regions and normal regions [39]. However, rule-based methods rely on historical data or
rules and fail to utilize previous tuning processes’ experiences.

2.1.2. Learning-Based Methods

Ottertune [10] and ResTune [15] map the tuning problem to black-box optimization
issues and uses the traditional Machine learning (ML) method to obtain optimal solutions.
However, they depend on a large amount of high-quality training data. Another family
of learning-based methods, e.g., CDBTune [7] and Hunter [3], utilize RL to tune database
and the configurations. They train an agent that uses a trial-and-error strategy to search for
optimal configurations. In the beginning, agent randomly recommends configurations and

Electronics 2023, 12, 2168 4 of 22

applies them to the database, and then agent adjusts its policy based on the feedback from
the database. RL can achieve high performance and does not require training data, but
agent may recommend risky configurations that cause database failure. In addition, the
interaction with the database is time-consuming, which prevents them from being applied
in the production environment. Kanellis [40] proposed a knobs importance ranking method
to automatically filter the most important knobs to reduce tuning time, which is a limited
improvement. CDBTune uses cloned database instances to accelerate the tuning process.
However, it brings a huge cost.

2.2. Reinforcement Learning

Reinforcement learning is proposed to solve multi-person decision problems [13,41].
RL is a model that uses an agent (learner) to execute an action (make a decision) in a
specific environment (scenario) and learn from the interactions with the environment [42].
Different from supervised learning, RL does not require much training data. Instead, the
agent updates its policy of outputting actions to maximize a reward function. Usually, a
higher reward means a better decision(action).The essential part of reinforcement learning
is learning from interactions with the environment to maximize a cumulative reward
signal over a period of time. In other words, an agent learns to take actions based on the
feedback received from the environment, with the goal of receiving the highest possible
reward in the long run. The agent’s goal is not to predict a specific output but to maximize
the expected cumulative reward. This trial-and-error learning process is a key aspect of
reinforcement learning. Reinforcement learning has been successfully utilized in different
optimal problems [43–47], and there is a large number of published studies that use RL
to address database problems. Neo [48] developed a learnable query optimizer with RL.
SageDB [49] suggests a vision that learning-based models can replace some components
in a DBMS. Basu et al. use RL to implement index tuning. OpenGauss [50] uses a deep
reinforcement learning model to optimize the query plan.

3. System Overview

In this section, The architecture and the workflow of our database tuning system are
demonstrated.

3.1. Architecture

FASTune is an database tuning system with reinforcement learning, and an overview
of it is shown in Figure 2.

FASTune consists of three parts. First, Agent interacts with the Environment Proxy and
recommends configurations. Agent is a Soft Actor–Critic (SAC) [51] network containing
two independent neural networks: actor and critic. Actor takes multi-state as input and
outputs an action (i.e., configurations), and the Proxy computes a reward based on the
evaluation of action. Critic takes multi-state and action as input and outputs a Q-value
(score). Critic updates according to the reward, and actor updates according to the Q-value.
Details of SAC will be discussed in Section 4. Second, the Environment Proxy contains three
components—(a) Filter using rules and machine learning methods to exclude dangerous
action for safety tuning. (b) Virtual Environment alleviates the burden of evaluating the
action in tuning. (c) Dispatcher receives the action and deploys it to environment or sends it
to Virtual Environment. Third, Workload Collector records recently arrived workloads and
predict the expected queries in the future. The interactions between Agent and Environment
Proxy generate trajectories stored in memory; trajectories are a set of tuples < Sw, Sd, A, r >.
Sw is the feature of predicted future workload, and Sd represents database state such as
lock_row_lock_current_waits, etc. A is an action generated by Agent, and r is the reward of
action calculated from throughput and latency. Note that, different from existing methods,
Sw and Sd are combined and provided to the agent as multi-state.

Electronics 2023, 12, 2168 5 of 22

Figure 2. Overview architecture of FASTune.

3.2. Workflow

FASTune works in 4 stages:

1. Initialize. FASTune stress tests the database with default configurations to build an
initial performance baseline. Then the weights of the actor and critic network are
initialized by the stochastic distribution. Workload Collector starts to collect workload
until the tuning process ends;

2. Recommend. As the tuning request arrives. Agent takes environment state and workload
state as input and then outputs an action based on the policy. The Agent sends the action
to Environment Proxy and waits for a reward (i.e., the evaluation of action);

3. Evaluate. The filter in the environment proxy excludes potentially harmful actions
before the evaluation process. Once action passes through the filter, Dispatcher
determines whether the action is “common” or “uncommon” based on historical
data, “common” and “uncommon” action will be sent to Virtual Environment and
Environment, respectively. If action is sent to Virtual Environment, Agent will get
the predicted evaluation. Otherwise, the Proxy deploys the action on database and
returns an evaluation based on a stress test. Every interaction between the proxy and
the agent generates a sample, which is then stored in memory;

4. Update. Environment Proxy calculates the reward according to the action evaluation
and returns it to Agent. Since a higher reward indicates better performance, Agent
updates the policy network (i.e., actor) to earn a higher reward and updates value
network (i.e., critic) to provide more accurate feedback for the actor. The detail of
actor and critic are described in Section 4.

Stage 2–4 is repeated until the model converges or meets other stop conditions (e.g.,
database throughput reaches a given threshold). Finally, the Agent deploys configurations
with ideal performance on the database instance.

Electronics 2023, 12, 2168 6 of 22

4. RL for Tuning

This section introduces RL to solve the tuning problem, and then the proposed MS-
SAC model is presented.

Usually, there are hundreds of tunable knobs in databases, some of which are in
continuous space [1]. So it is hard for traditional machine learning methods to find optimal
configurations [2]. As both the rule-based and conventional learning-based approaches
have limitations, designing a more efficient tuning system is necessary. Reinforcement
Learning (RL) is a learning method that can effectively operate with limited samples during
initial training.Because RL makes decisions through the interaction process between an
agent and its environment, relying on accumulated rewards rather than labels to perform
learning. Some popular RL methods include Q-learning [52], DQN [53], and DDPG [54].
Q-learning uses Q-tables defined as Q(s, a), where the rows represent the Q-value of states
and the columns represent actions. The Q-value measures how beneficial it would be to
take a particular action in the current state. Q(s, a) is iteratively defined as follows:

Q(st, at)← Q(st, at) + α[r + γmaxat+1Q(st+1, at+1)−Q(st, at)] (1)

Q-Learning updates the Q-table based on the Bellman Equation, where a represents
the learning rate, γ is a discount factor, and r is the performance at time t + 1. However, it
is impractical to solve database tuning problems with a large state space because Q-table
can hardly store so many states. Even with ten metrics discretized into ten equal bins
each, it results in 1010 states. DQN uses neural networks to replace Q-tables but can only
output discrete actions, while knob combinations in a database are high-dimensional and
continuous. CDBtune employs DDPG, which utilizes two deep neural networks: an actor
and critic networks to address the issue. The actor network maps states to actions, and
the critic network approximates the state-action value function. The actor network learns
the policy, while the critic network estimates the value function of the policy. With the
actor–critic architecture, DDPG immediately acquires the value of the current action based
on the current state without having to compute and store Q-values for all actions like DQN.
As a result, DDPG can learn the policy with high-dimensional states and actions, making it
a more suitable choice for solving database tuning problems.

However, the interaction between the deterministic policy network (i.e., actor) and the
value network (i.e., critic) makes DDPG brittle to hyper-parameter: discount factor, learning
rates, and other parameters must be set carefully to achieve ideal results. Consequently,
using DDPG on complex high-dimensional tasks is hard to stabilize. These issues limit the
application of RL to real-world tasks. The Multi-State Soft Actor–Critic model (MS-SAC) is
proposed to overcome these disadvantages.

4.1. MS-SAC Model

MS-SAC uses the soft actor–critic networks [51] to develop an agent specifically for
database tuning. The SAC algorithm is a variant of the actor–critic algorithm that optimizes
the actor’s policy objective by introducing entropy regularization. This regularization
helps to encourage exploration and prevent the policy from becoming too deterministic,
which can lead to sub-optimal solutions. The concept of Multi-State refers to the agent
recommending configurations based on both the environment and the workload state,
unlike previous works. This approach enhances FASTune’s adaptability and stability, and
we plan to introduce more states (such as network states) in the future. It is worth noting
that, unlike traditional RL, the environment is enveloped by our proposed proxy, which
means that the agent interacts with the proxy rather than the environment itself. More
information about the environment proxy can be found in Section 5. Table 1 illustrates the
mapping from MS-SAC to the tuning task and clarifies the notion presented.

Electronics 2023, 12, 2168 7 of 22

Table 1. Mapping from Reinforcement Learning to Database Tuning.

Variables MS-SAC Database to Be Tuned

E Environment Database to be tuned
S Database and workload state Metrics of database and workload
a Action Configurations of database
r Reward Performance improvement
- Agent The soft actor–critic network
π Policy -

Qπ Critic -
Vπ Actor -
θ The weights in actor -
ω The weights in critic -
γ Discount factor set to 0.9
α Coefficient of explore and exploit set to 0.2
ρ Coefficient of soft update target network set to 0.01
L Loss function -
- Environment proxy -

1. Environment. The Environment is the tuning target. Precisely, a database instance;
2. Database state. The Database State records the metrics of database, which consist

of cumulative value (e.g., lock_deadlocks) and state value (e.g., f ile_num_open_ f iles);
both reflect the situation inside the database;

3. Workload state. Workload State represents the characteristics of the upcoming work-
load. FASTune combines the Workload State with and Database State as the Multi-
State, which is provided to the Agent when generating an Action;

4. Action. Action is database configurations generated by Agent. From a mathematical
viewpoint, Action and Multi-State are both vectors. Agent maps Multi-State to Action,
given the State, Agent deterministically outputs an Action;

5. Reward. Reward is a scalar that reflects the quality of Action. FASTune calculates the
reward according to performance change after the database deploys a new action. A
higher reward means greater Action. Note that the MS-SAC model optimizes policies
to maximize the expected entropy of the policy, so both performance change and
entropy of the action are considered in the calculation of the reward;

6. Agent. FASTune utilizes the actor–critic networks as an Agent to tune knobs. Agent
receives a Reward and Multi-State from Environment Proxy and updates the policy to
learn how to recommend high-quality Action that can earn a higher reward.

4.2. Training

As described above, the agent is to maximize a cumulative reward signal over time
which can be defined as the function:

π∗ = max
θ

E[
∞

∑
t=0

R(st, at) + αH(π(·|st))] (2)

where the policy of the agent is represented by π. R(st, at) is the reward function, and α is
the coefficient. H(π(|̇st)) represents the entropy of the actions. The entropy of a random
variable x with probability density p(x) is defined as:

H(P) = E
x∼P

[−logP(x)] (3)

Entropy reflects the degree of disorder in a system. In database tuning optimization,
this term represents the diversity of the agent’s output configurations. Entropy maximiza-
tion leads to more exploration and thus prevents the model from converging to a bad
local optimum.

Electronics 2023, 12, 2168 8 of 22

The policy function with entropy item is defined as:

Vπ(s) = E
π

[∞

∑
t=0

γt
(

R(st, at, st+1) + αH(π(·|st))

)]
(4)

The action-value function (Q-function) with entropy item is defined as:

Qπ(s, a) = E
π

[
∞

∑
t=0

γtR(st, at, st+1) + α
∞

∑
t=1

γtH(π(·|st))

]
(5)

With the equations above, the Vπ and Qπ can be connected by

Vπ(s) = E
a∼π

[Qπ(s, a)] + αH(π(·|s)) (6)

and the Bellman equation for Qπ is:

Qπ(s, a) = E
s′∼P,a′∼π

R(s, a, s′) + γ
(
Qπ(s′, a′) + αH

(
π(·|s′)

))
(7)

= E
s′∼P

R(s, a, s′) + γVπ(s′). (8)

To alleviate the overestimation problem, SAC concurrently has two q-functions with
parameters ω1 and ω2 and one policy function with parameter θ. SAC selects the one with
a lower value between two Q-functions, and the loss functions for the Q-networks(critic) is:

LQ(ω) = E
(s,a,r,s′ ,d)∼D

[
(Qω(s, a)− y(r, s′, d))2

]
(9)

the loss of the policy network(actor) is :

Lπ(θ) = E
s∼R,a∼πθ

[αlog(πθ(a|s))−Qω(s, a)] (10)

The training process are summarized in pseudo-code in Algorithm 1.
The network structure and parameter of agent have been described in Table 2 to make

it easier to understand and implementation.
During the training process, the MS-SAC model learns a stochastic policy that maxi-

mizes the expected reward while also maximizing entropy, leading to a more diverse set
of actions and better exploration. The model also learns a Q-function that estimates the
state-action value and can be used to guide the policy towards more optimal actions. The
use of a replay buffer and target networks helps stabilize the learning process and prevent
overfitting to recent experiences. With proper design and training, MS-SAC performs
well with high-dimension data. Since there are many tunable knobs in a database with
continuous space, MS-SAC is suitable for database tuning problems.

Table 2. Network and parameters of agent.

Actor Layer Actor Param Critic Layer Critic Param

Input 33 Input (Number of knobs) + 33
Full connection 128 Full connection 128

Activation function ReLU Activation function ReLU
Full connection 128 Full connection 128

Activation function ReLU Activation function ReLU
Full connection 64 Full connection 64

Output Number of knobs Data 1

Electronics 2023, 12, 2168 9 of 22

Algorithm 1 Train Agent

Input: initial actor parameters θ, critic parameters ω1, ω2, empty replay buffer D.
let target parameters equal to main parameters ωtarget,1 ← φ1, ωtarget,2 ← ω2.
while !converged do

observe the initial state of the environment s1.
execute at and get reward rt
the state of environment change to st+1
store (st, at, rt, st+1) in D
for time = 1 to ∞ do

select an action based on policy: at = π(θ)st .
if ready to update then

for k = 1 to K do
get N samples from D:{(si, ai, ri, si+1)}i=1,2,...,N
for each sample, compute target for the Q-functions:

yi(r, s′, d) = ri + γ

(
min
i=1,2

Qωtarg,i (si+1, ai+1)− α log πθ(ai+1|si+1)

)
,

ai+1 ∼ πθ(·|si+1)

update critic to minimizing the loss function:

∇ωi
1
N

N

∑
i=1

(yi −Qω(si, ai))
2, f or i = 1, 2

update actor by gradient ascent using:

∇θ =
1
N

N

∑
i=1

(
αlogπθ(ãi|si)−min

j=1,2
Qωtarg,j(si ,ãi)

)
update target network:

ωtarg,i ← ρωtarg,i + (1− ρ)ωi, f or i = 1, 2

end for
end if

end for
end while

5. Environment Proxy

Earlier studies on reinforcement learning have perceived databases as an
environment [2,3,10,15] and agent update according to the feedback from environment.
However, in database tuning problems, the agent requires a non-trivial amount of time for
action evaluation. Moreover, RL employs trial-and-error to devise a solution to the tuning
problem, which means actions from the agent may lead to performance degradation or
database crash. To address these problems, Environment Proxy has been suggested to act
as an interface between the agent and the environment, adding stability and safety. The
environment proxy contains the Filter, Virtual Environment, and Dispatcher. The environ-
ment (i.e., the database that needs to be tuned) is wrapped with an environment proxy.
Instead of deploying configurations to the environment directly, a combined approach is
used to check configurations. Filter drops dangerous configurations to bring stability to the
database. Proxy provides a more efficient evaluation of configurations using a Dispatcher
and Virtual Environment. Dispatcher categorizes the configurations as “uncommon action”
if the evaluation of the action is hard to estimate. On the contrary, the “common action”
means the Virtual Environment can estimate an evaluation according to historical data. The
proxy replaces the original position of environment in RL, and the interior of proxy is a
black box for agent.

Electronics 2023, 12, 2168 10 of 22

5.1. Filter

The Filter adopts a rule-based and learning-based method to exclude dangerous con-
figurations. If the configurations are considered dangerous, Filter notices environment
proxy to discard it and return a negative reward to agent as punishment. To judge the
action, FASTune first extracts fixed rules from documents (e.g., the manual) and adds
them to the rules library. The action matches any rule in the library is considered dan-
gerous. For example, in MySQL, if com_stmt_prepare − com_stmt_close is greater than
max_prepared_stmt_count, it may cause database failure because database cannot create
more than max_prepared_stmt_count statements. Extracting rules from documents can be
burdensome. Fortunately, DB-BERT [11] brings some light to this problem.

DB-BERT utilizes the BERT for document analysis, BERT (Bidirectional Encoder Rep-
resentations from Transformers) is a transformer-based deep learning model. It is one of
the most popular and powerful models for natural language processing tasks, including
text classification, question answering, and text generation. BERT is pre-trained on a large
amount of text data, using two unsupervised tasks: masked language modeling (MLM) and
next sentence prediction (NSP). This pre-training approach allows BERT to learn various
language tasks without requiring task-specific training data. That makes BERT a highly
flexible and versatile NLP model that can be fine-tuned for a wide range of NLP tasks with
state-of-the-art performance. DB-BERT is an extension of the BERT model that specializes
in extracting explicit and implicit parameter references from the text. It does so by com-
paring the BERT encoding of the text with those of the DBMS parameter names, selecting
the parameter with the smallest cosine distance. That allows DB-BERT to pair extracted
values with parameters that are explicitly mentioned or are similar to the text. Additionally,
DB-BERT can translate tuning hints into arithmetic formulas using a sequence of decisions
and reinforcement learning.FASTune uses DB-BERT to exploit rules from a document and
feed these rules to filter.

Using rules to exclude dangerous action is effective, but rules can not explore potential
relations between knobs and the database performance. Thus, FASTune utilizes a classifier
based on Support Vector Machines (SVM) [55,56]. SVM is one of the most robust binary
classifier models with a wide range of applications in several fields. SVMs aim to find the
best possible decision boundary that separates two or more classes of data(e.g., dangerous
and safe). SVM maximize the margin, or the distance between the hyperplane and the
closest data points from both classes, and use the closest data points, called support vectors,
to determine the hyperplane parameters. Once the hyperplane is determined, the SVM can
classify new data points based on which side of the hyperplane they fall. A newly collected
data point is classified as belonging to one or the other class, based on which side of the
hyperplane it falls into. SVMs can handle complex data sets with high dimensions and
nonlinear boundaries using kernel functions.

FASTune adopts SVM to divide the actions into dangerous and safe groups. FASTune
maps each action to a vector, representing a point in the high-dimension coordinate system.
Then FASTune uses SVM to find a hyperplane to split these points into two groups. Since
these points are not linearly separable, we use Radial Basis Function (RBF) kernel [57,58]
to map them to higher dimensional spaces.The RBF kernel function is a powerful tool for
SVMs because it can handle complex, nonlinear relationships between input variables. By
transforming the input data into a higher-dimensional feature space using the RBF kernel,
SVMs can find decision boundaries that are highly flexible and can accurately classify data
points that are not linearly separable in the original feature space.

There are two important parameters in RBF: γ and c. Parameter c makes a trade-off
between the misclassification of examples and the simplicity of hyperplane. A higher
value of c increases the correctness of classification, while a lower c makes the hyperplane
smooth. The γ determines how influential an example can be. The greater the value of γ
is, the more it affects the neighboring data points. Choosing the right γ and c is vital for
the performance of SVM. To address this problem, FASTune adopts the exhaustive grid
search method that tries all combinations of c and γ from a grid of them. Then, each c and

Electronics 2023, 12, 2168 11 of 22

γ combination is evaluated by k-fold cross-validation. Finally, we get the best combination
of c and γ.

Note that the classifier we introduced above needs labeled training data. To collect
training data, configurations are generated using uniform random distribution, and each set
of configurations is deployed to the database. The configurations are labeled as dangerous
if database performance drops sharply or fails. Otherwise, FASTune marks it as safe.
Collecting training data can be a hard task. In future work, We would like to explore more
efficient methods to generate training data and open the source code and dataset.

5.2. Dispatcher

Intuitively, if the action is similar to the previous (i.e., common action), it is possible
to predict the performance changes in a database; thus, it is not necessary to deploy the
action to the database and run a time-consuming stress test. On the contrary, If an action
is rarely seen or never seen before (i.e., uncommon action), it will be hard to predict its
impact on database performance, so the Dispatcher will send the action to the real database
(i.e., environment) to see what happens. The main challenge for Dispatcher is to define
what is uncommon action. Fortunately, ODT (outlier detection technique) can address the
challenge effectively. Outlier detection has been studied for decades and is widely used
in various fields. Outlier detection is used to identify data points or observations that are
significantly different from the other data points in a dataset. There are several methods
for outlier detection, including statistical methods, distance-based methods, and machine
learning methods. In the context of FASTune, uncommon actions are considered outliers,
and a distance-based method is used to identify them. Outlier detection relies on the idea
that uncommon actions are likely to be located far away from the other data points in
a dataset. The Mahalanobis distance is used to measure the distance between each data
point. Data points significantly far away from most data points are identified as outliers. To
determine where most data points are located, gaussian distribution is introduced, where
the majority of data points are located close to the mean, and the frequency of data points
decreases as they move away from the mean.Therefore, data points significantly far away
from the mean are likelier to be outliers.

FASTune performs outlier detection by assuming that the regular data come from
a gaussian distribution. From this assumption, our work defines outliers that stand far
enough from the gaussian distribution. For gaussian distribution, the distance of a sample
xi to the distribution can be computed using Mahalanobis distance. Mahalanobis distance
measures the distance between a point and a distribution [59]. It performs well in the
multivariate outlier detection task. The classical Mahalanobis distance of sample x is
defined as:

d(x, µ, Σ) =
√
(x− µ)′Σ−1(x− µ) (11)

Σ and µ are covariance and location of the gaussian distribution, respectively, and
they must be estimated among the specific data. FASTune uses The Minimum Covariance
Determinant (MCD) [60,61] estimator to estimate Σ and µ for its simplicity and ease of
computing. The MCD was introduced by P.J.Rousseuw [61]. MCD is a robust estimator of
covariance. The basic idea of MCD is to identify a subset of observations in a dataset with
the smallest determinant of their covariance matrix, which is less sensitive to the influence
of outliers. The MCD estimator is useful for producing reliable estimates of the parameters
of the distribution in datasets. According to the definition of MCD-based Mahalanobis
distance, the uncommon action detection is described in Algorithm 2.

Electronics 2023, 12, 2168 12 of 22

Algorithm 2 Uncommon Action Detection

Execute Initialization to collect enough samples.
Initialize P: an empty points collection.
while Agent recommends configurations do

Map configurations to a point p.
Estimate corresponding σ and µ of gaussian distribution using MCD.
Compute tolerance ellipse with Mahalanobis distance.
if the position of the sample is within tolerance ellipse then

Lable the new sample as an outlier and send it to Environment.
else

Sent it to Virtual Environment.
end if
Add the point to the collection: P = P ∪ p.

end while

The Detection process can be summarized as follows:

5.2.1. Collect Samples

To estimate the Σ and µ of the gaussian distribution of the samples, FASTune first
collects actions generated by an agent as initial samples. Let L represent the number of
samples. The agent interacts with a database L times, producing L number of samples. All
actions are considered inliers at this stage because the number of samples has not reached
the given threshold, and detection is unavailable. Without enough samples, it is hard to
distinguish between an inlier and an outlier. Once L reaches the manually set threshold,
this stage ends. Note that the threshold is a hyper-parameter.

5.2.2. Estimate the Distribution

Map the action to an n-dimension multivariate A = (a1, a2, a3 . . . an), where ai repre-
sents the value of the i-th configurations of the database. Then estimate the location of
the gaussian distribution based on existing samples, specifically, estimates the Σ and µ of
gaussian distribution using samples collected in the last stage.

5.2.3. Set a Threshold

A threshold is set to identify data points that are significantly far away from the other
data points. FASTune computes the tolerance ellipse with a 97.5 percentile point. The 97.5%
tolerance ellipse is defined as:

RD(x) =
√
(x− µ̂MCD)

tΣ̂−1
MCD (x− µ̂) =

√
χ2

ρ,0.975 (12)

[χ2
ρ, α] stands for the α-quantile of the [χ2

ρ] distribution. Here, variable Σ̂−1
MCD is the

MCD estimated location, and the point outside the ellipse is considered an outlier.

5.2.4. Identify

Data points that are above the threshold (i.e., outside the ellipse) are identified as
outliers and are considered to be significantly different from the other data points in the
dataset. Note that, The Accurate MCD estimator is hard to compute since it requires the
evaluation of all subsets [61]. The FAST-MCD [62] algorithm is borrowed to improve the
estimator’s speed. Figure 3 shows the outlier detection results. There are 71 dimensions in
action and we choose two for visualization.

Electronics 2023, 12, 2168 13 of 22

Figure 3. Results of outlier detection on two dimensions, k1 denotes table_open_cache and k2 denotes
innodb_adaptive_max_sleep_delay.

The results show that the actions generated by the agent tend to be gaussian distributed
when the number of iterations is large enough. Actions inside the tolerance ellipse (the red
points) are considered common actions dominating the majority. Note that the Dispatcher
does not split the action; Dispatcher sends the whole action to the environment or the
virtual environment for each interaction.

5.2.5. Update

To increase the accuracy of detection, the new action from an agent in each iteration
will be added to the samples collection, so the estimate of Σ and µ are also updated as
the collection is updated. In summary, outlier detection enables Dispatcher to distinguish
between common and uncommon actions, and the Dispatcher distributes common actions
to the virtual environment and uncommon actions to the environment. The sample in
the collection can also be used to train the virtual environment, and more details will be
discussed below.

This Distance-based method can be computationally expensive for calculating the
distance. However, these methods can be effective at identifying outliers that are located
far away from the other data points.

5.3. Virtual Environment

In the reinforcement learning framework, the update of agent depends on the reward.
Specifically, in database tuning problems, the existing methods calculate the reward by
running a stress test on database, which is rather time-consuming. The tuning time of
the state-of-the-art approach for optimal configurations can take hours, which can be the
bottleneck for tuning efficiency. CDBTune and Hunter [3,7] use cloned databases to make
the evaluation parallelization to reduce tuning time efficiently; however, it also brings
a heavy burden because each database instance requires additional threads, disk space,
and memory.

To address this challenge, we proposed a virtual environment which is an equiva-
lent but faster approach. The virtual environment and the environment are essentially
different; virtual environment is a neural network that estimates the evaluation of action
based on historical data. It does not have the functionality of a real database instance
(i.e., execute queries). The environment is the real database to be tuned, the environment
runs a benchmark to evaluate the action, and the reward is calculated from the evaluation.
If the database performance is improved after deploying an action, the reward will be
positive; otherwise, it will be negative depending on the extent of performance improve-
ment or reduction. For the reinforcement learning framework, virtual environment and
environment play the same role in the training process and have the same input and output.
In FASTune, both virtual environment and environment are wrapped with a proxy, and
proxy providing an interface for the agent to interact. We now describe how to train the
virtual environment.

Electronics 2023, 12, 2168 14 of 22

Training the Virtual Environment

Training data of the virtual environment is a collection of tuples Tv = < Sw, Sd, A, r >,
where Sw is a vector that represents the states of workload, Sd is the state of database, A is
the action from agent, and r is the reward. For each < Sw, Sd, A >, the virtual environment
aims to output a value r′ which is close to r. The training data can be obtained between
the environment and the agent in each trajectory. Given Sd and Sw, then the agent output
A (action) and sent to environment proxy. Proxy returns calculated r (reward) based on
an evaluation of A, and the r will be recorded.The virtual environment is a multi-layer
neural network model consisting of four fully connected layers.The input layer receives a
vector that combines Sw, Sd, and A and output a higher dimension tensor to the two hidden
layers, using a non-linear function to transform data. The output is a vector representing
throughput and latency. The neural network can be viewed as a chain of functions that
convert the input into an output pattern [63,64]. To prevent the network from solely
learning linear transformations, Tanh, a commonly used activation function in neural
networks, is introduced into the hidden layers to capture more complex patterns. The
network’s weights are initialized using a standard normal distribution. Given a training
dataset U = < W, S, A, r >, The objective of training is to minimize the loss function, which
is defined as follows:

L =
1
2 ∑U

i=1|r′ − r|2 (13)

The output value r′ produced by the Virtual Environment for a given < W, S, A >. To
train the Virtual Environment, The adam optimization algorithm [65] is introduced, which
is a stochastic optimization algorithm that updates the network weights by computing
the first and second moments of the gradients using a stochastic objective function. The
training process is terminated when the model has converged or has reached a specified
number of steps. The training process spend about 200 s on average and the details on
virtual environment are list in Table 3.

Table 3. Details of Virtual Environment.

Item Description

Dimensions of layers 33→ 32→ 16→ 1
Train data size 4094
Test data size 1000

Valid ratio 0.2
Number of epochs 3000

Batch size 32
Learning rate 1 × 10−5

Early stop 300

6. Workload State

Several studies have shown that workloads are sensitive to various knobs. As shown
in Figure 4, the performance of different workloads using the same configurations is varied,
and performance does not change linearly in any direction because knobs have non-linear
correlations. Qtune encodes queries to capture the workload information to provide a
query-aware tuning system. Hunter bounces back quickly from throughput plummet when
workload drifts by learning from historical data. They perform well on given workloads but
fail to handle the dynamic workload. It can also cause dramatic fluctuations in performance
if the database tries to apply configurations when the workload drifts. It is well-known
that workload may shift over time in a production environment, which poses a challenge to
the stability of the system. To address this challenge, we extract features from the predicted
future workload that comes in a short time (e.g., one minute). Furthermore, feed these
features as workload state to an agent. Agent not only considers the state of database but
also the state of the workload when generating configurations.

Electronics 2023, 12, 2168 15 of 22

Figure 4. Throughput on different workload types using consistent configurations, k1 denotes
innodb_change_bu f f er_max_size, and k2 denotes table_open_cache.

Our work builds a forecasting model to predict the types of queries and how many of
them will arrive in the database. The predicted results are used as workload state, which
will be sent to the agent as part of the multi-state. The agent can then use this data to
find optimal configurations for the dynamic workload. Our approach first encodes each
query into a vector and aggregates a batch of queries together to approximate the workload
pattern. Then similar patterns will be combined into several groups using a clustering
algorithm. Finally, models predict how many quires will arrive at each group. Note that
predicting exact SQL (Structured Query Language) statements may lead to expensive
computing, so our method forecasts the number of queries in each group.

6.1. Encoder

In general, a SQL statement can be divided into four types: insert, delete, select,
and update, different queries may involve different tables. Both query type and tables
related to the query significantly impact the database performance. For example, OLAP
(Online Analytical Processing) usually involves large numbers of records, while OLTP only
involves a few records and executes simple updates, insertions, and deletions in databases.
Tables with different structures and sizes also affect the database performance. FASTune
capture that information in the vector. The Encoder first extracts the template (i.e., prepared
statements) from queries. FASTune uses DBMS’s SQL parser (e.g., PostgreSQL-parser) to
map SQL statements to an abstract syntax tree to get a standard query template. Encoder
counts the number of queries in an established time interval and saves the final result at the
end of each time interval. The time interval can be a hyper-parameter. Too short an interval
can lead to expensive calculations and fewer performance gains. Conversely, If the time
interval is too long, it will be difficult to promptly detect workload drift. FASTune makes a
trade-off between speed and accuracy and manually sets the time interval to 10 s. We will
leave choosing the time interval automatically for future work.

6.2. Cluster

Although Query Encoder decreases queries by converting queries to templates, it is
still a heavy burden to predict how many and what kind of templates will arrive in the
future. Thus, FASTune further clusters similar templates into a group to reduce the number
of those templates. After gaining the template of queries, many algorithms can cluster
the templates. We chose DBSCAN [66] and made some improvements to it. Compared
to the original DBSCAN algorithm, our approach made a trade-off between accurate and
computational costs by setting a threshold t. The threshold t determined how similar
the templates must be to be in the same group. Higher t means more templates will be
clustered together so the result can be more precise, yet it will lead to longer computational
time. We map each template to a point and use DBSCAN to group these points close to
nearby neighbors according to the distance measurement.

Electronics 2023, 12, 2168 16 of 22

6.3. Forecaster

The Encoder and Cluster convert SQL statements to templates and cluster templates
into groups. The forecaster predicts the arrival rate of each group’s queries. The forecaster
aims to predict queries in a near-term (e.g., 10 s) so that the agent can take future workload
into account when recommending configurations. Linear models earn our trust since they
consume fewer computing resources, require fewer samples, and usually perform well in
the near term predicting [67].

7. Evaluation
7.1. Evaluation of Efficiency

In this section, we compare FASTune with state-of-the-art methods [2,3,7,15] on Open-
Gauss and MySQL, and the method we compared are listed below:

1. QTune is a query-aware tuning system that supports three database tuning granulari-
ties [12]. The evaluation uses its workload-level tuning;

2. CDBTune adopts a reinforcement learning model to tune the database [9]. The agent
inputs internal metrics of the database and outputs optimal configurations;

3. ResTune uses Bayesian Optimization to optimize resource utilization with
constraints [15]. It uses a meta-learning approach to extract useful knowledge from
historical experiences;

4. HUNTER designed a hybrid tuning model that uses samples from a genetic algo-
rithm to accelerate the exploration of deep reinforcement learning [10]. Meanwhile,
HUNTER uses Random Forest, Principal Component Analysis, and Fast Exploration
Strategy to reduce the action space.

Details of the hardware are listed in Table 4.

Table 4. Details of hardware used in the evaluation.

DBMS CPU RAM Disk Speed Disk Latency

OpenGauss 4 core 16 GB 220 Mb/s 12.3 ms
MySQL 4 core 16 GB 220 Mb/s 12.3 ms

Both MySQL and OpenGauss run on a server with a 4 core CPU, 16 GB RAM, and a
200 GB disk. A virtual machine (VM) is deployed to keep the experimental environment
consistent. We first create a snapshot that records the initial state of the operating system
(OS) and hardware. At each evaluation, the virtual machine rolls back to a snapshot to
provide the same experimental conditions. A static workload (e.g., TPC-C and Sysbench) is
used to evaluate FASTune and compare it to the methods mentioned above. The evaluation
is based on two dimensions: tuning time and database performance improvement. In
Section 7.2, a dynamic workload is used to evaluate the stability of FASTune. We count the
number of dangerous configurations and database fluctuations during the tuning process.
Figure 5 shows the results of Sysbench and TPC-C running on MySQL and openGauss.

Figure 5 illustrates the similarity between the tuning results of MySQL and openGauss.
In comparison to other tuning systems, FASTune achieves optimal performance in a shorter
duration. By finding the optimal configurations within 3 h, FAStune significantly reduces
the tuning time. It is worth noting that all methods resulted in a TPC-C throughput of
6% to 18% higher on openGauss which could be due to database version limits. The
experiment results depict that the proposed model enhances database performance by
1–1.5 times within 5 h, requiring substantially lower time (60–80%) for optimal performance
attainment as compared to FastTune conventional models. During the TPC-C test, the
database platform was able to achieve a throughput of up to 6000 txn/s, while openGauss
was able to secure up to 7800 txn/s. The higher throughput on openGauss may have
resulted from inherent database variations. Due to databases’ complex and random nature,
fluctuations may occur after the intelligent agent’s convergence, as observed in Figure 5a,
where performance often oscillates between 2500 and 3000.

Electronics 2023, 12, 2168 17 of 22

Figure 5. Performance Evaluation—Comparisons of state-of-the-art database tuning systems,
(a–d) demonstrate throughput of MySQL on Sysbench and TPC-C. (e–h) demonstrate throughput of
OpenGauss on Sysbench and TPC-C.

Figure 6 shows the count of configurations that lead to a sharp performance decline
(#Dangerous) and database failure (#Failure) during the tuning process.

Figure 6. Dangerous configurations statistics during the tuning process. (a–c) show the number of
dangerous and failure configurations under workloads from Bank, Wiki, and TPC-C on openGauss.

The state-of-the-art methods have 59 to 349 dangerous configurations within 1000 tun-
ing intervals. Instead, the dangerous configurations occurred less than ten times. FASTune
achieves this by using an action filter to evaluate and discards dangerous configurations di-
rectly. To sum up, FASTune can recommend optimal configurations and keep the database
stable during the tuning. The best result of FASTune is slightly better than other methods,
but the time used is much less.

7.2. Evaluation of Dynamic Workload

In this section, the dynamic workloads are used to evaluate the stability of the tuning
system, and BenchBase is used to construct dynamic workloads by switching transaction
types, BenchBase is a SQL benchmark framework. The workload shift between Sysbench
(RW) and Sysbench (RO); Sysbench (RO) is an OLTP workload that contains heavy write
queries, and Sysbench (RW) is a mixed workload with reading and writing. Workload
starts with Sysbench (RO) and continues for hours, then switches to Sysbench (RW) and
continues for hours. Note that our work train workload forecasters for FASTune before
evaluation. Figure 7 shows the throughput of database.

Electronics 2023, 12, 2168 18 of 22

Figure 7. The changes of throughput with workload drift—Comparisons of state-of-the-art
tuning systems.

Workload first holds on Sysbench (RO) for one hour, and then switches to Sysbench
(RW). The workload drift causes a performance degradation, and all throughput drops
below 1200 txn/s except for FASTune. FASTune suffers the least from the drift because FAS-
Tune predicts workload drift and adjusts in advance. Note that FASTune has experienced
a slight performance degradation as a by-product ahead of the drift. Another potential
advantage of FASTune is that FASTune can provide warning before workload drift arrives.
We would like to implement this feature in future work.

8. Conclusions

The paper introduces a novel tuning system called FASTune, which is designed to
recommend optimal database configurations that can enhance database performance. FAS-
Tune employs soft actor–critic networks as an agent to achieve fast and stable exploration.
Environment Proxy has been proposed to provide a gateway between the agent and envi-
ronment, preventing dangerous action arising from the agent. Additionally, FASTune uses a
virtual environment to enhance the effectiveness of evaluating configurations. To maintain
stability, a workload forecaster based on machine learning is proposed, and the expected
queries are fed to the agent to handle the dynamic workload. The experimental results
show that FASTune can find optimal database configurations to improve performance
while maintaining stability in the tuning. However, FASTune requires collecting workloads
in users’ environment, which may result in data privacy issues, and the training of the
forecaster incurs a non-negligible extra cost. We plan to explore more effective approaches
to better support dynamic workload tuning.

Author Contributions: Conceptualization, T.L. and C.L.; Data curation, T.L.; Formal analysis, T.L.
and C.L.; Funding acquisition, L.S., L.W., Y.T., C.L. and Y.G.; Investigation, T.L.; Methodology, T.L.;
Project administration, L.S., C.L. and Y.G.; Resources, L.S., L.W. and Y.T.; Software, T.L.; Supervision,
L.S., C.L. and Y.G.; Validation, T.L.; Visualization, T.L.; Writing—original draft, T.L.; Writing—review
and editing, L.S. and C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the the National Key Technologies R&D Program
(2018YFB1701401), Key Project of Public Benefit in Henan Province of China (201300210500), Nature
Science Foundation of China (62006210, 62001284, 62206252), Key Scientific Research Projects of
Colleges and Universities in Henan Province (23A520015), Key Project of Collaborative Innovation in
Nanyang (22XTCX12001), Key Technology Project of Henan Province of China (221100210100), and
Research Foundation for Advanced Talents of Zhengzhou University (32340306).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 2168 19 of 22

Abbreviations
The following abbreviations are used in this manuscript:

DBMS Database Management System
RL Reinforcement Learning
DBAs Database Administrators
OLTP Online Transaction Processing
OLAP Online Analytical Processing
MS-SAC Multi-State Soft Actor–Critic
ML Machine Learning
RBF Radial Basis Function
SAC Soft Actor–Critic
DDGP Deep Deterministic Policy Gradient
SVM Support Vector Machine
MCD Minimum Covariance Determinant
MLE Maximum Likelihood Estimate
RO Read Only
RW Read Write

References
1. Belknap, P.; Dageville, B.; Dias, K.; Yagoub, K. Self-Tuning for SQL Performance in Oracle Database 11g. In Proceedings of the

2009 IEEE 25th International Conference on Data Engineering, Shanghai, China, 29 March–2 April 2009; pp. 1694–1700. [CrossRef]
2. Li, G.; Zhou, X.; Li, S.; Gao, B. QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning. Proc. VLDB

Endow. 2019, 12, 2118–2130. [CrossRef]
3. Cai, B.; Liu, Y.; Zhang, C.; Zhang, G.; Zhou, K.; Liu, L.; Li, C.; Cheng, B.; Yang, J.; Xing, J. HUNTER: An Online Cloud Database

Hybrid Tuning System for Personalized Requirements. In Proceedings of the 2022 International Conference on Management of
Data. ACM, Philadelphia, PA, USA, 12–17 June 2022; pp. 646–659. [CrossRef]

4. Zhu, Y.; Liu, J.; Guo, M.; Bao, Y.; Ma, W.; Liu, Z.; Song, K.; Yang, Y. BestConfig: Tapping the Performance Potential of Systems via
Automatic Configuration Tuning. In Proceedings of the 2017 Symposium on Cloud Computing. Association for Computing
Machinery, SoCC ’17, Santa Clara, CA, USA, 24–27 September 2017; pp. 338–350. [CrossRef]

5. Marco, A.; Berkenkamp, F.; Hennig, P.; Schoellig, A.P.; Krause, A.; Schaal, S.; Trimpe, S. Virtual vs. Real: Trading off Simulations
and Physical Experiments in Reinforcement Learning with Bayesian Optimization. In Proceedings of the 2017 IEEE International
Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1557–1563. [CrossRef]

6. Wei, Z.; Ding, Z.; Hu, J. Self-Tuning Performance of Database Systems Based on Fuzzy Rules. In Proceedings of the 2014 11th
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, China, 19–21 August 2014; pp. 194–198.
[CrossRef]

7. Zhang, J.; Zhou, K.; Li, G.; Liu, Y.; Xie, M.; Cheng, B.; Xing, J. CDBTune+: An Efficient Deep Reinforcement Learning-Based
Automatic Cloud Database Tuning System. VLDB J. 2021, 30, 959–987. [CrossRef]

8. Van Aken, D.; Pavlo, A.; Zhang, B.; Gordon, G.J. Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management of Data, ACM, Chicago, IL, USA, 14–19
May 2017; pp. 1009–1024. [CrossRef]

9. Zhang, X.; Wu, H.; Li, Y.; Tan, J.; Li, F.; Cui, B. Towards Dynamic and Safe Configuration Tuning for Cloud Databases. In
Proceedings of the 2022 International Conference on Management of Data, ACM, Philadelphia, PA, USA, 12–17 June 2022;
pp. 631–645. [CrossRef]

10. Zhang, J.; Liu, Y.; Zhou, K.; Li, G.; Xiao, Z.; Cheng, B.; Xing, J.; Wang, Y.; Cheng, T.; Liu, L.; et al. An End-to-End Automatic
Cloud Database Tuning System Using Deep Reinforcement Learning. In Proceedings of the 2019 International Conference on
Management of Data, ACM, Amsterdam, The Netherlands, 30 June–5 July 2019; pp. 415–432. [CrossRef]

11. Trummer, I. DB-BERT: A Database Tuning Tool That “Reads the Manual”. In Proceedings of the 2022 International Conference on
Management of Data. Association for Computing Machinery, SIGMOD ’22, Philadelphia, PA, USA, 12–17 June 2022; pp. 190–203.
[CrossRef]

12. Duan, S.; Thummala, V.; Babu, S. Tuning Database Configuration Parameters with iTuned. Proc. VLDB Endow. 2009, 2, 1246–1257.
[CrossRef]

13. Francois-Lavet, V.; Henderson, P.; Islam, S.; Bellemare, M.G.; Pineau, J. An Introduction to Deep Reinforcement Learning. Found.
Trends® Mach. Learn. 2018, 11, 219–354. [CrossRef]

14. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; Adaptive Computation and Machine Learning Series;
The MIT Press: Cambridge, MA, USA, 2018.

15. Zhang, X.; Wu, H.; Chang, Z.; Jin, S.; Tan, J.; Li, F.; Zhang, T.; Cui, B. ResTune: Resource Oriented Tuning Boosted by Meta-
Learning for Cloud Databases. In Proceedings of the 2021 International Conference on Management of Data, Virtual Event, 20–25
June 2021; pp. 2102–2114. [CrossRef]

http://doi.org/10.1109/ICDE.2009.165
http://dx.doi.org/10.14778/3352063.3352129
http://dx.doi.org/10.1145/3514221.3517882
http://dx.doi.org/10.1145/3127479.3128605
http://dx.doi.org/10.1109/ICRA.2017.7989186
http://dx.doi.org/10.1109/FSKD.2014.6980831
http://dx.doi.org/10.1007/s00778-021-00670-9
http://dx.doi.org/10.1145/3035918.3064029
http://dx.doi.org/10.1145/3514221.3526176
http://dx.doi.org/10.1145/3299869.3300085
http://dx.doi.org/10.1145/3514221.3517843
http://dx.doi.org/10.14778/1687627.1687767
http://dx.doi.org/10.1561/2200000071
http://dx.doi.org/10.1145/3448016.3457291

Electronics 2023, 12, 2168 20 of 22

16. Basu, D.; Lin, Q.; Chen, W.; Vo, H.T.; Yuan, Z.; Senellart, P.; Bressan, S. Regularized Cost-Model Oblivious Database Tuning with
Reinforcement Learning. In Transactions on Large-Scale Data- and Knowledge-Centered Systems XXVIII: Special Issue on Database- and
Expert-Systems Applications; Hameurlain, A., Küng, J., Wagner, R., Chen, Q., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 96–132. [CrossRef]

17. Gelbart, M.A.; Snoek, J.; Adams, R.P. Bayesian Optimization with Unknown Constraints. arXiv 2014, arXiv:1403.5607. [CrossRef]
18. Berkenkamp, F.; Krause, A.; Schoellig, A.P. Bayesian Optimization with Safety Constraints: Safe and Automatic Parameter Tuning

in Robotics. arXiv 2020, arXiv:cs/1602.04450. [CrossRef]
19. Sui, Y.; Gotovos, A.; Burdick, J.; Krause, A. Safe Exploration for Optimization with Gaussian Processes. In Proceedings of the

32nd International Conference on Machine Learning. PMLR, Lille, France, 6–11 July 2015; pp. 997–1005.
20. Zolaktaf, Z.; Milani, M.; Pottinger, R. Facilitating SQL Query Composition and Analysis. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data. Association for Computing Machinery, SIGMOD ’20, Portland, OR,
USA, 14–19 June 2020; pp. 209–224. [CrossRef]

21. Liberty, E.; Karnin, Z.; Xiang, B.; Rouesnel, L.; Coskun, B.; Nallapati, R.; Delgado, J.; Sadoughi, A.; Astashonok, Y.; Das, P.; et al.
Elastic Machine Learning Algorithms in Amazon SageMaker. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data. Association for Computing Machinery, SIGMOD ’20, Portland, OR, USA, 14–19 June 2020; pp. 731–737.
[CrossRef]

22. Tan, J.; Nayman, N.; Wang, M. CobBO: Coordinate Backoff Bayesian Optimization with Two-Stage Kernels. arXiv 2022,
arXiv:2101.05147. [CrossRef]

23. Mockus, J. Global Optimization and the Bayesian Approach. In Bayesian Approach to Global Optimization: Theory and Applications;
Mockus, J., Ed.; Mathematics and Its Applications; Springer: Cham, The Netherlands, 1989; pp. 1–3. [CrossRef]

24. Tan, J.; Zhang, T.; Li, F.; Chen, J.; Zheng, Q.; Zhang, P.; Qiao, H.; Shi, Y.; Cao, W.; Zhang, R. iBTune: Individualized Buffer Tuning
for Large-Scale Cloud Databases. Proc. VLDB Endow. 2019, 12, 1221–1234. [CrossRef]

25. Yan, J.; Jin, Q.; Jain, S.; Viglas, S.D.; Lee, A. Snowtrail: Testing with Production Queries on a Cloud Database. In Proceedings of
the Workshop on Testing Database Systems, DBTest’18, Houston, TX, USA, 15 June 2018; Association for Computing Machinery:
New York, NY, USA, 2018; pp. 1–6. [CrossRef]

26. Liu, J.; Zhang, C. Distributed Learning Systems with First-order Methods. arXiv 2021, arXiv:2104.05245. [CrossRef]
27. Galakatos, A.; Markovitch, M.; Binnig, C.; Fonseca, R.; Kraska, T. FITing-Tree: A Data-aware Index Structure. In Proceedings of

the 2019 International Conference on Management of Data, SIGMOD ’19, Amsterdam, The Netherlands, 30 June–5 July 2019;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 1189–1206. [CrossRef]

28. Kraska, T.; Beutel, A.; Chi, E.H.; Dean, J.; Polyzotis, N. The Case for Learned Index Structures. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18, Houston, TX, USA, 10–15 June 2018; Association for Computing
Machinery: New York, NY, USA, 2018; pp. 489–504. [CrossRef]

29. Ma, L.; Van Aken, D.; Hefny, A.; Mezerhane, G.; Pavlo, A.; Gordon, G.J. Query-Based Workload Forecasting for Self-Driving
Database Management Systems. In Proceedings of the 2018 International Conference on Management of Data, ACM, Houston,
TX, USA, 10–15 June 2018; pp. 631–645. [CrossRef]

30. Ma, L.; Zhang, W.; Jiao, J.; Wang, W.; Butrovich, M.; Lim, W.S.; Menon, P.; Pavlo, A. MB2: Decomposed Behavior Modeling
for Self-Driving Database Management Systems. In Proceedings of the 2021 International Conference on Management of Data,
SIGMOD ’21, Virtual Event, 20–25 June 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1248–1261.
[CrossRef]

31. Sadri, Z.; Gruenwald, L.; Leal, E. Online Index Selection Using Deep Reinforcement Learning for a Cluster Database. In
Proceedings of the 2020 IEEE 36th International Conference on Data Engineering Workshops (ICDEW), Dallas, TX, USA, 20–24
April 2020; pp. 158–161. [CrossRef]

32. Schnaitter, K.; Polyzotis, N. Semi-Automatic Index Tuning: Keeping DBAs in the Loop. arXiv 2010, arXiv:1004.1249. [CrossRef]
33. Van Aken, D.; Yang, D.; Brillard, S.; Fiorino, A.; Zhang, B.; Bilien, C.; Pavlo, A. An Inquiry into Machine Learning-Based

Automatic Configuration Tuning Services on Real-World Database Management Systems. Proc. VLDB Endow. 2021, 14, 1241–1253.
[CrossRef]

34. Kunjir, M.; Babu, S. Black or White? How to Develop an AutoTuner for Memory-based Analytics. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, SIGMOD ’20, Portland, OR, USA, 14–19 June 2020; Association
for Computing Machinery: New York, NY, USA, 2020; pp. 1667–1683. [CrossRef]

35. Fekry, A.; Carata, L.; Pasquier, T.; Rice, A.; Hopper, A. Tuneful: An Online Significance-Aware Configuration Tuner for Big Data
Analytics. arXiv 2020, arXiv:2001.08002. [CrossRef]

36. Fekry, A.; Carata, L.; Pasquier, T.; Rice, A.; Hopper, A. To Tune or Not to Tune? In Search of Optimal Configurations for Data
Analytics. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20,
Virtual Event, 6–10 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 2494–2504. [CrossRef]

37. Storm, A.J.; Garcia-Arellano, C.; Lightstone, S.S.; Diao, Y.; Surendra, M. Adaptive Self-Tuning Memory in DB2. In Proceedings of
the 32nd International Conference on Very Large Data Bases, VLDB Endowment, VLDB ’06, Seoul, Republic of Korea, 12–15
September 2006; pp. 1081–1092.

38. Tran, D.N.; Huynh, P.C.; Tay, Y.C.; Tung, A.K.H. A New Approach to Dynamic Self-Tuning of Database Buffers. ACM Trans.
Storage (TOS) 2008, 4, 3:1–3:25. [CrossRef]

http://dx.doi.org/10.1007/978-3-662-53455-7_5
https://doi.org/10.48550/arXiv.1403.5607
https://doi.org/10.48550/arXiv.1602.04450
http://dx.doi.org/10.1145/3318464.3380602
http://dx.doi.org/10.1145/3318464.3386126
https://doi.org/10.48550/arXiv.2101.05147
http://dx.doi.org/10.1007/978-94-009-0909-0_1
http://dx.doi.org/10.14778/3339490.3339503
http://dx.doi.org/10.1145/3209950.3209958
https://doi.org/10.48550/arXiv.2104.05245
http://dx.doi.org/10.1145/3299869.3319860
http://dx.doi.org/10.1145/3183713.3196909
http://dx.doi.org/10.1145/3183713.3196908
http://dx.doi.org/10.1145/3448016.3457276
http://dx.doi.org/10.1109/ICDEW49219.2020.00035
https://doi.org/10.48550/arXiv.1004.1249
http://dx.doi.org/10.14778/3450980.3450992
http://dx.doi.org/10.1145/3318464.3380591
https://doi.org/10.48550/arXiv.2001.08002
http://dx.doi.org/10.1145/3394486.3403299
http://dx.doi.org/10.1145/1353452.1353455

Electronics 2023, 12, 2168 21 of 22

39. Yoon, D.Y.; Niu, N.; Mozafari, B. DBSherlock: A Performance Diagnostic Tool for Transactional Databases. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD ’16, San Francisco, CA, USA, 26 June–1 July 2016; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 1599–1614. [CrossRef]

40. Kanellis, K.; Alagappan, R.; Venkataraman, S. Too Many Knobs to Tune? Towards Faster Database Tuning by Pre-Selecting
Important Knobs. In Proceedings of the 12th USENIX Conference on Hot Topics in Storage and File Systems HotStorage’20,
Virtul, 13–14 July 2020; p. 16.

41. Ni, Z.; He, H.; Zhao, D.; Prokhorov, D.V. Reinforcement Learning Control Based on Multi-Goal Representation Using Hierarchical
Heuristic Dynamic Programming. In Proceedings of the The 2012 International Joint Conference on Neural Networks (IJCNN),
Brisbane, Australia, 10–15 June 2012; pp. 1–8. [CrossRef]

42. Nowé, A.; Brys, T. A Gentle Introduction to Reinforcement Learning. In Proceedings of the Scalable Uncertainty Management-
10th International Conference, SUM 2016, Nice, France, 21–23 September 2016; Schockaert, S., Senellart, P., Eds.; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9858, pp. 18–32. [CrossRef]

43. Mazyavkina, N.; Sviridov, S.; Ivanov, S.; Burnaev, E. Reinforcement Learning for Combinatorial Optimization: A Survey. Comput.
Oper. Res. 2021, 134, 105400. [CrossRef]

44. Shen, R.; Zhong, S.; Wen, X.; An, Q.; Zheng, R.; Li, Y.; Zhao, J. Multi-Agent Deep Reinforcement Learning Optimization
Framework for Building Energy System with Renewable Energy. Appl. Energy 2022, 312, 118724. [CrossRef]

45. Deng, J.; Sierla, S.; Sun, J.; Vyatkin, V. Reinforcement Learning for Industrial Process Control: A Case Study in Flatness Control in
Steel Industry. Comput. Ind. 2022, 143, 103748. [CrossRef]

46. He, Z.; Tran, K.P.; Thomassey, S.; Zeng, X.; Xu, J.; Yi, C. A Deep Reinforcement Learning Based Multi-Criteria Decision Support
System for Optimizing Textile Chemical Process. Comput. Ind. 2021, 125, 103373. [CrossRef]

47. Zhang, H.; Peng, Q.; Zhang, J.; Gu, P. Planning for Automatic Product Assembly Using Reinforcement Learning. Comput. Ind.
2021, 130, 103471. [CrossRef]

48. Mikhaylov, A.; Mazyavkina, N.S.; Salnikov, M.; Trofimov, I.; Qiang, F.; Burnaev, E. Learned Query Optimizers: Evaluation and
Improvement. IEEE Access 2022, 10, 75205–75218. [CrossRef]

49. Kraska, T.; Alizadeh, M.; Beutel, A.; Chi, E.H.; Ding, J.; Kristo, A.; Leclerc, G.; Madden, S.R.; Mao, H.; Nathan, V. SageDB: A
Learned Database System. Available online: https://dspace.mit.edu/handle/1721.1/132282 (accessed on 18 July 2022).

50. Li, G.; Zhou, X.; Sun, J.; Yu, X.; Han, Y.; Jin, L.; Li, W.; Wang, T.; Li, S. openGauss: An Autonomous Database System. Proc. VLDB
Endow. 2021, 14, 3028–3042. [CrossRef]

51. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft Actor-Critic
Algorithms and Applications. arXiv 2019, arXiv:1812.05905.

52. Watkins, C.J.C.H.; Dayan, P. Q-Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
53. Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul, T.; Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.; Osband, I.; et al. Deep

Q-learning from Demonstrations. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth
Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence, AAAI’18/IAAI’18/EAAI’18, New Orleans, LA, USA, 2–7 February 2018; pp. 3223–3230.

54. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings
of the 31st International Conference on International Conference on Machine Learning—Volume 32, JMLR.org, ICML’14, Beijing,
China, 21–26 June 2014; pp. I-387–I-395.

55. Pisner, D.A.; Schnyer, D.M. Chapter 6—Support Vector Machine. In Machine Learning; Mechelli, A., Vieira, S., Eds.; Academic
Press: Cambridge, MA, USA, 2020; pp. 101–121. [CrossRef]

56. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A Comprehensive Survey on Support Vector Machine Classifica-
tion: Applications, Challenges and Trends. Neurocomputing 2020, 408, 189–215. [CrossRef]

57. Buhmann, M.D. Radial Basis Functions. Acta Numer. 2000, 9, 1–38. [CrossRef]
58. Scholkopf, B.; Sung, K.-K.; Burges, C.; Girosi, F.; Niyogi, P.; Poggio, T.; Vapnik, V. Comparing Support Vector Machines with

Gaussian Kernels to Radial Basis Function Classifiers. IEEE Trans. Signal Process 1997, 45, 2758–2765. [CrossRef]
59. Simpson, D.G. Introduction to Rousseeuw (1984) Least Median of Squares Regression. In Breakthroughs in Statistics; Kotz, S.,

Johnson, N.L., Eds.; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 1997; pp. 433–461. [CrossRef]
60. Hubert, M.; Debruyne, M. Minimum Covariance Determinant. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 36–43. [CrossRef]
61. Hubert, M.; Debruyne, M.; Rousseeuw, P.J. Minimum Covariance Determinant and Extensions. Wiley Interdiscip. Rev. Comput.

Stat. 2018, 10, e1421. [CrossRef]
62. Rousseeuw, P.J.; Driessen, K.V. A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics 1999,

41, 212–223. [CrossRef]
63. Dikaleh, S.; Xiao, D.; Felix, C.; Mistry, D.; Andrea, M. Introduction to Neural Networks. In Proceedings of the 27th Annual

International Conference on Computer Science and Software Engineering CASCON ’17, Markham, ON, Canada, 6–8 November
2017; p. 299.

64. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-Art in Artificial Neural Network
Applications: A Survey. Heliyon 2018, 4, e00938. [CrossRef]

65. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Bengio, Y., LeCun, Y., Eds.

http://dx.doi.org/10.1145/2882903.2915218
http://dx.doi.org/10.1109/IJCNN.2012.6252524
http://dx.doi.org/10.1007/978-3-319-45856-4_2
http://dx.doi.org/10.1016/j.cor.2021.105400
http://dx.doi.org/10.1016/j.apenergy.2022.118724
http://dx.doi.org/10.1016/j.compind.2022.103748
http://dx.doi.org/10.1016/j.compind.2020.103373
http://dx.doi.org/10.1016/j.compind.2021.103471
http://dx.doi.org/10.1109/ACCESS.2022.3190376
https://dspace.mit.edu/handle/1721.1/132282
http://dx.doi.org/10.14778/3476311.3476380
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1016/B978-0-12-815739-8.00006-7
http://dx.doi.org/10.1016/j.neucom.2019.10.118
http://dx.doi.org/10.1017/S0962492900000015
http://dx.doi.org/10.1109/78.650102
http://dx.doi.org/10.1007/978-1-4612-0667-5_18
http://dx.doi.org/10.1002/wics.61
http://dx.doi.org/10.1002/wics.1421
http://dx.doi.org/10.1080/00401706.1999.10485670
http://dx.doi.org/10.1016/j.heliyon.2018.e00938

Electronics 2023, 12, 2168 22 of 22

66. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, OR,
USA, 2–4 August 1996; pp. 226–231.

67. Akdere, M.; Çetintemel, U.; Riondato, M.; Upfal, E.; Zdonik, S.B. Learning-Based Query Performance Modeling and Prediction.
In Proceedings of the 2012 IEEE 28th International Conference on Data Engineering. IEEE Computer Society, ICDE ’12, Arlington,
VA, USA, 1–5 April 2012; pp. 390–401. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICDE.2012.64

	Introduction
	Related Works
	Database Tuning
	Rule-Based Methods
	Learning-Based Methods

	Reinforcement Learning

	System Overview
	Architecture
	Workflow

	RL for Tuning
	MS-SAC Model
	Training

	Environment Proxy
	Filter
	Dispatcher
	Collect Samples
	Estimate the Distribution
	Set a Threshold
	Identify
	Update

	Virtual Environment

	Workload State
	Encoder
	Cluster
	Forecaster

	Evaluation
	Evaluation of Efficiency
	Evaluation of Dynamic Workload

	Conclusions
	References

