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Abstract: Matrix multiplication is an important operation for many engineering applications. Some-
times new features that include matrix multiplication should be added to existing and even out-of-
date embedded platforms. In this paper, an unusual problem is considered: how to implement matrix
multiplication of 32-bit signed integers and fixed-point numbers on DSP having SIMD instructions
for 16-bit integers only. For examined tasks, matrix size may vary from several tens to two hundred.
The proposed mathematical approach for dense rectangular matrix multiplication of 32-bit numbers
comprises decomposition of 32-bit matrices to matrices of 16-bit numbers, four matrix multiplications
of 16-bit unsigned integers via outer product, and correction of outcome for signed integers and
fixed point numbers. Several tricks for performance optimization are analyzed. In addition, ways
for block-wise and parallel implementations are described. An implementation of the proposed
method by means of 16-bit vector instructions is faster than matrix multiplication using 32-bit scalar
instructions and demonstrates performance close to a theoretically achievable limit. The described
technique can be generalized for matrix multiplication of n-bit integers and fixed point numbers via
handling with matrices of n/2-bit integers. In conclusion, recommendations for practitioners who
work on implementation of matrix multiplication for various DSP are presented.

Keywords: GEMM; SIMD instructions; outer product; fixed point; DSP; parallel processing

1. Introduction

General matrix to matrix multiplication (GEMM) is the cornerstone for a wide range
of algorithms used in practical applications. There are plenty of high-optimized software
libraries having GEMM implementation according to the basic linear algebra subprograms
(BLAS) [1] specification. Nevertheless, an emergence of new computing devices as well as
development for existing and even out-of-date embedded platforms require elaboration on
the most appropriate ways for matrix multiplication.

In particular, such tasks appeared during development for the embedded platform of
mobile multi-functional printers (MFP). One of the main requirements for mobile electronics
is low power consumption, which guarantees a long battery life. On the other hand, the
hardware and firmware of such devices should be sufficiently universal to be able to flexibly
adjust to various tasks. The given embedded platform has several digital signal processor
(DSP) intellectual property (IP) cores for system-on-chip (SoC) and random-access memory
(RAM) accessible for all cores. Below this, RAM is called a global memory. The IP core
contains a low-power DSP with a frequency of 400 MHz intended for image processing,
512 Mb of tightly coupled memory (TCM), so-called scratchpad, and direct memory access
(DMA) controller for access to global memory. Below TCM, it is called a local memory.
The given DSP has a very long instruction word (VLIW), single instruction, multiple
data (SIMD) architecture, instructions for processing of 32-bit integer scalars, and vector
instructions for 16-bit integers. There is no support for floating point data.

A DSP VLIW pipeline allows the execution of four various instructions at the same time
in one cycle of the processor. For example, loading data from TCM (for addresses divisible
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by 16), multiplication, addition, and storing data to TCM can be executed simultaneously.
On the other hand, four multiplications or four instructions for loading data from TCM
cannot be performed at the same time. A compiler is fully responsible for the generation of a
code, which uses the pipeline effectively, because the given DSP has no scheduler. Therefore,
an efficiency of different algorithms and their implementations in C/C++ programming
language significantly differ.

Said IP core allows effective implementation of a large number of image processing
algorithms for scanning and printing because a majority of such techniques operate with
8-bit and 16-bit integers in row-wise access mode. There are some problems, which require
intensive usage of multiplication of dense rectangular matrices containing floating point
numbers, where matrix size varies from several tens to about two hundred [2,3]. Due to
the absence of floating point operations, calculations in 32-bit fixed point numbers can
be used [4]. Of course, an application of fixed point arithmetic has restrictions connected
with an accumulation of calculation errors and numerical stability of algorithms [5]. Matrix
multiplication via 32-bit scalars has unacceptably long runtime. It is necessary to employ
vector instructions, but the given DSP has SIMD instructions for 16-bit integers only.

The main contribution of this paper is an algorithm for dense rectangular matrix
multiplication of 32-bit signed fixed point numbers and integers by means of vector instruc-
tions for 16-bit integers. Surely, a use of 32-bit vector instructions is preferable, but in the
case of absence of SIMD instructions of required bit-length, the proposed approach may
be an apposite workaround. The proposed technique can be easily generalized for n-bit
numbers and n/2-bit SIMD instructions. For instance, our approach can be employed for
realization of matrix multiplication of 64-bit fixed point numbers via vector instructions for
32-bit integers. The proposed algorithm satisfies the important requirements for the matrix
multiplication algorithms, as it supports an ability to process matrices in block-wise manner
and allows parallel processing in several identical IP blocks of SoC. Used for experiments,
the embedded platform was a prototype and the considered IP core is not available on the
market at present time. Nevertheless, the proposed algorithm does not use any specific
features of the given DSP, which has ordinary architecture, and a skilled person is able to
generalize our approaches for many modern signal and graphical processors.

Among other findings of this paper, we would like to emphasize the following:

• an application of outer product for matrix multiplication is underestimated by re-
searchers frequently;

• Strassen’s and other galactic algorithms enabling a low asymptotic complexity are
effective for huge matrices only;

• although all numerical results in this paper were obtained for square matrices, the
proposed method smoothly operates with rectangular matrices and with vector to
matrix multiplication;

• sometimes manual code optimization can provide significant performance improvement;
• matrix multiplication is easily parallelizable, but overhead should be estimated for

each specific computing platform.

This paper is organized in the following manner. Section 2 gives a brief review of
the matrix multiplication problem both as it is discussed in theoretical computer science
and as it is implemented on various platforms in practice. Section 3 describes approaches
of multiplications of n-bit scalars via n/2-bit ones. In Section 4, an applicability for our
case of various methods for matrix multiplication is discussed. Multiplication via outer
product outperforms the traditional way via dot product. Section 5 is devoted to the
description of the proposed matrix multiplication algorithm for fixed point numbers by
means of vector instructions. One can find tricks for speeding up processing on DSP in
Section 6. Techniques for parallel processing are considered in Section 7. Section 8 presents
performance of the proposed algorithm in comparison with two implementations via 32-bit
scalar instructions as well as with the theoretical limit. Section 9 summarizes our findings
and contains recommendations for practitioners who work on implementation of matrix
multiplication for various computing platforms.
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2. Related Works

Matrix multiplication is one of the most fundamental problems in theoretical and
practical computer science. Let us start from theoretical estimation of asymptotic complexity
in Big O notation. The well-known, so-called school method for matrix multiplication
employs the dot (or inner) product of rows of the leftmost multiplier and columns of the
rightmost matrix. Many tutorials on linear algebra describe another way for GEMM via
outer (or tensor) product [6]. The complexity of both approaches for square matrix at size
N by N is O(N3).

Strassen depicts the algorithm having the complexity O(N2.808) [7]. Strassen’s algo-
rithm minimizes the number of the multiplication instructions sacrificing the number of
add instructions and data locality. In practical implementations, an advantage of Strassen’s
algorithm in processing time is starting from N equal to several hundred or even more.
In addition, it is worth noting that data locality is a key factor of significant profit from
SIMD instructions usage. This fact is proved by existing examples of an application of
vector instructions for implementation of Strassen’s algorithm, which demonstrates mod-
est improvement in comparison with scalar ones [8]. Another shortcoming of Strassen’s
algorithm in comparison with multiplication via inner or outer product is numerical
instability for big matrices. Several investigations are devoted to ways to improve its
numerical stability [9,10].

There are several improvements of Strassen’s algorithm, for instance: Coppersmith
and Winograd depicted an algorithm with a complexity of O(N2.376) [11]; Alman and
Williams described an approach with O(N2.3729) [12]; recently, Duan et al. proposed an
algorithm with O(N2.3719) [13]. However, these improvements are not used in practice
yet, because they relate to so-called galactic algorithms, that is, they outperform other
alternatives only for very huge matrices.

Further, we review approaches for implementation of matrix multiplications on vari-
ous processing units: central processing unit (CPU), graphical processing unit (GPU), DSP,
field-programmable gate array (FPGA), and specialized circuit. Aberdeen and Baxter [14]
demonstrate two times speeding up in matrix multiplication by means of dot product on
a CPU Intel Pentium III due to usage of SSE (SIMD streaming extensions) instructions.
Kelefouras et al. [15] describe implementation of GEMM via dot product by wise usage of
SSE instructions and decreasing the number of the data cache accesses. In addition, a tiling
of matrices for parallel processing by multicore CPU is considered. Hemeida et al. [16]
consider an application of advanced vector extension (AVX), a multithreading and memory
access optimization for matrix multiplication speeding up. Unfortunately, it is hard to
estimate numerically a positive impact of SIMD instructions usage among all optimization
tricks. Soliman and Ahmed [8] explore an application of multi-processing, multithreading,
and SIMD instruction for implementation of GEMM on a cluster of computers with Intel
Xeon processors. Strassen’s algorithm and traditional approach via dot product were
implemented and investigated. It was pointed out that, for both cases, application of
SIMD instructions provides insignificant performance improvement only. Pradyumna [17]
compares performance of various implementations of matrix multiplication via dot product
and Strassen’s algorithm. AVX instructions are able to speed up several times GEMM
via dot product. For Strassen’s algorithm, performance gain is negligible. It is worth
noting, a modern CPU has a rich set of SIMD instructions that includes data rearrange,
sum reduction, etc. An application of such a wide set of vector instructions allows the
realization of matrix multiplication via inner product rather effectively.

Yang et al. [18] emphasize that most of the works are on evaluating and optimizing
large-scale matrix multiplication, but how much the small-scale matrix multiplication is
underexposed. The authors define small-scale matrix multiplication as multiplication of
matrices having small sizes (less than one hundred according to demonstrated results) or
in the case where one matrix dimension is significantly smaller than the other. A use of
four mainstream open-source BLAS libraries, OpenBLAS [19], BLIS [20], BLASFEO [21],
and Eigen [22], on ARMv8-based many-core architecture is considered. Performance
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bottlenecks are highlighted and the following directions for optimization are investigated:
mitigating the data packing overhead; processing the edge cases properly; selecting a
suitable micro-kernel; and adopting an appropriate parallelization technique.

Modern platforms that combine CPU and FPGA allow effective GEMM implemen-
tations due to customizable configuring FPGA for the dot product of a single precision
floating point and reduced precision workloads [23]. For multiplication of very large
matrices (where matrix sizes are greater than 10,000), distributed algorithms intended for
the cluster of computers were described recently [24,25].

One of the existing trends is a transfer of intensive computations to GPUs. The com-
pany NVIDIA distributes the cuBLAS library [26], which contains GPU-enabled functions
realized by means of compute unified device architecture (CUDA). These functions cor-
respond to a BLAS specification including GEMM for different integer and floating point
data types. In addition, NVIDIA developed CUTLASS [27], which is a collection of CUDA
C++ template abstractions for implementing GEMM and related computations. Matrix
multiplication in CUTLASS is realized via outer product. Recently, several publications
appeared that describe Strassen’s algorithm implementations on CUDA slightly outper-
forming cuBLAS for rather large matrices. Huang et al. [28] describe an algorithm, which
utilizes both the memory and thread hierarchies on GPUs and reuses shared memory.
Krishnan and Goswami [29], following the CUTLASS guidelines, eliminate the requirement
of additional workspace associated with Strassen’s algorithm by organizing and restruc-
turing operations in stages, where multiple operations in the same stage can be executed
in parallel.

Ali et al. [30] describe implementation of BLAS functions on multi-core DSP. Perfor-
mance of GEMM is optimized based on partitioning of both multipliers and its parallel
processing. Yin et al. [31] depict an approach for automatic generation of assembly micro-
kernels, allowing irregular-shaped matrix multiplication by means of auto-tuning of block
sizes, optimal data loading by direct memory access (DMA), and parallelization strategies.
Morad et al. [32] investigate new DSP architecture for efficient dense and sparse matrix
multiplication due to loading data for SIMD instruction from both rows and columns.

There are several publications about implementation of matrix multiplication algo-
rithms on various specific FPGAs [33–36] and by means of specialized architecture for
circuits [37,38]. Kamranfar et al. [37] depict a configurable linear systolic architecture.
Shanmugakumar et al. [38] describe architecture, which utilizes a carry-save adder tree
multiplier for multiplication and a carry-lookahead adder for performing addition at the
final stage.

Summarizing, the majority of existing investigations are devoted to algorithms for
multiplication of huge matrices by means of Strassen’s and similar algorithms, while
handling of matrices having sizes about one hundred is underexposed. Almost all publi-
cations consider the school method of matrix multiplication via dot product, and only a
few use multiplication via outer product. Undoubtedly, matrix partitioning for block-wise
parallel processing on several processing units is a valuable technique for performance
improvement. To the best of our knowledge, there is no well-known method for matrix
multiplication of n-bit numbers by means of handling with n/2-bit numbers.

3. Decomposition of Multiplication for Scalars

Let us start from considering approaches for multiplication of 32-bit scalar values
by means of operations with 16-bit numbers. Anatoly Karatsuba proposed an algorithm
for multiplication of two n-bit scalars with asymptotic complexity of O(nlog

2
3) [39,40].

Karatsuba’s approach is described in a monograph by Donald Knuth in detail [41]. n-bit
unsigned integers U with bits (un, un − 1, . . . u1) and V (vn, vn −1, . . . v1) can be defined as:

U = 2
n
2 UH + UL (1)

V = 2
n
2 VH + VL (2)
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where UH (un, un − 1, . . . un/2 + 1) is the high (or the most significant) half of n-bit U, and UL
(un/2, un/2 – 11, . . . u1) is the low (or the less significant) half of U; similarly, VH and VL are
high and low halves of V, respectively. Then, UV multiplication comprises four multiplica-
tions for n/2-bit unsigned integers as well as several arithmetic shifts and additions:

UV = 2nUHVH + 2
n
2 (UHVL + ULVH) + ULVL (3)

After rearranging of the terms, there are three multiplications for n/2-bit unsigned integers:

UV =
(

2n + 2
n
2

)
UHVH +

(
2

n
2 + 1

)
ULVL + 2

n
2 (UH −UL)(VL −VH). (4)

Depending on the relative cost of processor instructions for each specific calculation
platform, an application of Formula (3) or (4) can be preferable. Formula (4) has a larger
number of additions, subtractions, and shifts in comparison with Formula (3), but uses
three multiplications instead of four.

Warren’s book [42] declares three ways for adjustment of multiplication outcome for
signed integers after a use of Formula (3) or (4):

1. obtaining the absolute values of operands, then performing unsigned multiplication
for low and high halves and then changing the sign of the result depending on the
signs of operands;

2. for Formula (3), using multiplication of unsigned by unsigned integers for low halves
of operands, multiplication of signed by signed integers for high halves, and multipli-
cations of signed by unsigned integers for high and low halves; this way requires a
sign extension instruction;

3. correction of multiplication outcome for unsigned integers by means of subtractions
of operands depending on their sign.

Let us see approach #3 in detail. A signed integer U′ is considered as an unsigned
integer U + 2nUn −1, where Un − 1 is a one in the case where U is negative, and it is a zero in
the case where U is positive. In a similar manner, signed integer V′ is equal to V + 2nVn − 1.
Then, the multiplication U′V′ corresponds to the expression:

(U + 2nUn−1)(V + 2nVn−1) = UV + 2n(VUn−1 + UVn−1) + 22nUn−1Vn−1. (5)

To obtain an outcome of the product of the signed integers UV, we subtract from the
result of the unsigned multiplication the second and third terms of the right-hand side
of Formula (5). It is worth noting that, when multiplying n-bit integers, the third term is
ignored, since the multiplication outcome is completely in 2n bits, so there is no necessity
to calculate bits higher than 2n − 1. However, in a general case it is necessary to take into
account the third term in Formula (5) for matrix multiplication because elements of the
resulting matrix in matrix product result might be greater than 22n.

4. Matrix Multiplication via Outer Product

Matrix multiplication via dot (or inner) product of rows of the leftmost multiplier and
columns of the rightmost matrix is the most popular method. However, the technique is
ill-suited for an implementation by SIMD instructions of DSP, because elements of columns
do not lie in the memory sequentially. A transposition of the rightmost matrix or a copying
of elements of columns to a separate array is required. Both actions lead to noticeable
overhead in spite of the fact that transposition by Eklundh’s algorithm [43] operates quite
fast on considered DSP.

Sometimes in matrix multiplication the rightmost matrix should be transposed ac-
cording to the requirements of a linear algebra algorithm being implemented. In this case,
it is preferable not to transpose the rightmost matrix explicitly, but to perform matrix
multiplication via dot product of rows for both matrices. However, a usage of dot product
requires zero-padding of rows and instruction for effective summation of vector register
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elements. For example, if the matrix width is 100 elements and the size of the vector register
is 32 elements, the vector register is filled 3 times completely, and for the 4th time there
is only the last 4 elements from the matrix row, the next 28 elements of the register are
required to be filled with zeros. In addition, there should be a sum reduction instruction for
summing the elements of the vector register in order to effectively implement dot product.
Unfortunately, the given DSP has no similar instruction for the vector register.

In the case of SIMD instructions, it is preferable to implement matrix multiplication via
a sum of outer (or vector tensor) products of columns of the leftmost operand and rows of
the rightmost matrix. The outer product of column a by row b forms the following matrix:

a1
a2
...

am

⊗ (b1 b2 · · · bn
)
=


a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn

...
...

. . .
...

amb1 amb2 · · · ambn

. (6)

The leftmost matrix in a product can be considered as a vector consisting of the
columns, and the rightmost matrix as a vector consisting of rows. Then, the matrix multi-
plying is the sum of the results of the outer products of i-th vectors of the multipliers:

(→
a 1

→
a 2 · · · →

a n

)

→
b 1
→
b 2
...
→
b n

 =
n

∑
i=1

→
a i ⊗

→
b i. (7)

One can see an example of matrix multiplication for matrix dimensions 3 by 3 and 3
by 2 by means of outer product:a11 a12 a13

a21 a22 a23
a31 a32 a33

b11 b12
b21 b22
b31 b32

 =a11
a21
a31

⊗ (b11 b12
)
+

a12
a22
a32

⊗ (b21 b22
)
+

a13
a23
a33

⊗ (b31 b32
)

=

a11b11 a11b12
a21b11 a21b12
a31b11 a31b12

+

a12b21 a12b22
a22b21 a22b22
a32b21 a32b22


+

a13b31 a13b32
a23b31 a23b32
a33b31 a33b32


=

(a11b11 + a12b21 + a13b31) (a11b12 + a12b22 + a13b32)
(a21b11 + a22b21 + a23b31) (a21b12 + a22b22 + a23b32)
(a31b11 + a32b21 + a33b31) (a31b12 + a32b22 + a33b32)



(8)

It is worth noting that, when multiplying matrices of n/2-bit numbers, the elements of
the resulting matrix, in general, require more than n bits. A so-called wide vector register
should be used for accumulation of outer product sums. The given DSP has such a wide
vector register for multiplication of 16-bit vectors.

A usage of outer product has the following advantages:

• access is performed for sequential memory cells;
• there is no necessity for zero-padding;
• there is no necessity for summation of vector register elements.

Let us compare performance of matrix multiplication by means of 16-bit vector instruc-
tions via inner products and via outer products for matrices N by N for 16-bit unsigned
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integers. For performance evaluation, we used an accurate software simulator that allows
us to estimate processing time in a sole IP-core. Figure 1 demonstrates the results of the com-
parison. A realization via outer products significantly outperforms the alternative solution
even without taking into account time required for transposition of the rightmost matrix.
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5. Matrix Multiplication of 32-Bit Numbers via 16-Bit Vector Instructions

In this section, without loss of generality, we describe the method of multiplying
rectangular matrices containing 32-bit fixed-point numbers by means of 16-bit vector
instructions of DSP. One can find a foundation of the arithmetic of numbers with a fixed
point in [4]. In this paper, we handle mostly 16.16 fixed point numbers, where the integer
part is in 16 of the most significant bits, and the fractional part is in 16 of the less significant
bits. For a product of 16.16 fixed-point numbers, the first step is multiplication of 32-bit
multipliers considered as signed integers, and then performing an arithmetic shift to
the right by 16, that is, the number of bits of the fractional part. In a general case, the
outcome of multiplication of 32-bit integers has 64-bit-length. For the case when the result
of multiplication is 16.16 fixed-point numbers, 16 low bits from said 64 bits are omitted due
to arithmetic shift to the right, and 16 high bits are clipped. Avoiding a situation where high
16-bits contain important data and cannot be clipped is the obligation of a programmer.

As a start, let us combine it all together: the matrix product and multiplication of
32-bit unsigned integers via 16-bit arithmetic operations. There are two approaches for its
implementation by SIMD instructions. The first one is decomposition of 32-bit numbers
onto vector registers of 16-bit low and high halves and calculation with those registers
according to Formula (3) in the scope of a sole matrix multiplication procedure by means
of outer product. We estimated the performance of this approach. For matrices 128 × 128
it operates only 30% faster in comparison with multiplication by means of 32-bit scalar
instructions. This is rather slow. We analyzed our program using a simulator and a profiler
in order to explore the causes of the delays. This showed that this approach does not
employ the VLIW pipeline effectively; only a few instructions execute simultaneously.

The second approach is decomposition of both matrices A and B of 32-bit integers onto
matrices of 16-bit numbers AH, AL and BH, and BL, where elements of AL and BL contain low
hales of corresponding elements in matrices A and B and elements of AH and BH contain
high hales of corresponding elements in matrices A and B, then performing four matrix
multiplications for 16-bit numbers between those matrices via outer products. Outcomes
of four matrix multiplications are combined to the final matrix of 32-bit integers. Matrix
multiplications AiBk do not depend on each other’s operations and can be implemented in
parallel. An application of Formula (3) is better parallelizable for several IP cores, which is
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why we prefer Formula (3) rather than (4). In the case of the sole DSP core, and depending
on the size of matrices, calculations according to formula (4) may be preferable.

Figure 2 shows a plot of processing time depending on matrix size for the sole matrix
multiplication of 32-bit numbers, where 32-bit numbers are multiplied via 16-bit SIMD
instructions, and four matrix multiplications were conducted for 16-bit numbers, including
decomposition 32-bit matrices to 16-bit ones and composition back. The second way is
much faster.
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Further, let us modify the second approach for 32-bit fixed point numbers. Multipli-
cation of fixed point numbers can be considered as multiplication of the signed integers
and an arithmetic shift to the right on the length (in bits) of a fractional part. Thus, it is
necessary to extend the algorithm of matrix multiplication of unsigned integers to a method
for matrices of signed integers. Existing approaches for such extensions for scalars were
enumerated above in Section 3. Way #1 is unfeasible for matrix multiplication because each
element of the final matrix is the sum of products of elements of matrix operands. The
given DSP does not have all the necessary vector instructions for way #2. Way #3 is feasible.

Finally, we have the following algorithm for A and B matrix multiplication. Figure 3
shows components of matrix multiplication of 32-bit signed integers via matrix multiplica-
tion of 16-bit signed integers. For the considered range of matrix dimensions (less than two
hundred), a matrix multiplication of 16-bit numbers produces a matrix of 48-bit numbers.
We designate matrices with 16-bit halves of 32-bit numbers from the A and B matrix by
indices: L-low, H-high. The first step is decomposition of A on AL and AH, and B on BL and
BH. Four matrix multiplications of ALBL, AHBL, ALBH, and AHBH are performed via outer
products independently from each other. ALBL corresponds to a lower 48 bits of outcome.
Products ALBH and AHBL should be considered as shifted 16 bits to the left; accordingly,
they correspond to the range from 63 to 16 bit. AHBH should be considered as shifted 32
bits to the left; accordingly, it corresponds to the range from 79 to 32 bit. The maximum
length of elements of the resulting matrix is 80 bits. For obtaining of the resulting matrix, it
is necessary to perform summation of the shifted outcomes of products ALBL, AHBL, ALBH,
and AHBH, and to take into account the sign to subtract shifted matrices Da, Db, and S,
where Da, Db, and S are formed according to the following rules:

if A(i,j) < 0, then Da(i,j) = B(i,j), else Da(i,j) = 0;
if B(i,j) < 0, then Db(i,j) = A(i,j), else Db(i,j) = 0;

if A(i,j) < 0 and B(i,j) < 0, then S(i,j) = 1, else S(i,j) = 0,
(9)
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where matrices Da and Db should be considered as shifted 32 bits to the left, and matrix S
as shifted 64 bits to the left.
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Depending on the fixed point format, we extract corresponding bits from the 80-bit
outcome. For example, for 16.16 fixed point numbers we retrieve bits from 47 to 16 (it is
designated by a black rectangle in Figure 3). For faster processing in the case of matrices of
16.16 fixed-point numbers, we can omit calculation of the terms outside the black rectangle
in Figure 3. Again, checking the correctness of clipping of high bits is the obligation of a
programmer. Nevertheless, for exact integer computations with an 80-bit result, you should
not ignore matrix S from Formula (9).

Figure 4 demonstrates a scheme of a matrix multiplication of 32-bit fixed point num-
bers. The module Split makes a decomposition of matrix of 32-bit numbers on two matrices
of 16-bit numbers. The module Mul performs matrix products of 16-bit numbers. The mod-
ule BAdd is intended for calculation of matrices Da and Db as well as their sum, depending
on a sign of elements of matrices A and B. Outcomes of multiplications AHBL and ALBH
are summed in the module Add. The modules ShiftAdd and ShiftSub make addition and
subtraction of matrices with shifted elements depending on the length of the fractional part
of the utilized fixed point format.

The used DSP has no vector instruction for arithmetic shift of 32-bit numbers. An
implementation of arithmetic shift by 16-bit vector instructions leads to a big overhead.
Therefore, it is preferable to use fixed point number formats with a point position at the
byte boundary, that is, 0.32, or 8.24, or 16.16, or 24.8. The approach allows the replacement
of the arithmetic shifts by loading of corresponding bytes or 16-bit words.

Figure 5 shows a percentage of time for different stages of the proposed algorithm of
32-bit matrix multiplication depending on matrix size. The time to perform four matrix
multiplications of 16-bit numbers exceeds 90% of the total time for a matrix having a size of
about one hundred. Therefore, an optimization of matrix multiplication of 16-bit numbers
is a key problem for algorithm speeding up.

Depending on the size of matrices in SoC with sole DSP it may be advantageous to
perform multiplication according to Formula (4) that allows the use of three multiplications
of the matrices of 16-bit numbers instead of four. Nevertheless, Formula (3) has a clear
advantage for parallel processing in SoC having several DSPs, because blocks depicted on
the same horizontal level in Figure 4 can be executed concurrently, that is, decompositions
on matrices of 16-bit numbers and products of the matrices can be done in a parallel manner.
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6. Optimization Tricks

There are many optimization tricks, which are able to decrease processing time sig-
nificantly [16,44]. Two of them are effective for the considered DSP. The first is aligning
the addresses of matrix rows. The address of the row should be divisible by the length
(in bytes) of the vector register, thereat loading data from local memory to registers is
performed several times faster. Figure 6 illustrates the benefit of rows alignment: in the case
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of unaligned addresses of rows, processing time grows significantly. Padding bytes may
appear at the end of the row for aligned addresses. There is no necessity for zero-padding
in matrix multiplication via outer products. Padding bytes can have arbitrary values.
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rows alignment depending on matrix size.

The second trick is manual loop unrolling that allows better filling of the VLIW
pipeline. The toolset of the used DSP includes a high-performance C/C++ compiler
with automatic vectorization to support the VLIW pipeline. In general, modern compilers
automatically make effective optimization including loop unrolling. However, in the case of
nested loops, such as we have in matrix multiplication, it is possible to find a more apposite
way for loop unrolling. In particular, we were able to write approximately 30% faster code
for matrix multiplication of 16-bit unsigned integers compared with the optimization by
compiler. Figure 7 shows the advantages of our approach for loop unrolling in comparison
with automatic vectorization by compiler.
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7. Approaches for Parallel Implementation

As was mentioned above, considered SoC can have several identical IP cores with
DSP. In that case, it is expedient to implement parallel matrix multiplications. The “natural”
approach for parallelization of matrix multiplication by splitting of the rightmost matrix
on vertical blocks, multiplication of the leftmost matrix on each block, and concatenation
of outcomes (see Figure 8) is valuable [15,16]. The width of the block should be divisible
by the bit-width of the vector register. Moreover, the leftmost matrix can be divided into
strips. In addition, referencing to the schema in Figure 4, blocks depicted on the same
level (decompositions on matrices of 16-bit numbers and products of the matrices) can be
executed concurrently.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 8. Splitting of the rightmost matrix on vertical blocks and the leftmost matrix on strips for 
parallel processing. 

8. Results and Discussion 
In this section, we compare processing times of several matrix multiplication algo-

rithms implemented on the sole IP core. The used pipeline-accurate software simulator 
allows us to estimate processing time precisely. We are interested in multiplication of ma-
trices having sizes of about one hundred. 

Figure 9 and Table 1 show an advantage of matrix multiplication by means of 16-bit 
vector instructions in comparison with solutions that used 32-bit scalar instructions. We 
implement three algorithms for handling 32-bit scalars: based on dot product; based on 
outer product, and Strassen’s algorithm. Overhead of Strassen’s algorithm for the consid-
ered range of matrix sizes is significant, because the total number of operations is higher 
in comparison with matrix multiplication via inner or outer product. Processing times of 
implementations via dot product and inner product for scalar instructions are close. The 
realization via outer product slightly better uses the VLIW pipeline. Processing time of 
the proposed algorithm via SIMD 16-bit instructions for matrix 160 by 160 of 16.16 fixed 
point numbers is about six times faster in comparison with implementations via inner and 
outer product by using 32-bit scalar instructions (see Table 1). For matrices of a larger size 
(however, matrix size is limited by TCM size), the positive effect is higher. Surely, an ap-
plication of 32-bit vector instructions is capable of achieving higher processing speed, but 
we consider a case when a processing unit has no such instructions. 

 
Figure 9. Processing time for matrix multiplication of 16.16 fixed point numbers via 32-bit scalar 
instructions and by means of 16-bit vector instructions depending on matrix size. 

  

= 
DSP1

DSPk

0
2
4
6
8

10
12
14
16
18

0 20 40 60 80 100 120 140 160

Pr
oc

es
sin

g 
tim

e,
 m

s

N

32-bit scalar instructions (dot product)
32-bit scalar instructions (outer product)
32-bit scalar instructions (Strassen's alg.)
16-bit SIMD instructions

Figure 8. Splitting of the rightmost matrix on vertical blocks and the leftmost matrix on strips for
parallel processing.

Undoubtedly, parallel implementation requires additional efforts and has overheads
that should be evaluated for each specific computing platform. Unfortunately, we had no
tools for estimation of processing time in parallel mode. Nevertheless, we are sure that
parallel processing can be implemented effectively, as due to the use of a DMA controller
and double buffering, the latency associated with copying from the global to the local
memory of the IP block is negligible.

8. Results and Discussion

In this section, we compare processing times of several matrix multiplication algo-
rithms implemented on the sole IP core. The used pipeline-accurate software simulator
allows us to estimate processing time precisely. We are interested in multiplication of
matrices having sizes of about one hundred.

Figure 9 and Table 1 show an advantage of matrix multiplication by means of 16-bit
vector instructions in comparison with solutions that used 32-bit scalar instructions. We
implement three algorithms for handling 32-bit scalars: based on dot product; based
on outer product, and Strassen’s algorithm. Overhead of Strassen’s algorithm for the
considered range of matrix sizes is significant, because the total number of operations is
higher in comparison with matrix multiplication via inner or outer product. Processing
times of implementations via dot product and inner product for scalar instructions are close.
The realization via outer product slightly better uses the VLIW pipeline. Processing time of
the proposed algorithm via SIMD 16-bit instructions for matrix 160 by 160 of 16.16 fixed
point numbers is about six times faster in comparison with implementations via inner and
outer product by using 32-bit scalar instructions (see Table 1). For matrices of a larger
size (however, matrix size is limited by TCM size), the positive effect is higher. Surely, an
application of 32-bit vector instructions is capable of achieving higher processing speed,
but we consider a case when a processing unit has no such instructions.
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Figure 9. Processing time for matrix multiplication of 16.16 fixed point numbers via 32-bit scalar
instructions and by means of 16-bit vector instructions depending on matrix size.

Table 1. Processing time of various matrix multiplication approaches for matrix sizes 80 by 80 and
160 by 160.

An Approach Processing Time
for 80 by 80, ms

Processing Time
for 160 by 160, ms

32-bit scalars (dot product) 1.6 12.4
32-bit scalars (outer product) 1.6 11.4
32-bit scalars (Strassen’s alg.) 2.9 16.8

Proposed 16-bit SIMD 0.4 1.9

Obviously a more or less well-implemented algorithm that uses vector instructions
works faster than an analogous one via scalar instructions. However, there is the following
question: what is the theoretical limit of achievable performance? The multiplication
of square matrices of size N by N requires N3 products for scalars. We assume that, in
the ideal case, due to the VLIW pipeline, local memory load/store operations and addi-
tions/subtractions can be performed simultaneously with the multiplication instruction. A
vector register of the used DSP contains 32 16-bit numbers. The proposed algorithm per-
forms four matrix multiplications. Thus, theoretically, the lowest processing time of matrix
multiplication of unsigned integers can be estimated as the DSP frequency multiplied by
4N3/32.

Figure 10 demonstrates the theoretically achievable lowest processing time for the
given DSP for matrix multiplication depending on matrix size, processing time for matrix
multiplication of 32-bit unsigned integers, and 16.16 fixed point numbers. Matrix multipli-
cation of 32-bit unsigned integers has a performance of only 8–10% worse in comparison
with evaluation for an ideal case. For matrices of fixed point numbers, the generation and
subtraction of Da and Db matrices lead to 10–15% overhead. Nevertheless, processing speed
is quite high.
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9. Conclusions

In this paper, an approach for matrix multiplication of 32-bit signed fixed point
numbers and integers by means of SIMD instructions for 16-bit integers is proposed. Such
problems might appear for development for some low-power DSP and modification of
firmware for out-of-date processing units. The proposed approach is much faster than
the use of 32-bit scalar instructions, whereas 32-bit scalar instructions can be examined
by practitioners as the only way, due to the absence of 32-bit vector instructions. Matrix
sizes from several tens to two hundred are considered. For demonstration of the proposed
method advantages, a prototype of embedded platform is used. The proposed algorithm
does not use any specific features of the given DSP, which has ordinary architecture,
and the proposed approach can be generalized for many modern processors and matrix
multiplication of n-bit numbers by means of n/2-bit SIMD instructions. For example, the
proposed technique can be employed for realization of matrix multiplication of 64-bit
fixed point numbers and signed integers via vector instructions for 32-bit integers. Of
course, processing speed differs for various computing platforms, and the effect from an
application of the proposed method should be assessed for each specific hardware and
software system.

There are the following limitations of the proposed approach. Latency for loading
matrix elements to vector registers should be low. In the considered DSP, both input
matrices and the output one have to be stored in local memory. Thus, the size of local
memory limits the size of matrices that can be multiplied with high speed. One more
limitation on size of matrices is the possible overflow and clipping of high bits. Correct
multiplication of matrices of fixed point numbers is a headache for a programmer, because
the integer part of each element of matrix product outcome has to be less than the integer
part of the used fixed point format. In addition, long handling with fixed point numbers
can lead to calculation error accumulation.

As for future work, we are going to extend the proposed approach for matrix mul-
tiplication of 64-bit numbers via 16-bit vector instructions. In addition, for DSP having
a sign extension instruction, we plan to implement other ways for considering a sign:
for Formula (3) using multiplication of unsigned by unsigned integers for low halves of
operands, multiplication of signed by signed integers for high halves, and multiplications
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of signed by unsigned integers for high and low halves. Such a way allows us to decrease
the number of operations in comparison with the used approach, that is, correction of mul-
tiplication outcome for unsigned integers by means of subtractions of operands depending
on their sign.
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