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Abstract: Recently, image fusion has become one of the most promising fields in image processing
since it plays an essential role in different applications, such as medical diagnosis and clarification of
medical images. Multimodal Medical Image Fusion (MMIF) enhances the quality of medical images
by combining two or more medical images from different modalities to obtain an improved fused
image that is clearer than the original ones. Choosing the best MMIF technique which produces the
best quality is one of the important problems in the assessment of image fusion techniques. In this
paper, a complete survey on MMIF techniques is presented, along with medical imaging modalities,
medical image fusion steps and levels, and the assessment methodology of MMIF. There are several
image modalities, such as Computed Tomography (CT), Positron Emission Tomography (PET),
Magnetic Resonance Imaging (MRI), and Single Photon Emission Computed Tomography (SPECT).
Medical image fusion techniques are categorized into six main categories: spatial domain, transform
fusion, fuzzy logic, morphological methods, and sparse representation methods. The MMIF levels are
pixel-level, feature-level, and decision-level. The fusion quality evaluation metrics can be categorized
as subjective/qualitative and objective/quantitative assessment methods. Furthermore, a detailed
comparison between obtained results for significant MMIF techniques is also presented to highlight
the pros and cons of each fusion technique.

Keywords: image fusion; image modality; multi-scale decomposition; sparse representation; deep learning

1. Introduction

Image Fusion is concerned with combining features from multiple input images into
a single image. The produced single image is more informative and accurate than any
single source image since it contains all the necessary information. The purpose of image
fusion is not only to decrease the quantity of data but also to construct images that are
more appropriate and more clear for human and machine perception [1]. Multi-sensor
image fusion is an application of image fusion that is the process of combining relevant
information from two or more source images into one output image. Image fusion is one
of the most exciting fields in image processing since it deploys different methodologies
to produce a clear image that can be used for examination and diagnosis [2]. There are
five basic steps to perform image fusion, which can be summarized as image registration,
image decomposition, fusion rules, image reconstruction, and evaluation methods.

The many types of medical image modalities that exist led to the need to use images
for improving medical therapy and treatment. MMIF is a medical imaging technique for
combining data from different medical image modalities [3]. It is an effective approach for
obtaining useful features and necessary information to understand accurately the status
of human organs being diagnosed, such as the condition of the bones, metabolic rate,
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etc. The output of image fusion is a new image that is clearer for human and machine
perception, which improves the accuracy and reliability of systems that rely on image
fusion. It is generally utilized in illness diagnosis, treatment planning, and follow-up
investigations. It aids in the accurate location and delineation of lesions. Because each
medical imaging modality has its own strengths and limits, information from more than one
imaging modality would be necessary for enhancing the diagnosis and treatment [4]. The
increased number of scientific papers about multimodal image fusion shows the popularity
and importance of MMIF. Figure 1 shows the number of publications in multimodal image
fusion per year obtained from an online resource for biomedical subjects, PubMed, from
2000 to the third-quarter year of 2022 [5]. As can be seen from the column chart, there has
been a huge number of fusion techniques in recent years that have been developed to meet
the standards of MMIF [6].
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Figure 1. Multimodal image fusion publications per year obtained from PubMed (2000 to third-
quarter year, 2022).

Medical image fusion enhances the clinical readability of medical images for a better
understanding of the image’s content in evaluation and diagnosis. In order to achieve that,
the complementary information supplied in two or more images of different modalities
is captured in the fusion result. The medical image fusion modalities can be categorized
as Magnetic Resonance Imaging (MRI), Magnetic Resonance Angiogram (MRA), Positron
Emission Tomography (PET), Structural Positron Emission Tomography (SPET), Comput-
erized Tomography (CT), and Single Photon Emission Computed Tomography (SPECT).
Researchers proposed many algorithms for combining data from several imaging modali-
ties [7]. Each algorithm has advantages and disadvantages. The medical image fusion field
is constantly evolving to meet the new challenges and demands that emerge. The fusion
techniques utilize medical images of human organs of concern, such as the brain, breast,
and lung [8].

Image fusion can be classified according to the dataset, such as multi-focus, multi-
sensor, multi-scale, multi-spectral, and multi-temporal [9]. In multi-focus techniques for
image fusion, several input images with different focuses are combined together into a
single image that preserves all necessary information [10]. In multi-sensor techniques
for image fusion, medical diagnosis applications combine information obtained from
different sources to create a clearer image with all the necessary information. Actually,
this information may not be visible to the visible human system [11]. The location of
abnormalities can be accurately determined from the information extracted from merged
images [8]. In multi-scale techniques for image fusion, this technique is suited to integrate
more differently exposed Low Dynamic Range (LDR) images into a more informational
LDR image. In multi-spectral techniques for image fusion, the corresponding information
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and spatiotemporal correlation are used to obtain an understandable image by merging the
features in the spectrum domain [12]. In multi-temporal techniques for image fusion, the
risk of information failure is reduced, and details of all clinical variables are obtained [13].

Image fusion techniques can be further divided into three levels: pixel-level, feature-
level, and decision-level techniques to produce a fused image that is more informative for
visual perception [14]. Pixel-level image fusion techniques are the simplest of all in which
the original information from the source images or their multi-resolution transformations
are combined. At this level, image fusion is executed at the lowest level. The feature-level
image fusion techniques are the middle level between image fusion levels in which the im-
portant properties of the source image are extracted, such as length, form, segments, edges,
and orientations. These properties are combined to produce more significant features which
provide better descriptive and thorough images. Decision-level image fusion techniques,
also called higher-level techniques, are used to identify real targets by combining the output
from several techniques to obtain a final fusion judgment [10].

The traditional medical image fusion techniques can also be divided into the spatial do-
main, transform domain, and Hybrid transform. Many research papers focused on spatial
domain medical image fusion [15]. Principal Component Analysis (PCA) and Intensity–
Hue–Saturation (IHS) are two methodologies in spatial domain technology. Because of
spectral and spatial distortion in the fused image by using the spatial domain, researchers
use the transform domain (multi-scale-based transform) to improve fusion effects. The
main process to fuse images in the transform domain is to transform the source image
into the transform domain, performing the fusion based on transform coefficients, then
applying an inverse transform to reconstruct the merged image. Discrete Wavelet Trans-
forms (DWT), contour transformations, and pyramid transforms are examples of transform
domains that are widely used in image fusion. The transform domain-based technique
offers several advantages, such as clear structure and little amount of distortion, but the
main disadvantage is that it always produces noise during the fusion process. Therefore,
denoising is also a challenge for image fusion [16]. When reviewing the articles published
in the last two years, it can be noticed that most of the proposed fusion techniques are not
using spatial domain alone. Some Researchers combine the spatial and transform domains
to perform fusion in the hybrid domain [17]. However, several modern approaches, such
as PCA-DWT, integrates spatial domain and transform domain methodologies.

The performance evaluation of image fusion techniques is performed according to
several qualitative and quantitative metrics. There are two types of evaluation approaches,
namely, subjective and objective evaluation methods. The subjective method performs a
visual examination to compare the source images with the final fused image. However,
the subjective evaluation metrics are costly, troublesome, and time-consuming in several
fusion applications [18]. The most prominent method is an objective evaluation method
that tests the quality of the fused image compared with a reference image if it exists.

There are many challenges related to image fusion that will be discussed in subsequent
sections. However, appropriate, accurate, and reliable image fusion techniques are required
for the various types of images and for different types of problems. Furthermore, several
transform domain fusion techniques may be combined at the decision level to obtain
better results. Furthermore, image fusion techniques must be robust against uncontrollable
acquisition conditions. They should also be inexpensive in terms of computation time
in real-time systems. The problem of misregistration is a major error found while fusing
images. The main objective of this paper is to summarize research progress in the field of
medical image fusion and the future trends in this field. It focuses on multimodal medical
image fusion, which combines several images of the same area of the human body using
various imaging techniques.
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The rest of the paper is organized as follows: Section 2 introduces a review of the
medical imaging modalities. Section 3 presents the image fusion steps. Section 4 classifies
MMIF levels. Section 5 classifies image fusion techniques. Section 6 provides the eval-
uation methods used to ensure the quality of fused images. Finally, Section 7 provides
the conclusions.

2. Medical Imaging Modalities

This section presents the different medical imaging modalities. Each imaging modality
has unique characteristics and properties which facilitate the study of specific human
organs, illness, diagnosis, patient, and follow-up therapies. Microscopy, 3D reconstruction,
visible photography light, radiology, and printed signals (waves) are some examples of
imaging modalities [19]. The advancement of medical diagnosis is thanks to the recent
progress in medical imaging capturing and enhancement. Medical imaging can be divided
into structural systems and functional systems. All these types can be used to determine
the location of the lesion. Functional and structural data from medical imaging can be
combined to generate more meaningful information. In the treatment of the same human
organ, medical image fusion is crucial since it enables more accurate disease monitoring
and analysis. A brief overview of various medical imaging modalities is shown in Table 1.

Table 1. A brief overview of various medical imaging modalities.

Medical
Modalities

Invas-
ive/Non-
Invasive

Characteristics Application Resolution Cost
Radiation

Source and
Type

Magnetic
Resonance Image

(MRI)
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Table 1. Cont.

Medical
Modalities

Invas-
ive/Non-
Invasive

Characteristics Application Resolution Cost
Radiation

Source and
Type
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2.1. Structural Systems

Structural images such as MRI, CT, X-rays, and Ultrasound (US) provide high-resolution
images with anatomical information. Specifically, CT can better distinguish tissues with
different densities, such as bones and blood vessels. On the other hand, MRI can clearly
show different soft tissues rather than bones.

2.1.1. Magnetic Resonance Image (MRI)

Magnetic field and radio transform signals are used in the medical imaging procedure,
which is known as magnetic resonance imaging. It’s used to produce images of the nearest
location to the illness, various organic functions, and anatomical structures. The essential
feature of MRI is that it uses magnetic signals to create slices that mimic the human body
and provides details on diseased soft tissues.

2.1.2. Computed Tomography (CT)

CT is one of the main modalities included for making image fusion. A thin cross-
segment can be seen using the CT approach, which is based on detecting X-ray weakening.
CT is one of the major non-invasive diagnostic methods in contemporary medicine. The
advantages of CT images are they are introduced with fewer warps and provide details con-
cerning dense construction, such as bones and show a higher ability to see little differences
in tissue construction.

2.1.3. X-rays

X-rays were utilized to create “shadow grams” of the human body. Radiography is the
use of X-rays to visualize inside organs. Today, radiation is not typically recorded, but its
force is measured and then converted to an image. As a result, the image’s more subdued
features become more obvious. The main task of X-rays is to identify bone anomalies and
fractures in the human body. Mammography is a breast cancer assessment technique that
uses X-rays as its primary imaging source. Ultrasound-X rays and Vibroacoustography
with X-ray mammography are two examples of current modalities that combine X-ray
information with some of them.
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2.1.4. Ultrasound (US)

Ultrasound imaging relies on low-recurrence vibrations induced in the body. Because
of the radiation power of Vibroacoustography (VA), a different imaging technique made
possible by ultrasound-animated acoustic emission is used in conjunction with mammog-
raphy to improve the detection of breast cancer. In order to study retrieved human tissues
such as the liver, breast, prostate, and arteries, ultrasound imaging is being tested as a
non-invasive imaging tool. By determining changes in the mechanical response to vibra-
tion in an excited state, the depth and thickness of the objects are not recorded by X-ray
mammography. However, tissue thickness does not interfere with ultrasound imaging. Ap-
plications for ultrasound images include improving mass lesions and breast development
analysis. More auxiliary and demonstrative data may be observed in ultrasound and X-ray
mammography by combining images from two distinct imaging modalities, ultrasound
and X-ray, using either pixel-based or color-based fusion techniques.

2.2. Functional Systems

Functional images such as PET and SPECT provide functional information with low
spatial resolution.

2.2.1. Positron Emission Tomography (PET)

Low-recurrence vibrations are necessary for ultrasound imaging. A crucial component
of atomic drug imaging is PET. It’s a non-invasive imaging technique that provides a repre-
sentation and evaluation of a preselected tracer’s digestion. The essential characteristics of
PET images are that they provide important information about the human brain, allow for
the recording of changes in the solid cerebrum’s movement, and provide signs of various
disorders. For imaging any area of the body, such as for whole-body cancer diagnoses,
PET has emerged as one of the most frequently utilized clinical technologies. The PET
image’s exceptional sensitivity is the greatest benefit. PET-CT, MRI-PET, MRI-CT-PET, and
MRI-SPECTPET are some of the contemporary modalities that use image fusion techniques
that integrate PET information in fusion.

2.2.2. Single Photon Emission Computed Tomography (SPECT)

Gamma rays are commonly utilized in the atomic pharmaceutical tomographic imag-
ing technique known as SPECT to evaluate blood flow to tissues and organs. The internal
organs’ functionality is examined using SPECT scan. It provides actual 3D data. Slices
through the body are frequently used to display this data. One of the most popular scans
for tissues outside the brain where tissue placement is very varied is the SPECT scan.
SPECT-CT and MR-SPECT are two examples of modalities that use SPECT information
infusion in conjunction with some of the existing image fusion techniques.

3. Fusion Steps

The multimodal image fusion methods attempt to increase quality and accuracy with-
out changing the complementary information of the images by integrating many images
from one or various imaging modalities. Several medical image modalities exist, such as
MRI, CT, PET, US, and SPECT. MRI, US, and CT modalities deliver images with anatomical
information about the body with high spatial resolution. PET and SPECT provide images
with functional information about the body, such as blood flow and movement of soft
tissue, although having low spatial resolution. The functional image will be merged with
the structural image to yield a multimodal image containing better information for health
specialists to diagnose diseases.
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Image fusion is the process that aims to produce a more representative image by
merging the input images with each other. Two images are geometrically aligned using
medical image registration, and then an image fusion technique is used to combine the two
input source images to create a new image with additional and complementary information.
During the image fusion process, two requirements must be satisfied: (1) the fused image
must have all relevant medical information that was present in the input images, and
(2) it must not contain any additional information that was not present in the input images.
Fusion can be applied to multimodal images widely used in medicine, multi-focus images
that are usually obtained from the same modality, and multi-sensor images taken from
various sources of imaging modalities. The multimodal fusion Steps and process, as well
as the MMIF approaches and their different parts [20,21], are described in this section.

In the multimodal fusion process, first, the researcher determines the body organ of
interest. Second, select two or more imaging modalities to perform image fusion using
the appropriate fusion algorithm. It requires performance metrics to validate the fusion
algorithm. In the final step, the fused image contains more information than the input
images about the scanned area of the body organ. The overall MMIF procedure is shown in
Figure 2. These steps are mostly used in the spatial domain.
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Figure 2. The Overall procedure of multimodal medical image fusion.

In the transform domain method, medical image fusion step-by-step is illustrated in
Figure 3. There are five steps as follows: (1) Image Registration: the input source image
is registered by mapping it with the reference image to match the corresponding images,
(2) Image Decomposition: the source images are initially divided into smaller images using
decomposition algorithms, and fusion algorithms such as Intensity–Hue–Saturation (IHS),
pyramid, distinctive wavelet, Non-Subsampled Contourlet Transform (NSCT), shearlet
transform, Sparse Representation (SR), and others are applied to merge multiple features
from these sub-images [22]. (3) Fusion Rules: fusion algorithms such as fuzzy logic, Human
Visual System (HVS) fusion, Artificial Neural Networks (ANNs), Principal Component
Analysis (PCA), Mutual Information (MI) fusion, and Pulse-Coupled Neural Networks
(PCNNs) are used to extract critical information and several features from sub-images
which helpful in the following processes, (4) Image Reconstruction: in this step, the fused
image is reconstructed. Image construction is the process of assembling the sub-images
using an inverse algorithm, and (5) Image Quality Evaluation Methods: the image quality
assessment is the last step in evaluating the quality of the fusion result by using both
subjective and objective assessment measures. The radiologists are asked to assess the
fusion outcome subjectively [23].
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4. MMIF Levels

To help with understanding classification, we start by giving an overview of pixel-
level, feature-level, and decision-level image fusion. The three levels of image fusion
are pixel-level, feature-level, and decision-level techniques. In order to produce a final
image that is more informative for visual perception, pixel-level image fusion involves
directly combining the original information from the source images or their multi-resolution
transformations. The goal of feature-level fusion is to extract important properties such as
form, length, edges, segments, and orientations from the source Image. The characteristics
that were taken from the input photographs are combined to create more significant
features, which provide better descriptive and thorough images. A high level of fusion that
identifies the real target is called decision-level fusion. It combines the output from many
algorithms to obtain a final fusion judgment.

4.1. Pixel-Level Fusion

In pixel-level-based fusion techniques, images are effectively combined using individ-
ual pixels to determine the fusion decision [24]. It is further divided into a spatial domain
and a transform domain [25].

4.2. Feature-Level Fusion

At the feature level, fusion use segmentation techniques to extract objects of interest
for several image modalities. Then, factual approaches are used to combine comparison
components (such as areas) from various modalities of images.

Fei et al. [26] proposed MMIF based on a decision map and sparse representation to
simultaneously deal with these problems. The raw photos are first segmented into patches,
and then the patches are sorted into vectors based on where they were in the original
images. In the second step, a decision map is created. The third step is to choose the vector
from each group using the decision map. After that, the sparse representation method is
utilized to fuse the other vector pairs. Finally, the approach then uses the decision map to
create the fusion result, and the average is determined for the overlapping patches.
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4.3. Decision-Level Fusion (Dictionary)

The interpreted/labeled data are used in decision-level fusion, where the input images
are treated separately. Selective principles are linked to consolidate the data, enhance
fundamental translation, and provide a better understanding of the seen items. The
main advantage of this approach is that multi-modality fusion is strengthened and made
more reliable according to the higher-level representations. There are three approaches
that are usually combined at the decision level to produce fused images. These three
approaches are information theory, logical reasoning, and statistical approaches. Joint
measures, Bayesian fusion techniques, hybrid consensus methods, voting, and fuzzy
decision rules are some illustrations of the three approaches. In order to produce the single
fused image in decision-level fusion, each input image is selected using predefined criteria
and then fuses, depending on the validity of each conclusion, into the global optimum. In
order to generate the most information possible, a pre-established principles strategy is
used. The most often utilized strategies at the decision fusion level are Bayesian techniques
and dictionary learning [18]. The Bayesian strategy relies on the Bayes hypothesis, which is
based on probabilities for merging data from numerous sensors. Nonparametric Bayesian,
HWT Bayesian, and DWT Swarm Optimized are examples of Bayesian approaches.

5. Image Fusion Techniques

Image fusion combines images from many modalities to produce results that are more
accurate, comprehensive, and may be more easily interpreted. Combining multimodal
images has several benefits, such as precise geometric adjustments, completing data for
improved categorization, improving characteristics for investigations, and so forth. In
several fields of study, including computer vision, multimedia analysis, medicinal research,
and material sciences, image fusion is used extensively, and its effectiveness has been
demonstrated. Registration is viewed as an optimization problem that is utilized to take
advantage of similarities while also lowering costs. Image registration is a technique for
aligning the subsequent aspects of multiple images regarding a reference image. Multiple
source images are utilized for registration in which the original image serves as a reference
image, and the original images are aligned using the reference image. The important
features of registered images are extracted in feature extraction to generate various feature
maps. Although there are many image fusion methods, this study focused on six models:
spatial domain, transform domain, fuzzy logic-based methods, morphological methods,
sparse representation fusion, and deep learning Fusion Methods, as shown in Figure 4.
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5.1. Spatial Domain Fusion Techniques

Early research has focused heavily on spatial domain-based medical image fusion
techniques. In this type, the fusion rules are applied directly to pixels of source images, i.e.,
the actual values of pixels in the source images are combined to produce the fused image.

Spatial domain approaches work on the pixel level of the image, which is a funda-
mental pixel-level strategy. The generated images have less spatial distortion and a lower
signal-to-noise ratio (SNR) since it is applied to the original images. It works by manipulat-
ing the values of an image’s pixels to achieve the desired effects. PCA, IHS, Brovey, High
Pass Filtering Techniques, ICA, Simple Maximum, Simple Average, Weighted Average, and
gradient filtering are some spatial domain methods. However, spatial domain techniques
produce spectral and spatial distortion in the final fused image, which is viewed as a
detriment to the fusion process.

Changtao et al. [27] proposed a methodology that enhances the quality of the fused
images by combining the benefits of his and PCA fusion techniques. They compare
their proposed approach with other fusion methods such as PCA, Brovey, and discrete
wavelet transform (DWT). Visual and quantitative analysis shows that their suggested
algorithm greatly enhances the fusion quality. Bashir et al. [20] introduced a PCA and
Stationary Wavelet Transform (SWT) based model that was evaluated using a range of
medical images. Results show that PCA appears to give better performance when the input
images have different contrast and brightness levels in multimodal fusion. SWT appears
to perform better when the input images are multimodal and multi-sensor images. There
are five different sets of images: X-ray, MRI, CT, satellite, and stereo images. In order to
determine whether the approach performs better for the type of imagery, several evaluation
performance matrices were used for this set of images. Depoian et al. [28] proposed
a unique approach to obtaining better image fusion by combining PCA with a neural
network. In comparison to conventional weighted fusion approaches, the employment of
an auto-encoder neural network that is used to combine this information leads to better
degree results in data visualization. Rehal et al. [29] suggested a new method that used
a hybrid fast Fourier transform to extract features and intensity from a group of images.
They used the gray wolf optimization technique in the hue saturation to obtain the ideal
result. The proposed methodology shows better results than the conventional one that was
employed in previous research according to testing of the method.

5.2. Transform Fusion Techniques (Multi-Scale Decomposition Methods)

Recently, due to the spectral and spatial distortion in the fused image by using the
spatial domain, many researchers have turned their research focus to the study of the
transform domain for a better fusion effect. The transform domain approach has trans-
formed the input images using a Fourier transform to obtain the low-frequency coefficient
and high-frequency coefficient. The transform quantities are then subjected to the fusion
process, which is then followed by an inverse transformation to generate the fused image
within the final form. Transform domain techniques of image fusion are highly effective in
handling spatial distortion. However, it is difficult to extend its one-dimensional property
to two dimensions or several dimensions. A highly helpful technique for evaluating images
from remote sensing, medical imaging, etc., is multi-resolution analysis. Discrete wavelet
transform is now becoming a key technique for fusion. The transform domain is based
on the multi-scale-based transform. The multi-scale-based transform fusion method is
classified into three steps: decomposition, fusion, and reconstruction.

The techniques used in the transform domain are divided into pyramidal fusion tech-
niques, wavelet fusion techniques, and multi-scale decomposition techniques. Firstly, the
most common methods used in pyramidal fusion techniques are the Laplacian pyramid and
the morphological pyramid, Ratio Pyramids, and Gaussian Pyramids [30]. Liu et al. [31]
proposed an approach that combined Laplacian Pyramid (LP) and Convolutional Sparse
Representation (CSR). Each set of pre-registered computed tomography images and mag-
netic resonance images performs the LP transform to produce its detail layers and base
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layers. The base layer is then combined using a CSR-based method, and the detail layers
are combined using the well-known “max absolute” criteria. By applying the inverse LP
transform to the combined base layer and detail layers, the fused image is finally rebuilt.
Their approach has the advantages of being able to properly extract the texture detail
information from the source images and maintaining the overall contrast of the combined
image. Experimental results show how superior their suggested approach is. Zhu et al. [32]
proposed a novel multi-modality medical image fusion method based on phase congru-
ency and local Laplacian energy. On pairs of medical image sources, the non-subsampled
contourlet transform is used to separate the source images into high-pass and low-pass
sub-bands. A phase congruency-based fusion rule that integrates the high-pass sub-bands
can improve the detailed characteristics of the fused image for medical diagnosis. Local
Laplacian energy-based fusion rule is suggested for low-pass sub-bands. The weighted
local energy and the weighted sum of the Laplacian coefficients reflect the structured
information and specific characteristics of source image pairings, respectively, and make up
the local Laplacian energy. As a result, the proposed fusion rule can incorporate two crucial
elements for the fusion of low-pass sub-bands at the same time. In order to create the fused
image, the combined high-pass and low-pass sub-bands are inversely converted. Three
kinds of multi-modality medical image pairings are employed in the comparison tests to
test the efficacy of the suggested approach. The outcomes of the experiment demonstrate
that the suggested approach performs competitively in terms of both image quantity and
processing expenses.

Secondly, wavelet fusion techniques include the following type Discrete Wavelet
Transform (DWT), Stationary Wavelet Transform (SWT), Redundant Wavelet Transform
(RWT) Dual-Tree Complex Wavelet Transforms (DT CWT). Most published research on
multimodal medical image fusion algorithms depends on DWT [33]. DWT creates various
input frequency signals to keep stable output perfect rank in the time domain and frequency
domain which leads to maintaining the specific information of the image [34]. It has a
good visual and quantitative fusion effect and overcomes PCA’s drawbacks. MRI and
PET image fusion is used in DWT-based fusion methods and also used in others [35–37].
Bhavana et al. [35] proposed a novel fusion method using MRI and PET brain images on
DWT without any reducing anatomical information and with less color distortion. A novel
fusion method of DWT is different from the usual DWT fusion method, where the proposed
method applied wavelet decomposition with four stages for low- and high-activity regions,
respectively. Cheng et al. [37] produce a good fusion image of PET/CT, which discover and
locates the disease region in the pancreatic gland using wavelet transform by a weighted
fusion-based medical image algorithm. Georgieva et al. [38] introduce a brief overview of
the benefits and current directions of multidimensional wavelet transform-based medical
image processing techniques. They also introduce how it might be combined with other
approaches that treat each coefficient set as a tensor. The use of computers in different
medical processing methods, including noise reduction, segmentation, classification, and
medical image fusion is made simpler by the fact that wavelet tensor modifications have
only one parameter to be tweaked, as opposed to the standard wavelet decompositions.
Due to the uniqueness of medical imaging data, these approaches have not yet been
widely applied in research and practical applications despite their advantages. The latest
recommendations in this area concern the selection of suitable techniques and algorithms
to enhance their advantages in accordance with the uniqueness of various medical items in
the images.
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Wang et al. [39] Presented a multimodal color medical image fusion algorithm based
on the discrete cosine transform in geometric algebra (GA DCT). The GADCT algorithm
combines the characteristics of GA, which represents the multi-vector signal as a whole,
to increase the quality of the fusion image and reduce the number of complex operations
associated with encoding and decoding.

Finally, multi-scale decomposition techniques include Non-Subsampled Contourlet
Transform (NSCT), Non-Subsampled Shearlet Transform (NSST), and Pulse-Coupled Neu-
ral Network (PCNN) techniques. The following sections will focus on the most common
techniques used in Multi-scale Decomposition techniques.

5.2.1. Non-Subsampled Contourlet Transform (NSCT)

Do et al. [40] created the contourlet transform with the intention of capturing the
inherent geometrical features of an image and enhancing the isotropic wavelet property.
The decomposition consists of two filtering steps because it is a directional multi-resolution
transform. First, the Laplacian pyramid is applied to selected point discontinuities. Second,
performing a local directional decomposition through a directional filter bank to create a
linear structure linking these discontinuities. A contourlet transform is a useful tool for
selecting intrinsic contours rather than curvelets or ridgelets because of the set of basis
oriented along various scales and orientations.

Li et al. [41] created a unique fusion technique for multi-modality medical images
by combining it with NSCT. They use an improved innovative sum-modified Laplacian
(INSML) feature in which the complementary information of multi-modality images is
retrieved and utilized in the fusion rules for the low-transform NSCT coefficients. Addition-
ally, the WLE-INSML features are used to extract the high-transform NSCT coefficients and
build the fusion rules for these coefficients. They assess their suggested fusion approach by
using an open dataset generated from twelve pairs of multi-modality medical images.

Li et al. [42] proposed an MMIF method that combines the advantages of the NSCT.
They proposed fuzzy entropy to improve the quality of target recognition and the accuracy
of fused images and provide the basis for clinical diagnosis. The image is divided into
high- and low-frequency subbands through NSCT. According to the different features of
the high- and low-transform components, the fusion rules are adopted. It’s necessary to
calculate the membership degree of low-frequency coefficients. In order to guide the fusion
of coefficients that preserve image details, fuzzy entropy is calculated and subsequently
used. Maximizing regional energy is used to fuse high-frequency components. The trans-
formation is inversed to obtain the final fused image. Based on the subjective and objective
assessment criteria, experimental results show that their approach provides a satisfactory
fusion effect. Additionally, this technique may successfully preserve the features of the
fused image while obtaining excellent average gradient, standard deviation, and edge
preservation. The outcomes of the suggested methodology can serve as an efficient guide
for clinicians to evaluate patient conditions.

Alseelawi et al. [43] proposed an appeached hybrid medical image fusion using
wavelet and curvelet transform with multi-resolution processing. They proposed an
algorithm for enhancing the fused image quality by combining wavelet and curvelet
transform techniques after the decomposition stage. They use a sub-band coding algorithm
instead of curvelet fusion and the wavelet transform fusion algorithm, which leads to this
technique being more efficient.

Xia et al. [44] proposed a medical image fusion technique by combining a pulse-
coupling neural network and sparse representation. First, the NSCT transform is used to
break down the source image into low and high-frequency sub-band coefficients. Second,
the low-frequency sub-band coefficients are trained using the K Singular Value Decompo-
sition (K-SVD) method to obtain the over-complete dictionary D. It is sparsed using the
Orthogonal Matching Pursuit (OMP) algorithm to complete the fusion of the low-frequency
sub-band sparse coefficients. The spatial transform of the high transform sub-band coeffi-
cients is then used to excite the Pulse Coupling Neural Network (PCNN), and the fusion
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coefficients of the high transform sub-band coefficients are chosen based on the number
of ignition times. Finally, the NSCT inverter reconstructs the fusion medical image. The
experimental results and analysis shows that the performance of the fusion result is better
than the existing algorithms, and the algorithm of gray and color image fusion is higher
than the contrast algorithm in the edge information transfer factor QAB/F index.

5.2.2. Pulse-Coupled Neural Network (PCNN)

The purpose of image fusion is not only to keep the characteristic information of
the source image but also to ensure less distortion and good visual effects; therefore,
the high-frequency coefficient is decomposed using PCNN. PCNN is a single-layer two-
dimensional connected neuron array horizontally, which is used widely in the image
processing field [45]. It’s a biologically inspired feedback neural network in which the
neurons consist of a connected modulation field, receiving field, and a pulse generator. It
has a more significant advantage in the biological background which can be used to obtain
useful information from source images without a training process. It has many defects,
such as difficulty in setting parameters.

Ouerghi et al. [46] proposed a new fusion method based on a simplified pulse-coupled
neural network (S-PCNN) and NSST. First, PET images are converted into YIQ components.
The NSST transform is only applied for Y components of PET images and MRI images.
The standard deviation of the weight region and the local energy is used to fuse the
low-frequency sub-band. The high-frequency coefficients are fused using S-PCNN. This
algorithm achieves good quality in the fused image.

Duan et al. [47] proposed an MMIF framework based on PCNN and low-rank repre-
sentation of image blocks. The NSCT is used to decompose the image. The low-frequency
sub-band adopts the low-rank fusion strategy based on the K-SVD dictionary learning
algorithm, which leads to strengthening the extraction of local features. The high-frequency
sub-band adopts the PCNN fusion. Finally, the guided filter to deepen the edge details is
used to fuse the image after NSCT inverse transform with MRI gray image. The proposed
fusion method achieves great results over other existing algorithms in objective metrics
and visual effects.

5.2.3. Non-Subsampled Shearlet Transform (NSST)

NSCT complication in computation shearlet is a new tool that can obtain mathematical
properties and geometric, for example, scales, elongated shapes, oscillations, and direc-
tionality from images. The shearlet is optimally sparse in displaying images with edges
because they form a tight frame in a variety of scales and directions. The decomposition
of an image shearlet transforms such as that of a contourlet, but there is no restriction in
directions for shearing. In the inverse ST, to improve the computational efficiency, the
shearing filters need only to be aggregated instead of inverting a directional filter bank in
the contourlet. Qiu et al. [48] proposed an image fusion method that transformed both CT
and MR images into the NSST domain to obtain low and high-frequency components. They
use the absolute-maximum rule to merge high-frequency components and use a sparse
representation-based approach to merge the low-frequency components. To improve the
performance of the sparse representation-based approach, they propose a dynamic group
sparsity recovery algorithm. Finally, they performed the inverse NSST on the merged
component to obtain the fused image. Their approach provides better fusion results in
terms of objective and subjective quality evaluation.

Yin et al. [49] proposed an innovative multimodal medical image fusion method in
NSST. They perform NSST decomposition on the source images to obtain their multidi-
rectional and multi-scale representations. They use a Parameter-Adaptive Pulse-Coupled
Neural Network (PA-PCNN) model to fuse high-frequency bands in which all parame-
ters of PCNN are estimated by the input band. They use a new strategy, namely, energy
preservation and detail extraction, that addresses two crucial issues in medical image
fusion simultaneously. Finally, inverse NSST is performed on the fused low-frequency
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and high-frequency bands to reconstruct the fused image. In order to test the viability of
the suggested approach, extensive tests were carried out employing 83 pairings of source
photos across four categories of medical image fusion difficulties. The experimental results
show that the suggested method can achieve state-of-the-art performance in terms of both
visual perception and objective assessment.

5.3. Fuzzy-Logic-Based Methods

In 1965, Zadeh [50] was the first to establish the Fuzzy Logic (FL) theory, and since
then, MMIF algorithms have made heavy use of it. Medical images have indistinct regions
as a result of inadequate lighting. In light of this, the Fuzzy Sets Theory (FST) is used in
medical image processing. The idea of FST has made tremendous progress in overcoming
uncertainty. FL model consists of a fuzzifier, an inference engine, a de-fuzzifier, fuzzy sets,
and fuzzy rules [51]. FL is used for image fusion as both a feature transform operator and a
decision operator [52].

Kumar et al. [53] fused the medical images by implementing intuitionistic fuzzy
logic-based image fusion. They repress the noise and enhance the input images, and
integrate them into the IHS domain efficiently. Fuzzy sets are integrated to overcome the
uncertainties caused by them due to the vagueness and ambiguity of the intuitionistic.

Tirupal et al. [54] proposed a new method, namely, Sugeno’s Intuitionistic Fuzzy Set,
to fuse medical images. First, the medical images are converted into SIFI images. Second,
the SIFIs split the images into blocks to calculate the count of whiteness and blackness of
the blocks. Finally, the fused image is rebuilt from the recombination of SIFI image blocks.

Tirupal et al. [55] introduced a technique based on an interval-valued intuitionistic
fuzzy set (IVIFS) for effectively fusing multimodal medical images, with a median filter used
to eliminate noise from the final fused image. Several sets of multimodal medical images
are simulated and compared to the available fusion techniques, such as an intuitionistic
fuzzy set and fuzzy transform.

5.4. Morphological Methods

In the early eighties, most multimodal medical image fusion algorithms used mathe-
matical morphology broadly, which determined its objects as a set of points and operations
between two sets [56]. The structuring and the objects element are observed when using
filters created with morphological operators. Extracting features from a subset of spatially
localized pixels has been consistently successful [8]. The image opening and image closing
filters used in the morphological pyramid decomposition were found to be ineffective for
edge detection. The mathematical morphology algorithm has retained important image
regions and details with increased calculation time [57].

Yang et al. [58] present a recent algorithm for medical image fusion by CT and MRI
images with a shift-invariant multi-scale decomposition scheme. By eliminating the down-
sampling operators from a morphological wavelet, the decomposition scheme is produced.
An experiment using an actual medical image demonstrates how much the suggested
strategy enhances the quality of the fused image. The proposed method outperforms
competing approaches in terms of maintaining both “pixel” and “edge” information.

5.5. Sparse Representation Methods

In recent years, Sparse Representation (SR) methods applied in image fusion applica-
tions have become a prevalent and important research point among the research community.
It attracted significant attention and performed successfully, so the transform domain im-
age fusion algorithms that combine sparse representation techniques have been used [59].
Wang et al. [60] proposed an image fusion framework that combines images by integrating
NSCT with SR, which resulted in enhanced fusion than the fusion algorithms of single trans-
formation. However, the processing time of the proposed framework was longer than the
multi-scale transform-based methods. Li et al. [61] proposed an image fusion framework
that integrates SR with NSCT, which achieves an improved fusion with respect to detail
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preservation and structural similarity for the visible-infrared images. Maqsood et al. [62]
proposed a multimodal image fusion scheme based on two-scale medical image decom-
position merged with SR which the edge details in CT-MRI image fusion are improved,
but it cannot use with color images. Chen et al. [63] proposed a target-enhanced multi-
scale decomposition fusion technique for infrared and visible image fusion in which the
texture details in visible images are preserved, and the thermal target in infrared images
is enhanced.

Shabanzade et al. [64] present an image fusion framework for image modalities
(i.e., PET and MRI) based on sparse representation in the NSCT domain. Source images
were obtained from their low-pass and high-pass sub-bands by performing NSCT. Then,
low-pass sub-bands are fused by sparse representation based by using clustering-based
dictionary learning. While high-pass sub-bands are merged by application of the salience
match measure rule.

Kim et al. [65] proposed an efficient dictionary learning for the multimodal image
fusion method based on joint patch clustering. They build an over-complete dictionary to
represent a fused image with a sufficient number of useful atoms. Different sensor modali-
ties transfer the image information and structural similarities, and all patches from different
source images are clustered together. The joint patch clusters are collected and integrated
to build the over-complete dictionary to structure an informative dictionary. Finally, sparse
coefficients are evaluated in multimodal images with the common dictionary learned.

Polinati et al. [66] presented a unique approach, convolutional sparse image decompo-
sition (CSID), that combines CT and MR images. To locate edges in source images, CSID
employs contrast stretching and the spatial gradient approach, as well as cartoon-texture
decomposition, which produces an over-complete dictionary. In addition, they introduced
a modified convolutional sparse coding approach and used enhanced decision maps and
the fusion rule to create the final fused image.

5.6. Deep Learning Fusion Methods

In recent years, deep learning has been a new research field in medical image fusion.
Compared with medical image fusion, it’s widely used in medical image registration [67–69]
and medical image segmentation [70–72]. It uses a number of layers, and each layer takes
its information from the previous layer. It helps to structure the complicated framework
architecturally layered and has the capability to handle enormous amounts of data [73].
Convolutional Neural networks (CNN), Convolution Sparse Representation (CSR), and
Deep Convolution Neural Networks (DCCNs) are examples of deep learning fusion ap-
proaches. The CNN model is most often used in deep learning approaches. Each layer in
CNN is composed of a number of feature maps that contain neurons as coefficients. The
feature maps are connected to each stage in the numerous stages using various methods
such as spatial pooling, convolution, and non-linear activation [74]. Convolutional Sparse
Coding (CSC) is another popular deep-learning fusion technique.

Liu et al. [75] proposed a convolutional neural network-based technique for fusing
medical images. They used a Siamese convolutional network to create a weight map that
integrates the pixel activity information from source images. They perform a fusion process
that is more consistent with human visual perception by conducting it in a multi-scale
manner via image pyramids. Some well-known image fusion techniques, such as multi-
scale processing and adaptive fusion mode selection, are appropriately used to provide
perceptually pleasing outcomes. The method can produce high-quality outcomes in terms
of visual quality and objective metrics according to experimental results.

Rajalingam et al. [76] introduced an effective multimodal medical image fusion method
based on deep learning convolutional neural networks. They use CT, MRI, and PET as
the input multi-modality medical images for the experimental work. They use a Siamese
convolutional network to produce a weight map that incorporates the pixel movement
information from two or more multi-modality medical images. To make the medical image
fusion process more accurate with human visual insight, they carried out the procedure
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of the medical image fusion in a multi-scale manner via medical image pyramids. To
correct the fusion mode for the decomposed coefficients, they apply a local comparison-
based strategy. An experimental result shows that the suggested method outperforms
alternative methods currently used in terms of processing performance and outcomes for
both subjective and objective evaluation criteria.

Xia et al. [77] proposed a novel muti-modal medical image fusion schema that uses
both the features of deep convolutional neural network-based and multi-scale transforma-
tion. Firstly, the Gauss–Laplace and Gaussian filters divide the source images into several
sub-images in the first layer of the network. Then, the convolution kernel of the rest layers
is initialized, and the basic unit is constructed using the HeK-based method. The basic unit
is trained using a backpropagation algorithm. To create a deep stacked neural network,
train a number of fundamental units that are sacked with the idea of SAE. The suggested
network is used to decompose the input images to obtain their own low-frequency and
high-frequency images, merge the fusion rule to fuse low-frequency and high-frequency
images, and then return those merged images to the network’s final layer to produce the
final fusion images. By doing numerous experiments on various medical image datasets,
the effectiveness of their suggested fusion method is assessed. Experimental results show
that, in comparison to other approaches now in use, their proposed method not only
successfully fuses the numerous images to provide superior results but also ensures an im-
provement in the many quantitative parameters. Furthermore, the revised CNN approach
runs significantly more quickly than similar algorithms with high fusion quality.

Wang et al. [78] introduced medical image fusion algorithms that can combine medical
images from many morphologies to improve the accuracy and reliability of a clinical
diagnosis, which plays a greatly important role in many clinical applications. This research
suggests a CNN-based medical image fusion algorithm to produce a fused image with
good visual quality and distinct structural information. The suggested approach combines
the pixel activity data from the source images with the trained Siamese convolutional
network to produce the weight map. Meanwhile, the source image is decomposed using
a contrast pyramid. Source images are combined using various spatial transform bands
and a weighted fusion operator. Comparative experiments’ results demonstrated that the
suggested fusion method might successfully retain the source images’ intricate structural
details while producing pleasing aesthetic effects for humans.

Wang et al. [79] introduced a new MMIF algorithm based on CNN and NSCT. To
obtain better fusion results, they exploit the advantages of both NSCT and CNN. In the
proposed algorithm, the source images are divided into high and low-frequency sub-
bands. They use a new fusion rule, namely, Perceptual High-Frequency CNN (PHF-CNN),
which produces high-frequency sub-bands. In the case of the low-frequency sub-band,
the decision map is generated by adopting two result maps. Finally, they inverse NSCT
to integrate fused frequency sub-bands. According to experimental results, the suggested
approach is superior to existing algorithms in terms of assessment, and it increases the
quality of fused images.

Li et al. [80] examine the most recent developments in DL image fusion and suggest
some directions for future research in the area. Deep learning models can automatically
extract the most useful characteristics from data to get around the challenge of manual
design and integration of multimodal medical images. This approach can successfully
complete image fusion in batches, fulfill diagnostic demands, and significantly improve the
effectiveness of medical image fusion. It makes sense in terms of enhancing the precision of
medical diagnosis. All these techniques mentioned above are illustrated and summarized
in Tables 2 and 3 to highlight the advantages and disadvantages of these techniques.
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Table 2. MMIF technique classification and major contributions in research papers.

Ref. Year Image Modalities Body Organs Disease Based
Method

Multimodal
Fusion

Techniques
Dataset

He et al. [27] 2010 MRI/PET Brain Alzheimer’s

Spatial
Domain

IHS and PCA
fusion AANLIB

Bashir et al. [20] 2019
CT/MRI Brain - PCA -

X-ray and MRI Leg

Rehal et al. [29] 2021 MRI/PET Brain - 2-DHT and HIS -

Zhu et al. [32] 2019

CT/MRI - -

Laplacian
Pyramid

local Laplacian
energy

and NSCT domain

-

MRI/PET - - -

SPECT/MRI - - -

Liu et al. [31] 2020 CT/MRI Brain lesions Laplacian pyramid
and SR ALINDA

Wang et al. [39] 2022 SPECT-T1/SPECT-
TC Brain - DCT

Discrete cosine
transform in

geometric algebra
(GA DCT).

-

Bhavana et al. [35] 2015

MRI/PET

Brain

normal Axial

DWT

DWT

-

MRI/PET Normal
Coronal -

MRI/PET Alzheimer’s -

Bashir et al. [20] 2019
CT/MRI - -

SWT
-

X-ray and MRI - - -

Xia et al. [44] 2018

CT/MRI - -

NSCT

NSCT-SR-PCNN

-

MR1_T1/MR2_T2 - - -

MR-T1/PET - - -

MR-T2/PET - - -

Li et al. [41] 2021

MRI/SPEC - -

NSCT

-

MRI/PET - - -

MR1_T1/MR2_T2 - - -

Ouerghi et al. [46] 2018 MRI/PET Brain
Alzheimer’s

brain PCNN PCNN
AANLIB

Tumor -

Qiu et al. [48] 2017 CT/MRI - -

NSST

SR in
NSST Domain -

Yin et al. [49] 2018

CT/MR - -

PA-PCNN in
NSST Domain

-

MR-T1/MR-T2 - - -

MR/PET - - -

MR/SPECT - - -
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Table 2. Cont.

Ref. Year Image Modalities Body Organs Disease Based
Method

Multimodal
Fusion

Techniques
Dataset

Tirupa2l et al. [54] 2017

CT/MRI
- -

Fuzzy
method

Fuzzy method -

- -
Sugeno’s

intuitionistic fuzzy
set

-

MRI/PET Brain Alzheimer’s
Fuzzy method -

Sugeno’s
intuitionistic fuzzy

set
-

MRI/SPEC Brain Tumor
Fuzzy method -

Sugeno’s
intuitionistic fuzzy

set
-

CT/PET
- - Fuzzy method -

- -
Sugeno’s

intuitionistic fuzzy
set

-

Kumar et al. [53] 2018

CT/MRI - -
intuitionistic fuzzy

sets

-

MRI/SPEC - - -

MRI/PET - - -

Tirupal et al. [55] 2022

CT/MRI

Brain

-
Fuzzy

method

interval-valued
intuitionistic fuzzy

set (IVIFS)

-

MR/MRA - -

MRI/SPECT - -

Yang et al. [58] 2008 CT/MRI - -
Morpholo-

gical
Method

Shift-Invariant
Morphological

Wavelet
-

Li et al. [61] 2018 CT/MRI - -

Sparse
Represen-

tation

NSCT and SR AANLIB

Shabanzade et al.
[64] 2016 MRI/PET - -

SR and
Clustering-Based

Dictionary
Learning

in NSCT Domain

-

Kim et al. [65] 2016
MR/CT - - clustering-based

dictionary learning
-

MR/PET - - -

Maqsood et al.
[60] 2020 CT/MRI - -

Two-scale Image
Decomposition

and Sparse
Representation

-

Polinati et al. [66] 2021 CT/MRI Brain

cerebrovascular,
neoplastic,

degenerative,
and

infectious
diseases

adaptive sparse
representation -
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Table 2. Cont.

Ref. Year Image Modalities Body Organs Disease Based
Method

Multimodal
Fusion

Techniques
Dataset

Rajalingam et al.
[76] 2018

CT/MRI - -

Deep
Learning

CNN
-

MRI/PET - - -

Xia et al. [77] 2019

CT/MR Abdomen -

CNN AANLIBCT/PET - -

CT/MRI Brain -

Wang et al. [78] 2020

CT/MRI - - Convolutional
Neural Network

(CNN) and
Contrast Pyramid

-

MR-T1/MR-T2 - - -

MRI/PET - - -

MRI/SPECT - - -

Li et al. [80] 2021 CT/MRI Brain - Deep learning
model -

Table 3. Advantages and disadvantages of MMIF techniques.

Based Method Advantage Disadvantage

Spatial Domain

• The simplest image fusion method.
• Produces highly focused image results from

the image input.
• Extremely straightforward, simple to grasp,

and easy to apply.
• Processing is extremely fast, computationally

efficient, and speedier.

• The blurring effect diminishes image contrast.
• Sharpness of the resulting fused image is not

guaranteed.
• Spectral deterioration is typically brought on

by spatial domain fusion.
• Spectrum deterioration and color distortion

are also potential consequences.

Pyramidal

• Provides directional information. • May produce artifacts around edges because
of shift variant nature.

• Computationally expensive and demands
large memory

DWT • Provides spectral information. • May produce artifacts around edges.
• Suffer from blocking artifact

Multi-scale
Decomposition

techniques

• Reduces spectral distortion better than
traditional fusion techniques.

• Compares to a strategy based on the
pixel-level method in terms of the
signal-to-noise ratio being higher.

• The fused image contains spectral
components with good quality and high
spatial resolution.

• Multilevel fusion, where the image is fused
twice in the medical field utilizing the
appropriate fusion technique, leads to
improved results.

• For multi-focus images, strategies provide
excellent detailed image quality.

• The fusion algorithm requires a more
complicated procedure than pixel-level
techniques.

• Generate output images that are more or less
identical for improved results, a competent
fusion process is necessary.

• Produce output images that are almost
identical.
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Table 3. Cont.

Based Method Advantage Disadvantage

Sparse Representation

• SR coefficients are the most significant factors
that enhance the final fusion performance.

• Improve the image’s contrast and better
visual information retention.

• Keep information about the images’ structure
and the comprehensive detail of the source
images’ content.

• Frequently results in visual artifacts that
affect the rebuilt image.

• It has two main drawbacks: Which are a
limited ability to preserve details and a
significant vulnerability to mis-registration.

Deep Learning

• The learning environment of neural networks
makes it much simpler to optimize the image
fusion process.

• Different input data put more emphasis on
combining high-dimensional data to produce
a workable answer.

• The methodology can be altered to suit the
application’s requirements.

• Produce superior outcomes in comparison to
other fusion strategies when there is a large
amount of input data.

• Built upon dynamic processes with intricate
parameter settings.

• Numerous issues need to be resolved,
including local extreme, misidentification,
and training convergence’s rate.

• Need more effort and complex technology to
train the fusion model.

• Does not provide reliable outcomes for small
image datasets.

6. Evaluation Metrics

Each fusion method has advantages, and the effectiveness of image fusion algo-
rithms is assessed by considering several parameter measures documented in the litera-
ture [81,82]. There are two fusion quality evaluation metrics that can be categorized as
subjective/qualitative and objective/quantitative evaluation methods.

The subjective quality assessment compares the original input images with the final
fused image based on visual examination. There are various parameters, such as color,
spatial details, image size, etc., must be considered in the examination of the fused image.
Nevertheless, the absence of ground truth images that are completely fused causes these
quality assessment methods to be costly, inconvenient, and consume time.

The objective method is categorized based on two methods. The first method is used
when the reference image is available. The second method is used when the reference
image is not available. The validation of the fusion algorithm used the ground truth image
as the reference image. The ground truth medical image is only available in very rare
circumstances, or it can be constructed manually. In the case the ground truth image is not
available, the resultant fused image and the source medical images are used to calculate the
quality metric. Objective quality assessment parameters of the reference image include Peak
Signal to Noise Ratio (PSNR), Root Mean Square Error (RMSE), Structural Similarity (SSIM),
Mutual Information (MI), Universal Quality Index (UQI), and Correlation Coefficient (CC).
Objective quality assessment parameters without a reference image include Standard
Deviation (SD), Entropy (EN), Spatial Frequency (SF), and Gradient-Based Index (QAB/F).
The objective quality evaluation results are arranged in Table 3. The objective methods
are categorized based on whether a reference image is available or not. The following
subsections show the calculations involved for each quantitative metric. quantitative
metric. Table 4 presents a detailed comparison between different MMIF techniques using
quantitative metrics.
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Table 4. Comparison of performance evaluation metric.

Ref. and Year Image Modality IF Technique MI CC EN SF QAB/F AG Time
(s) SD SSIM RMSE

He et al. [27]
2010 MRI/PET IHS and PCA

fusion
2.9586 - - - - - - - - -

Bashir et al. [20]
2019

CT/MRI
PCA

- - 5.9796 - - - - 0.2073 - 0.2886

X-ray/MRI - - 6.3419 - - - - 0.2259 - 0.2062

Rehal et al. [29]
2021 MRI/PET 2-DHT and HIS - - - - - 6.91 - - - -

Zhu et al. [32]
2019

CT/MRI local Laplacian
energy and NSCT

domain

2.2188 - - - 0.8502 - - - - -

MRI/PET 1.7422 - - - 0.3475 - - - - -

SPECT/MRI 2.6134 - - - 0.5455 - - - - -

Liu et al. [31]
2020

CT/MRI Laplacian
pyramid

and sparse
representation

2.7088 - - 2.6533 - 8.9159 - 8.1978 - -

Wang et al. [39]
2022

SPECT-
T1/SPECT-

TC

Set1

Laplacian
pyramid

2.477 0.692 3.4538 - - - - - 0.742 0.134

Set2 2.966 0.655 3.9194 - - - - - 0.721 0.152

Set3 2.736 0.704 3.6714 - - - - - 0.729 0.143

Set4 1.926 0.651 3.6212 - - - - - 0.605 0.140

Bhavana et al.
[35]
2015

MRI/PET

DWT

- - - - - 6.8573 - 2.2966 - -

MRI/PET - - - - - 7.9881 - 2.63 - -

MRI/PET - - - - - 10.586 - 0.3808 - -

Polinati et al.
[66]
2021

CT/MRI

DTCWT

3.656 - - - 0.500 8.933 - - 0.499 0.034

CT/MRI 4.030 - - - 0.435 7.421 - - 0.413 0.029

CT/MRI 3.878 - - - 0.418 6.231 - - 0.674 0.028

CT/MRI 3.360 - - - 0.483 6.390 - - 0.350 0.029

Bashir et al. [20]
2019

CT/MRI
SWT

- - 6.1523 - - - - 0.1419 - 0.1605

X-ray/MRI - - 6.2769 - - - - 0.206 - 0.2528

Xia et al. [44]
2018

CT/MRI

NSCT-SR-PCNN

2.2426 - - - 0.5887 - - 55.406 0.9567 -

MR1_T1/MR2_T2 2.2047 - - - 0.5732 - - 58.764 1.2812 -

MR-T1/PET 2.7559 - - 6.9474 0.5681 7.5961 - 67.025 - -

MR-T2/PET 2.0676 - 6.9363 0.5451 7.4678 63.117 - -

Li et al. [41]
2021

MRI/SPEC

NSCT

8.9643 - - - 0.6992 - - 69.198 - -

MRI/PET 9.7471 - - - 0.6176 - - 72.662 - -

MR1_T1/MR2_T2 10.489 - - - 0.5801 - - 100.26 - -

Ouerghi et al.
[46] 2018 MRI/PET PCNN

- - 0.754 30.415 0.4932 - 180 72.971 - -

- - 3.6176 35.606 0.5852 - 180 56.974 - -

Qiu et al. [48]
2017

CT/MRI SR
in NSST Domain

3.1898 - - - 0.5378 - 0.7523 -

Yin et al. [49]
2018

CT/MR

PA-PCNN
in NSST Domain

0.783 - 5.113 - - - 7.68 87.165 - -

MR-T1/MR-T2 0.876 - 5.169 - - - 7.68 80.932 - -

MR/PET 0.868 - 4.946 - - - 7.68 62.479 - -

MR/SPECT 0.826 - 4.794 - - - 7.68 58.018 - -

Polinati et al.
[64]
2021

CT/MRI

NSST

3.703 - - - 0.373 8.368 - - 0.520 0.027

CT/MRI 4.116 - - - 0.421 7.471 - - 0.600 0.024

CT/MRI 4.214 - - - 0.446 6.349 - - 0.590 0.022

CT/MRI 3.740 - - - 0.439 6.217 - - 0.634 0.022
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Table 4. Cont.

Ref. and Year Image Modality IF Technique MI CC EN SF QAB/F AG Time
(s) SD SSIM RMSE

Tirupal et al.
[54]
2017

CT/MRI
Fuzzy method - - - 9.579 0.412 - - - - -

Sugeno’s
intuitionistic

fuzzy set

- - - 17.29 0.859 - - - - -

MRI/PET
Fuzzy method - - - 23.22 0.247 - - - - -

Sugeno’s
intuitionistic

fuzzy set

- - - 42.38 0.771 - - - - -

MRI/SPEC
Fuzzy method - - - 14.42 0.324 - - - - -

Sugeno’s
intuitionistic

fuzzy set

- - - 30.61 0.713 - - - - -

CT/PET
Fuzzy method - - - 12.96 0.274 - - - - -

Sugeno’s
intuitionistic

fuzzy set

- - - 14.5 0.758 - - - - -

Kumar et al.
[53]
2018

CT / MRI
intuitionistic

fuzzy sets

- - - - - - - 36.866 - -

MRI/SPEC - - - - - - - 10.779 - -

MRI/PET - - - - - - - 5.5054 - -

Tirupal et al.
[55]
2022

CT/MRI interval-valued
intuitionistic

fuzzy set (IVIFS)

- - 6.8026 30.78 0.8451 18.526 - - - -

MR/MRA - - 7.1052 36.22 0.7165 18.701 - - - -

MRI/SPECT - - 5.9753 35.32 0.7868 17.127 - - - -

Yang et al.
[58]
2008

CT/MRI Shift-Invariant
Morphological

Wavelet

5.472 - - - - - - - - -

Li et al. [61]
2018 CT/MRI NSCT and SR - - - - 0.7298 - - - - -

Maqsood et al.
[62]
2020

CT/MRI Two-scale Image
Decomposition

and Sparse
Representation

3.6949 - 6.987 - 0.7997 - - - - -

CT/MRI 4.4388 - 7.597 - 0.7842 - - - - -

CT/MRI 4.7421 - 7.9945 - 0.7169 - - - - -

CT/MRI 4.358 - 5.4681 - 0.9737 - - - - -

Shabanzade
et al. [64]

2016

MRI/PET SR and
Clustering-Based

Dictionary
Learning

in NSCT Domain

2.4501 - - - 0.6473 - - - - -

Polinati et al.
[64]
2021

CT/MRI

ASR

3.984 - - - 0.535 8.561 - - 0.563 0.034

CT/MRI 4.279 - - - 0.47 6.662 - - 0.593 0.029

CT/MRI 4.186 - - - 0.465 5.065 - - 0.674 0.028

CT/MRI 3.666 - - - 0.541 5.772 - - 0.651 0.029

Kim et al. [65]
2016

MR/CT Clustering-based
dictionary
learning

2.704 - - - 0.248 - - - - -

MR/PET 2.616 - - - 0.309 - - - - -

Rajalingam
et al. [76]

2018

CT/MRI(1)

CNN

0.873 - - - 0.8662 0.084 2.094 0.7782 - -

CT/MRI(2) 1.516 - - - 0.7172 0.0886 2.051 0.954 - -

MRI/PET(1) 1.435 - - - 0.7832 0.0893 2.274 0.998 - -

MRI/PET(2) 1.245 - - - 0.5872 0.0895 2.127 0.8023 - -
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Table 4. Cont.

Ref. and Year Image Modality IF Technique MI CC EN SF QAB/F AG Time
(s) SD SSIM RMSE

Xia et al. [77]
2019

CT/MRI

CNN

- 33.97 7.176 13.64 - 7.112 3.115 45.907 - -

CT/PET - 64.43 7.622 11.354 - 6.545 8.763 75.422 - -

CT/MRI - 11.5 6.188 8.031 - 3.395 11.046 21.386 - -

Wang et al. [78]
2020

CT/MRI
CNN and
Contrast
Pyramid

1.092 - 0.7445 - 0.4449 - 12.867 - - -

MR-T1/MR-T2 1.092 - 0.7445 - 0.4449 - 12.867 - - -

MRI/PET 1.092 - 0.7445 - 0.4449 - 12.867 - - -

MRI/SPECT 1.092 - 0.7445 - 0.4449 - 12.867 - - -

Li et al. [80]
2021 CT/MRI DL model 1.8145 - 0.5429 15.394 - - - - 0.9020 39.92

6.1. Metrics Requiring a Reference Image
6.1.1. Root Mean Square Error Ratio (RMSE)

By comparing the actual or ideal fused medical image to the ground truth image,
RMSE determines the final medical image’s quality. Its value ought to be close to zero for
optimal merged image results. i and j stand for horizontal and vertical pixels, respectively,
where R stands for input and F stands for fused images. The RMSE is calculated as follows:

RMSE =

√
1

MN ∑M
i=1∑N

J=1[IR|(i, j)− IF|(i, j)]2 (1)

6.1.2. Mutual Information (MI)

The similarities between the two images are determined by their mutual information.
It should have a high value for better fusion. Where F is the combined image and A and B
are the two input images. MI can be easily calculated using Equation (2).

MIAB
F = IFA + IFB

IAB
F = ∑

a∈B
∑

b∈B
P(A, B) log p(A,B)

p(A)p(B)
(2)

6.1.3. Structural Similarity Index Measure (SSIM)

The structural similarity between a fused image and a source image is calculated
using the SSIM metric. Its value ranges from 0 to 1, where 0 signifying a complete lack of
similarity to the source image and 1 signifying an exact match. The fusion effect is better
when the SSIM value is higher since it indicates how similar the fused image is to the source
image. SSIM can be calculated using Equations (3) and (4).

SSIM(A,B,F) = 0.5 ∗ (SSIM(A,F) + SSIM(B,F)) (3)

SSIM(A,F) = (2µAµF+C1)(2σAF+C2)

(µ2
A+µ2

F+C1)(σ2
A+σ2

F+C2)
,

SSIM(B,F) = (2µBµF+C1)(2σBF+C2)

(µ2
B+µ2

F+C1)(σ2
B+σ2

F+C2)

(4)

where the average values of source images are represented by µA, µB and the average value
of the fused image is represented by µF. The variances of the source image and the fused
image are represented by the symbols σ2

A, µ2
B and σ2

F . σAF And 2σBF reflect the combined
variance of the two source images, respectively.

6.1.4. Correlation Coefficient (CC)

The correlation between the reference image and the fused image is shown by the
correlation coefficient. It reflects spectrum information, and values should be near +1. The
correlation coefficient between the source and the combined image is abbreviated as C_rf.
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When the reference and the fused images are perfectly identical, the ideal value is one;
as the similarity decreases, it becomes less than one. The formula for calculating CC is
as follows:

CC =
2Crf

Cr + Cf
(5)

6.1.5. Universal Quality Index (UQI)

The Universal Quality Index is utilized to create the fused image, which is used to
calculate how much salient information is present in the reference image. The reference
and fused image must be identical for this measure to achieve its optimum value of 1,
which ranges from −1 to 1. Information transformation from two images is denoted by x
and y, where µ stands for average and σ for variation. The formula for calculating UQI is
as follows:

UQI =
σxy

σxσy
· 2x y

(x)2 + (y)2 ·
2σxσy

σ2
x + σ2

y
(6)

6.1.6. Peak Signal to Noise Ratio (PSNR)

Peak Signal to Noise Ratio is frequently employed as a measure of the effectiveness of
reconstruction in image fusion. It is the ratio between the highest value of an image and
the magnitude of background noise. When the reference and fused images are similar, the
PSNR value is high. Better fusion is suggested by a higher value. The letters I and max
stand for the original image and maximum pixel grey level, respectively. MSE stands for
mean square error. I and J are separate photos that have been combined. The formula for
calculating PSNR is as follows:

PSNR = 20 ∗ log10

(
Imax√
MSE

)
(7)

6.2. Metrics Requiring a Reference Image
6.2.1. Standard Deviation (SD)

Standard Deviation refers to a statistic used to assess the contrast in the fused image.
The fused image exhibits significant contrast when the standard deviation value is high.
The formula for calculating SD is as follows:

SD =

√√√√ 1
MN

Q

∑
i=1

R

∑
j=1

(F(i, j)− u)2 (8)

6.2.2. Entropy (EN)

The fused image with average information content is measured using entropy. The
fused image has a high level of information richness, as shown by the high entropy value.
Bits per pixel are used to quantify entropy. Where P(i) is the probability corresponding to
grey level i. The formula for calculating EN is as follows:

EN = −
L−1

∑
i−0

P(i) log2 P(i) (9)

6.2.3. Spatial Frequency (SF)

The metric that reflects distinct contrasts and surface changes and measures the overall
amount of activity in a fused image is known as spatial frequency. The fused image is better
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when the value of SF is high. M and N are the image width and height. The formula for
calculating SF is as follows:

RF =
√

1
MN ∑M

i=1 ∑N
J=2[IF|(i, j)− IF|(i, j− 1)]2

CF =
√

1
MN ∑M

i=1 ∑N
J=2[IF|(i, j)− IF|(i− 1, j)]2

(10)

SF =
√

RF2 + CF2 (11)

6.2.4. Gradient-Based Index (QAB/F)

QAB/F measures the amount of edge data that are conveyed from the input source
images to the fused image. The optimum value of 1 is achieved for this measure which has a
range of 0 to 1, and then all the edges of the source images are transmitted to the fused image.
The loss of all edge information is represented by a value of 0. Where QA(n, m), QB(n, m)
the edge information storage is value; WA(n, m), WB(n, m) is the weighting map. The
formula for calculating Qˆ(AB/F) is as follows:

Q
AB
F =

∑N
n=1 ∑M

m=1(Q
A(n, m)WA(n, m) + QB(n, m)WB(n, m))

∑N
n=1 ∑M

m=1(WA(i, j) + WB(i, j))
(12)

7. Conclusions

MMIF technique is widely used to enhance the visual properties of the output image
for more effective therapy and accurate diagnosis. There is a huge number of research
papers that propose different techniques for image fusion. This paper presents a compre-
hensive study on MMIF, which includes: (1) a classification of medical modalities used
in MMIF; (2) an illustration of procedures included in MMIF; (3) an explanation of the
different levels of MMIF: pixel level fusion, feature level fusion, and decision level fusion;
(4) comparison between different domains for MMIF techniques: spatial fusion, transform
domain such as pyramidal fusion techniques, wavelet fusion techniques, and multi-scale
decomposition techniques (NSCT, NSST, PNCC), fuzzy logic method, morphological meth-
ods, sparse representation methods, and deep learning-based methods; (5) illustration
of the evaluation metrics including subjective quality assessment and objective quality
assessment which is further divided into objective quality assessment parameters with a
reference image, and objective quality assessment parameters without a reference image;
(6) a comparison between image quality assessment metrics of different existing techniques.

Also, a detailed comparison between recently proposed MMIF techniques is presented,
along with numeric values obtained for different metrics. Several objective metrics are
reported to assess the quality of the fused image. It is challenging to judge completely if one
technique is better in all aspects. Each technique has its own advantages and disadvantages.
However, our findings; based on the detailed performed experiments; showed that spatial
image fusion techniques are computationally fast and simple, but they are not efficient in
terms of quality. The fused image is not satisfied and contains many spectral deteriorations.
However, frequency domain techniques reduce spectral distortion and produce a higher
signal-to-noise ratio, which makes them better than the spatial fusion techniques in terms of
the obtained quality. For better performance, the researchers always use a hybrid between
spatial domain techniques and frequency domain techniques. Other well-known image
fusion techniques are sparse representation-based techniques, in which the coefficients are
the most essential parameters that improve the fusion results by enhancing the image’s
contrast while keeping the visual information and preserving the structure of source images.
However, the sparse representation technique has some drawbacks, such as misregistration
and minimal detail preservation capacity. Recently, deep learning-based techniques have
been widely used; to greatly enhance the quality of the fused image by using CNNs. Deep
learning approaches work better than other fusion techniques when there is a large amount
of input data with several dimensions and variety. These methods rely on a dynamic process
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with numerous parameters to train a fusion model. However, these methods require more
time for training and special GPUs to work correctly, which makes them computationally
expensive compared with other techniques. Another drawback of deep learning techniques
is their inability to deliver accurate outcomes for smaller image datasets.
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