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Abstract: The main ingredients of various odorous products are liquid volatile chemicals (LVC).
In human society, identifying the type of LVC is the inner logic of many applications, such as
exposing counterfeit products, grading food quality, diagnosing interior environments, and so
on. The electronic nose (EN) can serve as a cost-effective, time-efficient, and safe solution to LVC
identification. In this paper, we present the design and evaluation of an integrated handheld EN,
namely SMUENOSEv2, which employs the NVIDIA Jetson Nano module for running the LVC
identification method. All components of SMUENOSEv2 are enclosed in a handheld case. This
all-in-one structure makes it convenient to use SMUENOSEv2 for quick on-site LVC identification.
To evaluate the performance of SMUENOSEv2, two common odorous products, i.e., perfumes and
liquors, were used as the samples to be identified. After sampling data preprocessing and feature
generation, two improved gradient-boosting decision tree (GBDT) methods were used for feature
classification. Extensive experimental results show that SMUENOSEv2 is capable of identifying
LVC with considerably high accuracies. With previously trained GBDT models, the time spent for
identifying the LVC type is less than 1 s.

Keywords: liquid volatile chemicals; electronic nose; handheld device; gradient-boosting decision
tree; feature generation

1. Introduction

Liquid volatile chemicals (LVC) are chemicals that can be volatilized from the original
liquid form to gaseous form by themselves or external blowing. In daily life, the main
ingredients of multiple beverages, flavorings, and cosmetics are LVC. For example, we can
smell the fragrance when getting close to a woman wearing perfume, since the fragrant
constituents of perfume have been volatilized into fragrant gas and carried into our nose.
As the electronic counterpart of the human nose, many types of chemical sensors have been
developed, including metal oxide semiconductor (MOS) [1], quartz crystal microbalance [2],
electrochemical [3], optical [4], catalytic combustion [5], gravimetric [6], and carbon nan-
otubes [7] sensors. All these types of chemical sensors can be used to detect the existence of
LVC by measuring the chemical concentration. However, it is hard to discriminate between
different types of LVC or to identify the LVC type solely using an individual chemical
sensor. As being defined in [1], a single chemical sensor is an element of a basic electronic
circuit that senses the chemical concentration fluctuations and outputs valid values for
further processing.

Identifying the LVC type can help in distinguishing counterfeit products [8], protecting
environments [9], monitoring food quality [10], and so on. Electronic techniques for LVC
identification include gas chromatography (GC) [11], GC combined with mass spectrometry
(GC-MS) [12,13], and EN [14]. GC comprises the sample inlet, chromatographic column,
thermostat, and detector. The sample inlet and detector are mounted at the start and end of
the chromatographic column, respectively. Being driven by the standard carrier gas, which
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is commonly preserved in a gas cylinder, the volatized LVC gas is steered from the sample
inlet to the detector. Owing to their different velocities through the column, different LVC
constituents reach the destination detector at different times, which enables the separation
of them. To provide more details about the arriving constituents, GC-MS employs the mass
spectrometry as the detector of GC. Although GC and GC-MS can separate and identify
most constituents of LVC, they are faced with large space occupancy, low time efficiency,
and high-cost problems. The large space occupancy caused by the bulk of the thermostat
and gas cylinder especially stagnates the portability and on-site usage of GC and GC-MS.

As an important supplementary technique, ENs can mitigate the above-mentioned
problems. Typical EN systems comprise two main sub-systems: the perception and pattern
recognition sub-systems [15]. The perception sub-system consists of a sensor array, an
interfacing circuit, and a microprocessor. Based on the sensors’ raw measurements, the
pattern recognition subsystem extracts and processes the corresponding features. According
to the integration level, existing EN designs can be tentatively categorized into divide-body
and integrated designs. In divide-body ENs [14–26], the perception and pattern recognition
works are running on two spatially separated systems, which can exchange data with each
other through serial port, network, or trans-flash cards. Commonly, the perception can be
realized using an embedded system with ARM micro-processors, while computationally
intensive pattern-recognition tasks are conducted on a lab computer or portable laptop. The
advantage of divide-body designs is cost-effectiveness, since the pattern recognition work
can be running on an old computer bought for common use. However, the construction
of communication between perception and pattern recognition sub-systems increases the
operation complexity of divide-body designs. Integrated ENs are capable of enclosing all
of their components in a spatially integrated case [27–29]. The defining characteristic of
integrated designs is that the pattern recognition work is also conducted on an embedded
system. The works in [27–29] all employed the Field Programmable Gate Array (FPGA) for
pattern recognition, which means that the perception and pattern recognition sub-systems
can be integrated together into a compact embedded system. Nevertheless, the employed
FPGA processor brings about noteworthy programming difficulties, which hinders the
implementation of state-of-the-art machine learning (ML) methods. As an alternative
compact embedded system, the NVIDIA Jetson Nano module provides a friendly platform
for running Python-based ML methods. However, to our knowledge, the NVIDIA Jetson
Nano module has never been used for designing EN.

In this paper, we present the design and evaluation of an integrated handheld EN,
which utilizes the NVIDIA Jetson Nano module as the computing kernel. The newly
designed EN system, namely, SMUENOSEv2, is compact enough to be held by hand to
complete the LVC identification task. SMUENOSEv2 is composed of gas transportation
and electronic hardware parts. In the gas transportation part, a small air pump is used for
generating fast airflow to accelerate the volatilization of LVC samples in the volatilization
pot, and to carry the gaseous LVC towards the sensor array. In the electronic hardware
part, a STM32 processor and a NVIDIA Jetson Nano module are used for perception and
pattern recognition, respectively. The communication between STM32 and NVIDIA Jetson
Nano was fixed inside the case of SMUENOSEv2, which enables a quick and straightfor-
ward operation for LVC identification. Owing to the Linux operation system on NVIDIA
Jetson Nano, it is convenient to program using the famous C/C++ and Python languages.
Moreover, to evaluate the performance of SMUENOSEv2, perfume and liquor were used
as two types of LVC samples to be identified. After sampling data preprocessing and
feature generation, two improved gradient-boosting decision tree (GBDT) [30] methods,
i.e., XGBoost [31] and LightGBM [32], were used for pattern recognition. According to
the experimental comparison results in our previous work [14], the advantages in using
XGBoost rather than other traditional chemometric methods, such as principal component
analysis [33], support vector machine [34], artificial neural network [35], and so on, are
higher identification accuracies in terms of mean and variance. For feature generation, a
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novel statistics combination is proposed. Extensive real experiments were conducted to
verify the applicability of SMUENOSEv2.

Compared with our previous divide-body EN used in the work [14], which does
not contain the detail about EN design, the novelties of SMUENOSEv2 mainly comprise
the integrated EN design scheme and new gas route. The MOS sensors in SMUENOSEv2
remained the same as those used in the previous version. However, these sensors are readily
replaceable with other voltage-output MOS chemical sensors. The reason for selecting
MOS sensors is that, according to the authors’ experimental experience, MOS sensors have
the merit of fast responsiveness. Moreover, compared with other sensor types, there are
more cost-effective MOS sensors available in commercial markets. To our knowledge,
SMUENOSEv2 is the first integrated EN using the NVIDIA Jetson Nano as the computing
kernel, which demonstrates the originality of this paper. The main contribution of this paper
is three-fold. First, the presented integrated EN design can provide important guidance for
on-site quick LVC identification, e.g., paroxysmal inspection of counterfeit perfumes at the
cosmetics counter in shopping arcades. Second, the experimental quantitative comparison
results of the two improved GBDT methods are valuable references for further related
investigation. Third, the presented statistics combination for feature generation can be
considered as a time-efficient solution to EN-based LVC identification.

The rest of this paper is organized as follows: Section 2 details the design of our
new EN system, and introduces the LVC identification methods and experimental setups.
Section 3 presents the experimental results and discussions. Section 4 concludes the whole
paper.

2. Materials and Methods
2.1. Integrated Handheld EN

The operation scene of using SMUENOSEv2 for LVC identification is shown in
Figure 1. All components of SMUENOSEv2, such as volatilization, sampling, powering,
and computing units, were enclosed in an 18.5 cm × 12.0 cm × 11.0 cm cuboid case. The
net weight of SMUENOSEv2 is about 1.0 kg. Thus, it is convenient to hold SMUENOSEv2
by hand and conduct the LVC identification operation.

Electronics 2023, 12, 79 3 of 21 
 

 

component analysis [33], support vector machine [34], artificial neural network [35], and 
so on, are higher identification accuracies in terms of mean and variance. For feature gen-
eration, a novel statistics combination is proposed. Extensive real experiments were con-
ducted to verify the applicability of SMUENOSEv2. 

Compared with our previous divide-body EN used in the work [14], which does not 
contain the detail about EN design, the novelties of SMUENOSEv2 mainly comprise the 
integrated EN design scheme and new gas route. The MOS sensors in SMUENOSEv2 re-
mained the same as those used in the previous version. However, these sensors are readily 
replaceable with other voltage-output MOS chemical sensors. The reason for selecting 
MOS sensors is that, according to the authors’ experimental experience, MOS sensors have 
the merit of fast responsiveness. Moreover, compared with other sensor types, there are 
more cost-effective MOS sensors available in commercial markets. To our knowledge, 
SMUENOSEv2 is the first integrated EN using the NVIDIA Jetson Nano as the computing 
kernel, which demonstrates the originality of this paper. The main contribution of this 
paper is three-fold. First, the presented integrated EN design can provide important guid-
ance for on-site quick LVC identification, e.g., paroxysmal inspection of counterfeit per-
fumes at the cosmetics counter in shopping arcades. Second, the experimental quantita-
tive comparison results of the two improved GBDT methods are valuable references for 
further related investigation. Third, the presented statistics combination for feature gen-
eration can be considered as a time-efficient solution to EN-based LVC identification. 

The rest of this paper is organized as follows: Section 2 details the design of our new 
EN system, and introduces the LVC identification methods and experimental setups. Sec-
tion 3 presents the experimental results and discussions. Section 4 concludes the whole 
paper. 

2. Materials and Methods 
2.1. Integrated Handheld EN 

The operation scene of using SMUENOSEv2 for LVC identification is shown in Fig-
ure 1. All components of SMUENOSEv2, such as volatilization, sampling, powering, and 
computing units, were enclosed in an 18.5 cm×12.0 cm×11.0 cm cuboid case. The net 
weight of SMUENOSEv2 is about 1.0 kg. Thus, it is convenient to hold SMUENOSEv2 by 
hand and conduct the LVC identification operation. 

 
Figure 1. The scene of using SMUENOSEv2 for LVC identification.  

The structure block diagram of SMUENOSEv2 is shown in Figure 2. The physical 
blocks of SMUENOSEv2 comprise gas transportation and electronic hardware blocks, 

Figure 1. The scene of using SMUENOSEv2 for LVC identification.

The structure block diagram of SMUENOSEv2 is shown in Figure 2. The physical
blocks of SMUENOSEv2 comprise gas transportation and electronic hardware blocks,
which were denoted in Figure 2 as dashed and solid boxes, respectively. The gas route
components are used to compose the gas routes needed during the PI process. Electronic
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hardware blocks are responsible for all electronic functions. Moreover, apart from the
physical blocks, the normal operation of our EN also relies on the software components.
Sections 2.1.1–2.1.3 detail the design of gas routes, electronic hardware, and software
components, respectively.
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2.1.1. Gas Route Design

Figure 3 shows the gas route of SMUENOSEv2. At the beginning of LVC identification,
the LVC sample was injected into the volatilization pot. Then, fast air flow is generated
using the air pump to accelerate the volatilization of LVC sample in the volatilization pot.
The volatilized gaseous LVC sample is then carried to pass through the three-way valve and
gas chamber, which are linked by silicone rubber tubes. In the meantime, by controlling
the three-way valve, the LVC flow can be switched between gas route branches 1 and 2,
which can in turn change the EN’s working mode between sampling and washing modes.
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SMUENOSEv2 can work in two different modes: sampling mode and washing mode.
It is readily seen that SMUENOSEv2 only employs one valve. The gas routes with respect
to the two modes can be described as follows:

• Gas route in the sampling mode: As preparation for sampling, a fixed volume of
LVC sample was dripped into the volatilization pot in advance. The fast airflow
can accelerate the LVC volatilization process and drive the gaseous LVC towards the
three-way valve. Through gas route branch 1, gaseous LVC can get into contact with
the gas sensors mounted in the gas chamber and stimulate the sensor responses.

• Gas route in the washing mode: After each sampling time, some LVC residuals still
clung to the gas route components, including volatilization pot, three-way valve, gas
chamber, and the silicon tubes. To reduce the negative influence among different types
of LVC samples, the EN should be thoroughly washed between successive sampling
spans. The washing process comprises two steps: First, by switching to gas route
branch 2, the EN enters the washing mode. The volatilization pot, three-way valve,
and upstream silicon tubes can be washed by clean air flow. Second, by switching
back to gas route branch 1, the upstream clean air is driven to wash the gas chamber
and downstream silicon tubes.

2.1.2. Electronic Hardware Design

The electronic hardware structure of SMUENOSEv2 is shown in Figure 4. In terms
of functionality, the components in Figure 3 can be categorized into sensing, sampling,
computing, displaying, and powering components. The design of these components is
detailed as follows.
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The eight different gas sensors mounted in SMUENOSEv2 are MiCS-6814, MiCS-5914,
and MiCS-5521 from SGX SENSORTECH Corporation, as well as TGS-2620, TGS-2602,
TGS-2600, TGS-2611, and TGS-8100 from Figaro Engineering Inc. All these sensors are
MOS sensors, which enable fast response to the contact with the gaseous LVC. The criteria
of selecting these sensors are two-fold: reactivity to more target gases, and selective
sensitivities for different gases. According to the sensors’ datasheets, typical compositions
of common volatile chemicals, such as ethanol, carbon monoxide, and iso-butane, can be
detected by the selected sensors. In addition, the sensitivity of different selected sensors to
an individual target gas are different. For example, the sensitivity coefficient of six selected
sensors to the target gases are shown in Figure 5. It is readily seen that the vertexes of
each sensor’s radar plot differ significantly. The largest sensitivity coefficients of different
sensors are different, which means the most sensitive gas of the selected sensors is different.
Moreover, the different sensitivity coefficients with respect to an individual gas are different.
It is expected that the sensing voltages detected by the selected sensors provide sufficient
useful distinction information for subsequent identification sub-processes.
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The voltage sampling front-end circuit shown in Figure 6 is used in SMUENOSEv2.
As shown in Figure 6, a load resistor RL is connected with the sensor’s sensing resistor Rs
in series. All the power supply voltage values Vsup are 5 V. By measuring the voltage uL,
the sensing resistance value can be calculated as follows:

Rs = −RL + Vsup × RL
1

uiL
(1)
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Figure 6. The front-end circuit for sampling the i-th sensor’s sensing voltage. IOA is an integrated
operation amplifier. Vsup is the power supply voltage of the sensors.

Thus, the gas concentration measurement problem becomes the problem of sampling
the voltage uL of the load resistor. To amplify the voltage variation, improve the load
capacity, and filter the measurement noises, an integrated operation amplifier is used to
form a low-pass filtering amplifier circuit. As shown in Figure 6, the voltage uL is connected
to a typical RC low-pass filter [36] before being passed to the in-phase end of the integrated
operation amplifier A. The cut-off frequency of the low-pass filter composed of R2 and C is

f0 =
1

2πR2C
(2)

which means the input voltage’s constituents with a frequency higher than f 0 will be
significantly suppressed. In SMUENOSEv2, the value of C and R2 are 2.2 uF and 16 kΩ,
respectively. Afterwards, the filtered voltage u′L is transmitted into an in-phase proportion
amplifying circuit composed of A, R3, and R4. The amplified voltage uo can be calculated as

uL =

(
1 +

R4

R3

)
u′L (3)

Apart from the gas sensors, the parameters of other components in the circuit shown
in Figure 6 were empirically determined to keep the value of uo within the valid range of
AD7606. As an 8-channel analog-to-digital data acquisition chip, a piece of AD7606 was
used to simultaneously sample the output of the 8 sensors’ front-end circuits. The sampling
data was sent through the parallel interface to STM32F407VGT6, which was also used to
control the three-way valve, air pump, and the timer chip DS-1338. The timer chip was
used to provide accurate time information for controlling the sampling duration.

The sampling data was then sent to NVIDIA Jetson Nano. A touch-sensitive monitor
was used to interact with Jetson Nano. The identification results of Jetson Nano were
displayed in the monitor. By touching the monitor’s display screen, user commands can
be sent to Jetson Nano. Last but not the least, a voltage converter component, which was
bought from the commercial market, is incorporated to convert the 12 V voltage from the
battery to stable 5 V and 3.3 V voltages for the above-mentioned components.

2.1.3. Software Design

The software of SMUENOSEv2 comprises three software components: perception,
pattern recognition, and human–machine-interface (HMI) components. The perception
component is composed of codes in C programming language running on the STM32, while
the other two components were codes in Python programming language running on the
NVIDIA Jetson Nano board.
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Figure 7 shows the flow charts of the perception and pattern recognition components,
which interact with each other through the serial port. The SAMPLING command is
originally sent from the HMI component to the pattern recognition component, and then
sent to the perception component. Once the SAMPLING command is received, the ADC
chip AD7606 begins to sample the sensing voltages of the eight sensors with a sampling
frequency of 150 Hz. A single sampling cycle lasts for a predefined time span. The sampling
duration is determined by periodically reading the current time output by DS1338. After an
individual sampling cycle, the received sampling data is saved in a matrix. If the sampling
data is valid, a SAVING command can be sent from the HMI component, which can trigger
the storage of the data matrix in an Excel file. In real applications, to identify a certain LVC
sample, the sampling subprocess is followed by an identification subprocess. The data
obtained in an individual sampling cycle is used as the test dataset. For model learning, the
training subprocess loads multiple previously saved Excel data files to form the training
dataset. The detail of training and identification subprocesses is related to the specific
employed ML methods.
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Figure 8a,b show the HMI surface of identifying an individual liquor sample and the
model training process, respectively. The graphical user interface of the HMI component
comprises three sectors:

1. Sector I: the real-time sensing voltage displaying sector. During the sampling process,
the real-time sensing voltages received from the sampling component are plotted in
this sector. The curves in different colors correspond with the data of different sensors.
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2. Sector II: the sampling operation sector. By pushing the “Sampling” and “Save”
buttons in sector II, the SAMPLING and SAVING commands can be sent to the
pattern recognition components, respectively. As samples to be saved for forming the
training set, the sample type is previously known. For example, to form the training
sets in real applications, multiple samples with known type should be collected using
certified LVC in advance. This prerequisite can be satisfied by selecting the right
type in the ComboBox next to the “Save” button. Moreover, since SMUENOSEv2
was designed to be capable of identifying different liquid or gaseous volatile organic
compounds, it is important to set the sample classes (e.g., perfume, wine, herb) in the
left ComboBox, before sending the SAVING command.

3. Sector III: the identification and training operation sector. Empirically, the identifi-
cation and training operations are mutual exclusive, and, thus, are placed in two
different tabs sharing sector III. The operation processes for training and identification
are detailed as follows:

• By pushing the “Training” button in the bottom-right corner of Figure 8b, an
individual training process can be activated. The training dataset and ML method
should be selected before pushing the “Training” button. In the central area of this
sector, a table lists all previously saved sensing voltage samples. By clicking the
table items, multiple samples can be selected to form the training dataset. The ML
method used for training can be selected in the top-right ComboBox. Moreover,
the hyper-parameters of the employed method can be set by pasting the specially
formatted parameter values in the TextBox above the “Training” button. Finally,
the resulting trained ML model, which can be used for identification, is saved in
the external memory of NVIDIA Jetson Nano.

• By pushing the “Identification” button in the bottom-right corner of Figure 8a, an
individual identification process can be activated. As mentioned in the previous
paragraph, the identification process follows the sampling process, and uses
the newly collected samples as input. Moreover, as the identification tool, a
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previously trained and saved ML model should be selected from the model lists
before pushing the “Identification” button. During the identification process,
the process status is shown in the blank space at the left of the “Identification”
button. Finally, the identification result is displayed in the blank space above the
model lists.

2.2. Improved GBDT

To evaluate the performance of SMUENOSEv2, two improved GBDT methods, i.e., XG-
Boost [31] and LightGBM [32], were implemented in SMUENOSE2 to realize LVC identifi-
cation. For coherence and clarity, XGBoost and LightGBM are in turn introduced. Since
the two improved GBDT methods were developed based on GBDT, GBDT is also sketched
as follows.

2.2.1. GBDT

GBDT [30] is a framework originally designed for function regression. It begins with a
set of data {(xi, yi)} and an unsatisfactory model f (x), which cannot accurately repeat the
relationship between the data. In the k-th iteration of GBDT, an additional model hk(x) with
the form of a regression tree is constructed by fitting the residuals yi −fk-1(xi). Inspired
by the fact that the true value equals the sum of residual and current model output, the
new model fitting the residuals is expected to compensate for the inaccuracy of current
model. However, the new model hk(x) can only approximate the theoretical residuals,
which means the new additive model fk−1(xi) + hk(x) is still not satisfactory. Thus, the
sub-sequent iterations are sequentially conducted to further improve the accuracy of the
additive model. Moreover, in order to avoid overfitting, a learning rate η, 0 < η < 1, is
incorporated in the additive model to prevent full optimization in each step. The additive
mode in GBDT turns into:

f (x) = ∑
k

η·hk(x) (4)

The above residual-fitting process is correlated with gradients by defining the square loss:

L(y, f (x)) = (y− f (x))2/2 (5)

Then, the problem transfers to minimization of J = ∑
i

L(yi, f (xi)) by adjusting f (x1),

f (x2), . . . , f (xn). Taking f (xi) as parameters, the gradient can be represented as follows:

∂J
∂F(xi)

= f (xi)− yi (6)

According to Equation (4), the residuals defined in GBDT can be interpreted as negative
gradients. Thus, the model in GBDT is actually updated using the gradient descent method.
In general cases, the residuals and square loss are replaced with negative gradients and
any differentiable loss function, respectively.

For solving multi-class classification problems using GDBT, the label information is
turned into a true probability distribution. For example, if the label of the i-th instance is C,
then the probability distribution YL(xi) can be represented as follows:

YL(xi) =

{
1, L equals C
0, L 6= C

(7)

Afterwards, the problem turns into the regression of the true probability distribution
function. The KL-divergence between the true and predicted probability distributions is
considered as the loss function in GBDT.
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2.2.2. XGBoost

In XGBoost [31], the implementation of GBDT is mainly increased in three aspects:
incorporating a regularization term in the objective function, usage of second-order gradient
statistics in the loss function approximation, and providing an approximation algorithm
for split finding in the decision tree construction. The three aspects are sketched as follows:

1. Incorporating a regularization term in the objective function.
The incorporated regularization term serves as a measure of the model complexity.

Instead of directly minimizing the loss function, XGBoost utilizes the sum of loss function
and the regularization term as the objective function for minimization. As a measure of
model complexity, the minimization of regularization term can help avoid the over-fitting
problem, which means the learned model fits well on the training data but badly on the
test data. Empirically, simpler models are prone to demonstrating smaller performance
variance between training and test data sets. The regularization term with l2 norm in
XGBoost can be represented as follows:

Ω = γT +
1
2

λ‖ω‖2 (8)

where γ and λ are two constant coefficients, and w and T are the leaf score and the number
of tree leaves, respectively.

2. Usage of second-order gradient statistics in the loss function approximation.
Inspired by the Taylor expansion, the first-order and second-order gradients are used

to construct a simplified objective function as follows:

L̃k =
n

∑
i=1

[
gi fk(xi) +

1
2

hi f 2
k (xi)

]
+ Ωt (9)

where gi and hi are the first-order and second-order partial derivative of the loss function
to fk(xi). Compared with only using the negative first-order gradient in GBDT, the second-
order gradients used in XGBoost contain more information about the loss function, and
thus, enable more accurate approximation of the loss function.

3. The approximation algorithm for split finding in the decision tree construction.
Traditional exact greedy algorithm used for split finding in the decision tree con-

struction should enumerate all the possible splits, which is time-consuming. To adapt
to large training datasets and resource-constrained applications, XGBoost provides an
approximation algorithm for split finding. Main steps of the approximation algorithm can
be summarized as follows:

(1) For an individual feature, all the possible split points are mapped into buckets accord-
ing to the percentile of feature distribution.

(2) Calculate the cumulative first-order and second-order gradients for each bucket.
(3) Consider the bucket with the largest cumulative gradient statistics as the optimal

bucket. Then, the split point with the largest gradient statistics in the optimal bucket
is selected as the final split point.

Apart from the above three aspects, XGBoost also additionally utilizes the column
subsampling technique in Random Forest to further prevent over-fitting and accelerating
the computation.

2.2.3. LightGBM

Aiming at increasing the efficiency of GBDT, LightGBM [32] reduces the volume
of employed training sample data with two innovation techniques: gradient-based one-
side sampling (GOSS), and exclusive feature bundling (EFB). In GOSS, the under-trained
samples are paid more attention, on the premise of only slightly changing the original
sample data distribution. First, the sample data are sorted in a descending order of the
absolute gradients. Then, the sample dataset is divided into two parts: the part of a × n,
0 < a < 1, samples with the largest absolute gradients; and the part of other samples. All
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samples in the first part, and b × 100%, 0 < b < 1 of other samples are used in the training
of next decision tree.

EFB reduces the training data volume by decreasing the number of features engaged
in the training process. This is realized by bundling the exclusive features, which seldom
get non-zero values at the same time, into a single feature. The recognition of exclusive
features is modeled as a reduced graph-coloring problem, which is then solved using a
greedy algorithm. To merge the exclusive features in the same bundle, the feature bundle
is created by adding offsets to the original feature values of exclusive features to make sure
they are placed in different bins.

Moreover, LightGBM utilized a histogram-based algorithm to improve the efficiency
in both running speed and storage consumption. For split finding in the decision tree
construction, histogram-based algorithm transfers continuous feature values into discrete
values, and places them in different bins. Then, the bins are used to construct feature
histograms in the training process. In LightGBM, the combination of GOSS and EFB with
the histogram-based split finding serves as an efficient solution to ignore the features with
zero values.

2.3. Experimental Setup

In our experiments, we tested two common sets of LVC: perfume and liquor. Six
different perfumes of the same brand “Scent Library” and four liquors of different brands
were used as samples in the series of perfume and liquor experiments, respectively. The
model names, abbreviates, and main compositions of these samples are listed in Table 1.
The two series of experiments were both conducted on our newly designed E-nose platform
SMUENOSEv2. Thus, the sampling and identification processes for them are the same.

Table 1. Ranges of main tunable hyper-parameters of the tested methods.

Abbr. Model Name Main Compositions

Perfumes

GO Golden Osmanthus Ethanol, Essence, Propylene glycol, Dipropylene glycol, Tridecanol
polyether-9

MR Misty Rainbow Ethanol, Essence, Propylene glycol, Dipropylene glycol, PPG-26-Butanol
polyester-26

LBK L.B.K. Water Denatured ethanol, Essence, Tocopherol acetate, Butyl hydroxytoluene
RR Rose Rose I Love You Ethanol, Essence, Propylene glycol, Dipropylene glycol, Oaklirin
THY Tao Hua Yun Denatured ethanol, Essence, Tocopherol acetate, Butyl hydroxytoluene
WR White Rabbit Ethanol, Essence, Propylene glycol, Tertiary butanol, Ethylhexyl salicylate

Liquors

DHX Dao Hua Xiang Edible alcohol, Red sorghum, Wheat, Rice, Maize, Edible essence
JLZ Jin Lu Zhou Sorghum, Wheat, Rice, Glutinous rice, Maize
NLS Niu Lan Shan Sorghum, Liquid-state liquor, Edible essence
QJ Qing Jiu Sorghum, Wheat, Glutinous rice, Maize

To obtain the raw samples, each of the specific perfume and liquor samples was
sampled for 50 cycles, which means a total of 500 sampling cycles were conducted. In a
single sampling cycle, 1 uL of the LVC material was injected into the E-nose’s volatilization
pot. Then, the air pump was activated to accelerate the volatilization of the LVC material
and carry the volatilized gases through the gas chamber. Stimulated by the gaseous LVC,
the fast-fluctuating sensing voltages of the eight sensors were sampled and recorded. The
time span of each sampling cycle was set as 100 s and 60 s for the perfume and liquor
experiments, respectively. The sampling cycle for perfume was longer, since we found the
sensors’ recovering time in perfume experiments was longer than that in liquor experiments.
This phenomenon is probably because the perfume samples can stick to the gas route for
longer time.

The obtained raw measurements were then preprocessed. Afterwards, multiple fea-
tures were generated based on the preprocessed measurements. Finally, the generated
features were used as the training and test data to evaluate the LVC identification per-
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formance of SMUENOSEv2 via the two ensemble learning methods. Specifically, 10-fold
cross-validation experiments were conducted: The feature set was randomly divided into
10 equal parts. Each part was in turn used as the test set while the rest of the parts were
used as the training set. Thus, in each group of 10-fold cross-validation experiments, we
conducted 10 experiments with different training and test data sets. With respect to each
training set, the optimal combination of model parameters was selected during the model
training process. The preprocessing, feature generation, and parameter selection processes
are detailed as follows.

2.3.1. Preprocessing

First, the outliers in the raw measurements, which were mainly caused by the trans-
mission errors in the high-speed serial communication, were removed based on the mean
and standard deviation. If the difference between a voltage measurement u and the mean
voltage is bigger than 5 times of the standard deviation, then all the values obtained at the
same time as u were deleted.

Second, the high-frequency measurement noises, which were mainly introduced by the
circuits, were removed using a low-pass filtering algorithm. As an important supplement
of the hardware low-pass filter shown in Figure 6, a second-order Butterworth low-pass
software filter with a cut-off frequency of 0.016 half-cycles/sample was constructed.

Third, the base-line voltages, which means the voltages obtained right before the
sensors got into contact with the gaseous LVC material, were subtracted from all the
15,000 voltage values in the corresponding sampling cycle. The base-line removement
operation can help reduce the negative influence of background gas residuals.

2.3.2. Feature Generation

As mentioned in Section 2.1, the sampling frequency of AD7606 in SMUENOSEv2
was set as 150 Hz. Therefore, in an individual sampling cycle, 15,000 voltage values were
obtained for each sensor, which means a total of 120,000 sensing voltage values were
collected by the eight sensors in our E-nose. Due to the curse of dimensionality, it is not
feasible to directly train the ML models with the raw sampling data, especially on the
resource-limited NVIDIA Jetson Nano in SMUENOSEv2. Therefore, it is necessary to
reduce the dimension of the training data. For the sake of efficiency, we chose to combine
multiple statistics of the sampling data as the features, rather than rely on feature extraction
algorithms, e.g., principal component analysis, to determine the features used for training.

As listed in Table 2, the statistics used in our experiments are the characteristics of the
voltage curves in three different period: peak, rising, falling. The statistics were calculated
based on the voltage uL(t), since it can be mapped into the sensing resistance in a one-
to-one manner according to Equation (1). The characteristics in Table 2 were empirically
selected, since they are capable of characterizing the voltage dynamics in a single sampling
cycle. Based on the sampling data of a single sensor in each cycle, five feature values can
be calculated according to the equations in Table 2. Forty features were obtained based
on the measurements in each sampling cycle, since there are 8 different gas sensors in our
E-nose platform. The forty feature values with respect to all 8 sensors were then combined
and indexed in an end-to-end manner to form the feature vector, which means the feature
dimension in our experiments is forty.
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Table 2. The statistics used as features for classification.

Periods Characteristic Meaning Calculation Equations Feature Index

Peak
Normalized voltage peak ũm = norm

[
max

t
uL(t)

]
1, 2, 3, . . . , 8

Normalized time of voltage peak t̃m = norm
[

argmax
t

uL(t)
]

9, 10, 11, . . . , 16

Falling
Final falling proportion p1 = u f /um

1 17, 18, 19, . . . , 24
Falling proportion at 10 s after the voltage peak p2 = uL(tm + 10)/um 25, 26, 27, . . . , 32

Rising
Normalized time of the maximal first-order

gradient of uL(t) t̃r = norm
[

argmax
t

duL(t)
dt

]
33, 34, 35, . . . , 40

1 uf means the final value of uL(t) at the end of sampling cycle.

2.3.3. Parameter Tuning

Before training the models based on a new dataset, it is necessary to tune the parame-
ters of the two tested methods, which are listed in Table 3. The hyperopt Python module [37]
was used for parameter tuning. In the hyperopt module, the parameter search problem was
modeled as a multi-variable function optimization problem, which takes the identification
accuracy as the objective function. Then, the Tree of Parzen Estimators algorithm [38] was
used to solve the optimization problem and output the optimal parameter value combina-
tion. Note that not all parameter values should be tuned. For both methods, the “objective”
and “num_class” parameters were fixed as “multi-class” and the actual class numbers
(i.e., 6 for perfumes, and 4 for liquors), respectively. It is applicable to provide the problem
type and total number of classes for the methods, since they are both supervised ML
methods. Apart from the influential parameters listed in Table 3, other parameter values
were fixed as their default values in hyperopt.

Table 3. Ranges of main tunable hyper-parameters of the tested methods.

Parameter Meaning Range

XGBoost

Learning rate used in the additive model uniform(0.7, 1) 1

Maximum depth of the constructed decision trees {3, 4, . . . , 10}
Ratio of data selected to construct decision trees uniform(0.4, 0.6)

Minimum loss reduction required to split a leaf node uniform(0, 0.4)
L1 regularization term on weights uniform(0.2, 0.7)
L2 regularization term on weights uniform(0.2, 0.7)

Minimum sample weights in each leaf node of decision tree uniform(3, 7)

LightGBM

Learning rate used in the additive model uniform(0.7, 1)
Maximum depth of the constructed decision trees {3, . . . , 10}

Number of leaves in a decision tree {15, 4, . . . , 100}
Minimum sample numbers in each leaf node of decision tree {3, 4, 5, 6, 7}

L1 regularization term on weights uniform(0, 1)
L2 regularization term on weights uniform(0, 1)

Ratio of data randomly selected without resampling uniform(0.4, 1)
Frequency for randomly selecting data without sampling {1, 2, 3, . . . , 20}

1 uniform(*, ∆) means generate a value according to the uniform distribution within the range (*, ∆).

3. Results and Discussions

Based on the data obtained in 500 sampling cycles, we have conducted five groups of
ten-fold cross-validation experiments for each combination of LVC type and identification
method. Since we tested two LVC types (i.e., perfume and liquor) and two identification
methods (i.e., XGBoost and LightGBM), we have conducted a total of 200 individual
experiments with different training and test data sets.

To demonstrate the validation of using SMUENOSEv2 for sampling the transient
voltage values stimulated by the volatized LVC, Figure 9 shows the value and first-order
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gradients of preprocessed uL. All curves in Figure 9a demonstrate fast-rising and slow-
falling dynamics. This phenomenon coincides with the fast reaction and slow recovery
characteristic of MOS sensors. The peak values and time, falling speed, and the maximum
first-order gradients are distinctive for different sensors. Thus, it is expected that the
statistics in Table 2 contain specific “fingerprint” information about the corresponding
LVC sample.

Electronics 2023, 12, 79 14 of 21 
 

 

Based on the data obtained in 500 sampling cycles, we have conducted five groups 
of ten-fold cross-validation experiments for each combination of LVC type and identifica-
tion method. Since we tested two LVC types (i.e., perfume and liquor) and two identifica-
tion methods (i.e., XGBoost and LightGBM), we have conducted a total of 200 individual 
experiments with different training and test data sets. 

To demonstrate the validation of using SMUENOSEv2 for sampling the transient 
voltage values stimulated by the volatized LVC, Figure 9 shows the value and first-order 
gradients of preprocessed 𝑢 . All curves in Figure 9a demonstrate fast-rising and slow-
falling dynamics. This phenomenon coincides with the fast reaction and slow recovery 
characteristic of MOS sensors. The peak values and time, falling speed, and the maximum 
first-order gradients are distinctive for different sensors. Thus, it is expected that the sta-
tistics in Table 2 contain specific “fingerprint” information about the corresponding LVC 
sample. 

  
(a) (b) 

Figure 9. Typical values obtained in an individual cycle of liquor sampling. (a) The value of prepro-
cessed 𝑢 ; (b) The first-order gradient of preprocessed 𝑢  in the first 10 s of a liquor sampling cycle. 

The statistical results obtained in the perfume and liquor experiments are presented 
as follows. 

3.1. Experiments in the Perfume Group 
Figure 10a shows the boxplot of identification accuracies in the perfume experiments. 

The identification accuracy is defined as the proportion of correct identification instances. 
As mentioned in Section 2.1.3, in an identification instance, a previously trained model 
took the sample with the true type t as input, and then output a predicted type t’ as the 
identification result. If the predicted type t’ equals to the true type t, then the identification 
instance is considered as correct. Otherwise, the identification is considered as incorrect. 
As shown in Figure 10a, apart from the mean values, other boxplot elements are similar 
for the two tested methods. The identification accuracy means of XGBoost and LightGBM 
are 94.8% and 95.5%, respectively. All obtained identification accuracies are higher than 
90%. The high identification accuracies verify that it is feasible to conduct perfume iden-
tification using our newly designed E-nose platform. 

Figure 10b,c show the boxplot of time spent for training and identification, respec-
tively. The considerably short training and identification time also verified the feasibility 
of using our resource-constrained integrated E-nose for perfume identification. The train-
ing times spent in all trials are shorter than 45 s. Compared with the identification times, 
which are shorter than 1 s, the training times are much longer. Fortunately, for on-site 

0 5 10 15 20 25 30 35 40 45 50 55 60

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ep

ro
ce

ss
ed

 u
L (

V
)

Time (s)

 Sensor1  Sensor2  Sensor3  Sensor4
 Sensor5  Sensor6  Sensor7  Sensor8

0 2 4 6 8 10

0.00

0.01

0.02

0.03

Fi
rs

t-o
rd

er
 g

ra
di

en
t o

f p
re

pr
oc

es
se

d 
u L

Time (s)

 Sensor1  Sensor2  Sensor3  Sensor4
 Sensor5  Sensor6  Sensor7  Sensor8

Figure 9. Typical values obtained in an individual cycle of liquor sampling. (a) The value of prepro-
cessed uL; (b) The first-order gradient of preprocessed uL in the first 10 s of a liquor sampling cycle.

The statistical results obtained in the perfume and liquor experiments are presented
as follows.

3.1. Experiments in the Perfume Group

Figure 10a shows the boxplot of identification accuracies in the perfume experiments.
The identification accuracy is defined as the proportion of correct identification instances.
As mentioned in Section 2.1.3, in an identification instance, a previously trained model
took the sample with the true type t as input, and then output a predicted type t’ as the
identification result. If the predicted type t’ equals to the true type t, then the identification
instance is considered as correct. Otherwise, the identification is considered as incorrect.
As shown in Figure 10a, apart from the mean values, other boxplot elements are similar for
the two tested methods. The identification accuracy means of XGBoost and LightGBM are
94.8% and 95.5%, respectively. All obtained identification accuracies are higher than 90%.
The high identification accuracies verify that it is feasible to conduct perfume identification
using our newly designed E-nose platform.
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Figure 10. Statistical results obtained in perfume experiments. (a) Boxplot of the identification
accuracies. (b) Boxplot of the time spent for training. (c) Boxplot of the time spent for identification.
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Figure 10b,c show the boxplot of time spent for training and identification, respectively.
The considerably short training and identification time also verified the feasibility of using
our resource-constrained integrated E-nose for perfume identification. The training times
spent in all trials are shorter than 45 s. Compared with the identification times, which
are shorter than 1 s, the training times are much longer. Fortunately, for on-site usage in
real applications, the training component is less frequently used than the identification
component. The well-trained model can be repeatedly used for identification. The much
longer training time can be attributed to the time spent for parameter selection, which was
reckoned with in the training time since parameters are also part of the trained model.
During the training process, we found the parameter selection time dominate the training
time. As mentioned in Section 2.3.3, the parameter selection was realized by solving
function optimization problems, which involve a large number of model training with
different parameter combinations. Moreover, the time-spans spent by XGBoost are generally
longer, but more concentrated, than those spent by LightGBM. The generally shorter
but more divergent training and identification time of LightGBM is mainly attributed
to its GOSS and EFB mechanisms, which reduced the number of engaged features and
incorporated more random operations.

To thoroughly compare the identification accuracy with respect to different perfume
types, the confusion matrices obtained in the perfume experiments are shown in Figure 11.
The elements of confusion matrices are the times of experiments. As mentioned, to test each
method based on the perfume samples, five groups of ten-fold cross-validation experiments
were conducted, which means a total of 50 individual perfume experiments for each of
XGBoost and LightGBM. Moreover, as mentioned in Section 2.3, each perfume type was
sampled for 50 cycles. The 50 samples were divided into 10 equal parts, and an individual
part with five samples was used as the test set in each perfume experiment. Thus, for each
method, each perfume type was tested 250 times, which coincides with the fact that the
elements in each row of the confusion matrices sum up to 250. The auxiliary diagonal
elements stand for the times of correctly identified experiments.
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Figure 11. Confusion matrices in perfume experiments. (a) The confusion matrix obtained by
XGBoost; (b) The confusion matrix obtained by LightGBM.

In both confusion matrices, the LBK perfume samples were all successfully identified.
Compared with other perfume types, the MR perfume samples were incorrectly identified
the most times. The differences among the identification accuracies of different perfume
types mainly came from the different chemical constituents of the perfume samples, which
are not the main concern of this paper. The numbers in both confusion matrices demonstrate
the best and worst performance of using our E-nose platform with the two ensemble
learning methods for perfume identification. Even in the worst case, an identification
accuracy of 88.4% was obtained in the perfume experiments, which further validates the
reliability of our E-nose platform SMUENOSEv2.
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Figure 12 shows the feature importance obtained in perfume experiments. The feature
importance is defined as the proportion of times the feature was used in a model, which
can be represented as follows:

fi =
ei

∑40
j=1 ej

, i = 1, 2, . . . , 40 (10)

where ei denotes the number of times the i-th feature was used in a model. As mentioned
in Section 2.3.2, the feature dimension of our problem is forty. The more times a feature
was used to construct the decision trees means the feature has taken more effect in the
ensemble learning method. Thus, the feature importance measures the contribution degree
of each feature. According to Figure 12 and the feature indexes listed in Table 2, at least
two conclusions can be summarized as follows:

1. For both methods, the normalized voltage peaks were generally more important
than other characteristics. On the contrary, the normalized times of the maximum
first-order gradient were slightly less important than other characteristics, although
the importance of feature 38 in Figure 10b existed as an exception. It can be concluded
that the peak values contain more distinguishing information about the different
perfume constituents. The maximum first-order gradient, which characterizes the
time of maximum rising velocity, is less correlated with the stimulant perfumes.

2. XGBoost obviously focused more on features 1, 8, and 18 than other features. In
comparison, LightGBM concentrated more on almost a half of the features while less
on the other features. The decentralized attention of LightGBM could be attributed to
its EFB mechanism.
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Figure 12. The boxplot of feature importance in perfume experiments. (a) The feature importance
obtained by XGBoost; (b) The feature importance obtained by LightGBM.
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3.2. Experiments in the Liquor Group

With respect to the liquor experiments, Figure 13 shows that the identification accu-
racies and time-efficiencies are also considerably high, which validates the feasibility of
using our E-nose for liquor identification. Correspondingly, Figures 14 and 15 demonstrate
the confusion matrices and feature importance of the liquor experiments, respectively. The
meaning of the factors in Figures 13–15 are the same as those in Figures 10–12, respectively.
The dimension of confusion matrices in liquor experiments is 4, since only four liquor
types were tested in our experiments. By comparing the results obtained by the two tested
methods shown in Figures 13–15, we found that some conclusions similar to those in the
perfume experiments can also be deduced in the liquor experiments. For example, in the
liquor experiments, the training and test time spent by XGBoost are generally longer, but
more concentrated, than those spent by LightGBM.
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Figure 13. Statistical results obtained in liquor experiments. (a) Boxplot of the identification accuracies.
(b) Boxplot of the time spent for training. (c) Boxplot of the time spent for prediction.
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Figure 14. Confusion matrices in liquor experiments. (a) The confusion matrix obtained by XGBoost;
(b) The confusion matrix obtained by LightGBM.
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Figure 15. The boxplot of feature importance in liquor experiments. (a) The feature importance
obtained by XGBoost; (b) The feature importance obtained by LightGBM.

Moreover, compared with the perfume experiments, the identification accuracies
obtained in the liquor experiments are more divergent. The ranges with 1.5 × IQR of
Figure 13a are 15%, which are 5% higher than those of Figure 10a. This phenomenon
coincides with the relatively smaller elements of the confusion matrices in Figure 14.
The relatively lower identification accuracies obtained in liquor experiments are mainly
because the constituents in different liquor types are closer with each other than those in
different perfume types. The increased difficulty of liquor identification brings about more
challenges for the E-nose platform and identification methods. It is noteworthy that the
mean identification accuracies in the liquor experiments are 92.3% and 94.6, which are still
considerably high.

4. Conclusions and Future Works

In this paper, an integrated handheld EN was designed for LVC identification. By
LVC, we mean the chemical that can be volatilized from original liquid form to gaseous
form by themselves or external blowing. The computing core of our newly designed EN
is an NVIDIA Jetson Nano module. Owing to its miniature volume, the NVIDIA Jetson
Nano module can be mounted together with other EN components in a handheld case. The
newly designed EN consists of gas transportation and electronic hardware components. A
small air pump was used to accelerate the volatilization of LVC samples and transport their
gaseous form towards the sensor array. In the meantime, a STM32 processor was used to
acquire the sensing voltages of the sensor array and transmit the acquired data to NVIDIA
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Jetson Nano, on which two improved GBDT methods (i.e., XGBoost and LightGBM) were
separately employed for LVC identification. Compared with common divide-body EN
designs, our integrated EN is more suitable for on-site quick LVC identification. With
GBDT models previously trained by both methods, our EN can realize highly accurate
identification of perfumes and liquors in less than one second. In comparison, LightGBM
spent generally less time for the model training and identification processes.

Despite its considerably high performance on LVC identification, our newly designed
EN could be further improved in the following aspects:

(1) Adapting the EN for identifying original gaseous chemicals. In the current EN design,
it is supposed that an LVC in its original liquid form was dripped into the EN and
then volatilized to the gas form. The scheme for adding original gaseous chemicals
into the EN can be further investigated.

(2) Adding a temperature and humidity control module to the EN. Controlling the tem-
perature and humidity around the sensor array at a fixed value was not considered in
the current EN design. The sensing data acquired at significantly different tempera-
ture and humidity values could influence the identification results. Future research
works should cover adding a temperature and humidity control module to our EN.
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Acronyms and Abbreviations
LVC Liquid Volatile Chemicals
EN Electronic Nose
GBDT Gradient-Boosting Decision Tree
MOS Metal Oxide Semiconductor
GC Gas Chromatography
GC-MS GC combined with Mass Spectrometry
FPGA Field Programmable Gate Array
ML Machine Learning
XGBoost Extreme Gradient Boosting
LightGBM Light Gradient-Boosting Machine
HMI Human–Machine-Interface
GOSS Gradient-based One-Side Sampling
EFB Exclusive Feature Bundling
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