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Abstract: Performance limitations of automotive sensors and the resulting perception errors are one
of the most critical limitations in the design of Advanced Driver Assistance Systems and Autonomous
Driving Systems. Ability to efficiently recreate realistic error patterns in a traffic simulation setup
not only helps to ensure that such systems operate correctly in presence of perception errors, but
also fulfills a key role in the training of Machine-Learning-based algorithms often utilized in them.
This paper proposes a set of efficient sensor models for detecting road users and static road features.
Applicability of the models is presented on an example of Reinforcement-Learning-based driving
policy training. Experimental results demonstrate a significant increase in the policy’s robustness to
perception errors, alleviating issues caused by the differences between the virtual traffic environment
used in the policy’s training and the realistic conditions.
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1. Introduction

Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems
(ADS) possess the potential to significantly increase traffic safety by reducing the impact
of human errors, which are by far the most common cause of accidents. Unfortunately,
these systems do not come without their own risks - Highly Automated Vehicles (HAVs)
may be susceptible to hardware and software malfunctions, as well as errors caused by
the performance limitations of their perception systems. For these reasons HAVs require
extensive validation and verification efforts to ensure that they meet their safety goals.

An intuitive way to assess the safety of ADAS/ADS and acquire data needed to
develop and improve them is to use physical test drives. While this approach has been
applied successfully for the development of ADAS features with a low level of autonomy,
its application in HAVs poses a few severe challenges. End-to-end validation of ADS
requires immense quantities of data to be gathered [1]. Furthermore, the development of
certain ADAS/ADS algorithms, such as driving policies based on Reinforcement Learning
(RL), requires triggering potentially dangerous behaviors and situations, which would be
unacceptable to do in public traffic.

Traffic simulation tools are thus commonly utilized in the development and testing of
ADAS/ADS [2]. The simulated road environment can be employed in both the open-loop
testing, where actions of the vehicle equipped with the tested system, called the ego vehicle,
do not impact the environment, and in closed-loop setups, where the traffic participants
actively respond to the ego’s actions. The simulation is also a key component in RL-based
driving policies training techniques, which typically utilize it to learn proper responses to
various situations observed in the ego’s environment [3].

Both the testing and training applications require an accurate representation of the
environment as perceived by automotive sensors, such as radars, LiDARs, or cameras.
All of these sensors suffer however from various errors and performance degradation,
that may be difficult to accurately recreate in a simulation environment. In this paper,
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I propose a set of high-level sensor models that can be used to realistically disturb the
ground-truth descriptions of both the static and dynamic environments of the ego vehicle
in a closed-loop simulation setup. Proposed models are applied to the RL-based driving
policy training and their impact on the system’s performance is analyzed in a series of
virtual driving experiments.

1.1. Related Work

Sensor models used for simulating the automotive perception systems can be most
broadly assigned to two major classes: low-level sensor-specific models, that attempt
to simulate error modalities of a particular sensor type, often through relatively precise
simulation of underlying physical phenomena, and high-level generic models, that attempt
to coarsely mimic perception errors through sensor-type-invariant statistical methods
or heuristics.

Sensor-specific models of the automotive radar typically attempt to re-create error
patterns related to physical properties of the radar wave, that lead to false-negative detec-
tions due to e.g., occlusions or weak reflections, and false positives caused by multi-path
reflections of the wave. Depending on the computational resources and desired model’s ac-
curacy, these phenomena may be either simulated using high-fidelity models in a relatively
accurate manner, e.g., taking into account precise antenna characteristics [4], or approxi-
mated using statistical methods or low-fidelity models. High-fidelity methods include the
use of the ray-tracing algorithms [5] that utilize geometric models of road users [6], often
with pre-determined virtual scattering centers [7].

Due to the complexity of the radar modeling task and the nonlinear nature of the
underlying models, Machine Learning techniques are often proposed to simulate radar’s
error patterns. Muckenhuber et al. in [8] evaluate several machine-learning radar models
trained on a labeled dataset. The authors of [9] utilize deep learning techniques to create a
model that takes into account both static and dynamic environment features to produce a
realistic model of the sensor’s output.

While the accurate simulation of underlying physical phenomena that impact radar
sensors is a relatively complex task, high-fidelity simulation of the raw camera output can
be performed by rendering the simulated scene and applying appropriate lens distortion
models [10] and color space conversion [11]. It should be noted, however, that high-
resolution rendering and execution of the camera’s object detection algorithms to produce
an object list often require immense computational effort. Furthermore, acquiring high-
quality results requires an accurate model of the environment, including 3D models of
traffic participants, high-resolution textures, and realistic simulation of weather conditions.

Similarly, as in the case of radar sensor models, the use of machine learning techniques
may help to achieve realistic output with a lower computational effort. Generative Ad-
versarial Networks are often proposed for this task, due to their capability of producing
realistically-looking images [12].

Due to the high computational cost of certain tasks that require sensor modeling, such
as training of Reinforcement-Learning-based driving policies, low-fidelity models that op-
erate on the object list instead of raw data are often proposed as an efficient alternative [13].
Object-level models may be also useful in situations where perception output incorporates
a fusion of data from several types of sensors, and/or tracking algorithms. Examples of
such setups include radar and vision fusion for detection of road barriers [14], road curbs
tracking [15], and radar-camera sensor fusion for objects detection [16].

Analysis of the perception errors’ impact on driving policies is also an important area
of research that utilizes sensor models. In [17], the authors proposed an error model for
the LiDAR sensor and analyzed its impact on the control algorithms used for cooperative
driving. [18] indicated that generic sensor models may play an important role in the training
of Reinforcement-Learning-based driving policies, improving the robustness of the trained
policy to the real-life performance limitations.
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1.2. Motivation

The importance of sensor modeling in the validation and verification of the ADAS
and AD systems is well understood, and models of various levels of fidelity are relatively
commonly used in such applications. The emergence of the ADAS/AD algorithms based
on Reinforcement Learning techniques poses however novel challenges related to the
simulation and sensor modeling. Training of such algorithms often requires massive-scale
simulations and the efficiency of the simulation and sensor models have a critical impact
on the development of such systems.

While performance requirements in RL training setups suggest that the use of simple
low-fidelity models, or even training the driving policies on ideal data is a desirable solution
in this context, such a solution may contribute to the so-called sim-to-real gap. Differences
between the simulated training environment and the real-world data streams may lead to
the policy’s severe performance degradation when executed in the actual vehicle.

The impact of the sensor models on the RL training, performance of the driving policy,
and overall safety of the AD system remain poorly understood. In this paper, I propose a set
of low-fidelity sensor models intended to imitate errors in static and dynamic environment
perception and apply them in the training of RL-based driving policy. Evaluation of the
policy’s performance in various environments provides valuable insight into the sensor
modeling’s impact on RL-based policies.

2. Sensor Models

Sensor modeling approaches vary with the required accuracy, computational resources
available, type of sensor, and desired interfaces. While models proposed in this publication
may find use in various applications, such as testing and performance evaluation of
ADAS/AD algorithms, a main intended application is in the training of RL-based driving
policies. The models are intended to operate on ground truth data provided by an arbitrary
simulation package and modify them to reflect the typical performance of an automotive
sensor stack and perception algorithms. The models are generic (not sensor-specific) and
can be calibrated to reflect an arbitrary perception algorithm.

RL training usually requires gathering a massive amount of data in the simulation
environment, resulting in a demand for highly effective, scalable simulation environments.
For this reason, low-fidelity sensor models that do not have high computational require-
ments come across as an adequate solution. While low-fidelity models are typically less
accurate compared to high-fidelity alternatives, RL-based driving policies tend to feature
good generalization skills and do not require as a precise imitation of error profiles as
perception performance evaluation applications.

2.1. Dynamic Environment Perception

Dynamic environment perception systems typically provide information about other
traffic participants in the proximity of the ego vehicle, such as other vehicles and pedestrians.
In this section, I propose models that can be used for various perception systems but are
mainly intended to mimic the behavior of systems with time-correlated errors and frequent
false positive and false negative detection errors. A good example of such a setup is a radar-
based perception system that utilizes a tracking module to produce filtered object-level
detections of road vehicles.

2.1.1. Interfaces

There is no common agreement on the simulation interfaces in the automotive indus-
try, even though a few promising standards were already proposed, most notably the Open
Simulation Interface [19]. Various simulation tools offer different output data formats,
depending on the type of simulation and intended applications. RL-based driving policies
typically utilize object lists that encode states of individual traffic participants separately
for the dynamic environment description and various types of static environment repre-
sentations, such as lane lists that gather information about road geometry or lane markers.
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This relatively high-level description of the vehicle’s environment is easy to process and
does not create excessive bandwidth or memory requirements.

The low-fidelity sensor models presented in this paper utilize an interface that de-
scribes the ego’s dynamic environment as a list of dynamic objects that represent traffic
participants such as vehicles. Dynamic environment at a time t in a scene composed of nd
traffic participants is represented as a set of dynamic objects Sd(t) =

{
Sdi

(t)
}

i=1..nd
, where

each traffic participant is described with a state vector Sd i ∈ Rm, f or i = 1..nd composed
of m state variables:

Sdi =


qi
xi
ψi
vi
ai

, (1)

where qi ∈ R2 denotes the size of the i-th traffic participant’s bounding box (length and
width), xi ∈ R2 denotes its position in a Cartesian coordinates system, ψi ∈ R describes
its rotation relative to the reference frame, vi ∈ R denotes its absolute velocity, and ai ∈ R
denotes its absolute acceleration.

Observation of a dynamic scene representation Sd is generated by an arbitrary sim-
ulation package and processed by the sensor models to acquire an approximation of a
perception stack’s dynamic environment estimate Ŝd =

{
Ŝdj

}
j=1..no

, composed of no

objects’ state estimates Ŝdj
= [q̂j, x̂j, v̂j, âj]

T .
Similarly as in the notation proposed by [20], the sensing process can be described as

a mapping:
M(p) :

{
Sdi

}
i=1..nd

→
{

Ŝdj

}
j=1..no

, (2)

where p denotes sensor properties (calibration parameters). Note that during the sensing
process certain objects may be omitted (false negative detections), while non-existing ones
may be added (false positive detections), and thus, in general, Sdi

6→ Ŝdi
, and nd 6= no.

As proposed in [20], sensing process M may be described as a series of nm mapping
operations M(k) for k = 1..nm, yielding following sensor model:

M(p) = M(nm)(pnm) ◦ ... ◦M(2)(p2) ◦M(1)(p1) (3)

where M(n) denotes the n-th mapping operation, and pn is a vector of configuration
parameters relevant to the n-th mapping operation. Note that configuration parameters
may include the model’s outputs from previous observations if the mapping takes time
correlations into account. n-th mapping operation can be defined as:

Mn(pn) : {Sd i}(k−1)
i=1..nk−1

→
{

Sd j

}(k)
j=1..nk

, (4)

where {Sd i}(0)i=1..nk−1
is equal to the ground-truth description of the dynamic environment Sd,

and
{

Sd j

}(k)
j=1..nk

corresponds to the approximation of the sensing stack’s dynamic environ-

ment’s estimate Ŝd, while nk denotes the number of objects after k-th mapping operation.

2.1.2. Model of Dynamic Environment Perception Stack

The low-fidelity model of a dynamic environment perception stack is intended to imi-
tate the main error types observed in object-detection systems used in automotive. A com-
mon example of such system is a set of short-range millimeter-wave Phase-Modulated
Continuous Wave (PMCW) Radars placed in the vehicle’s corners and a long-range PMCW
radar in the front of the vehicle. Data from the sensors, for instance in a form of object lists,
is typically fused using tracking algorithms based on derivatives of a Kalman Filter.
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Errors commonly observed in such systems can be roughly assigned to the categories
listed below.

• False positive detections.Various physical phenomena, such as multipath reflections
of a radar wave, may result in an introduction of non-existing objects to the object list
Ŝd, leading to the situation in which ADAS/AD algorithms assume the presence of
potentially dangerous objects in unoccupied areas.

• False negative detections. Limited performance of the sensors, as well as performance
degradations caused by difficult environmental conditions such as bad weather, may
lead to missed object detections, i.e., situations in which a dynamic object present in
ego’s vicinity is not represented in the object list Ŝd.

• State estimation errors. Partial occlusions and performance degradations may lead
to potentially dangerous differences between ground truth state description Sdi

of
a particular object, and its estimate Ŝdi

composed by the sensor stack. It should be
noted, that due to the filtering properties of the tracking algorithm, state estimation
errors may be time-correlated.

Differences between the ground truth Sd and the estimate Ŝd may also be caused by
the range and angle limitations of the sensors, as well as occlusions.

Before modeling stochastic errors related to the sensors’ performance, deterministic
sensors’ limitations are modeled according to the specification of the sensor stack. Objects
that are outside of the sensors’ detection area are removed from the ground-truth objects
list. Similarly, objects that are occluded or partially occluded by other traffic participants
or obstacles can be removed. These operations are denoted as Mv(pv) : {Sd i}i=1..nd

→{
Sd j

}(v)
j=1..nv

, where calibration parameters pv describe the sensing stack’s detection area

and the occlusion level above which the object is removed, while nv denotes the number of
the unoccluded objects in the detection area.

Two types of false negative object detections are simulated in the proposed generic
sensor models. The first type is the detection delay. Due to the latencies in the vehicle’s
internal communication network, as well as properties of the tracking algorithms, that
often need to confirm the existence of the object in a few consecutive scans before adding it
to the object list, a random delay between the object entering the sensors’ detection area
and actually detecting it can be observed in the most of the sensor stacks. This property of
the sensing system is modeled by assigning a random detection delay of Tdi

for i = 1..nv
seconds to each object newly introduced to the {Sd i}i=1..nd

set, which value is sampled
from a normal distribution:

Tdi
= max

(
pdµ_delay

, | ∼ N (0, p2
dσ_delay

)|
)

, (5)

where pµ_delay and pσ_delay are calibration parameters.
Additionally, to model random losses of already detected objects, each object at each

sensing update can be marked as a false-negative detection with a certain probability
pd_ f n_prob, and assigned a Tf = max

(
p f n_µ, | ∼ N (0, p2

f n_σ)|
)

value that denotes duration
for which it will remain marked as a false-negative. Parameters pµ_delay, pσ_delay, pfn_prob,
pfn_µ, pfn_σ, as well as detection delays Tdi

, false-negative flags, detection durations Tf ,
current timestamp and timestamps at which objects were first observed or marked as
false-negatives are included in the parameters vector pd, allowing to remove objects that
are newly detected and marked as a false-negative in a following mapping:

Md(pd) : {Sd i}(v)i=1..nv
→
{

Sd j

}(d)
j=1..ndd

. (6)

False positive detection errors, especially in radar sensors, often exhibit behavior
similar to actual road users, posing a serious challenge to ADAS/AD systems. In the
proposed approach, a false positive object can be introduced to the sensed objects set
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with a probability pfp_prob. Since false positive detection errors often persist for multiple

sensing updates, duration Tf p = max
(

pfp_µ, | ∼ N (0, p2
fp_σ)|

)
is assigned to the newly

introduced false positive object, during which the object will persist in the dynamic scene
approximation set. A newly created object is initialized with a random state S f n, which
values are sampled from normal distributions:

Sfp =


q ∼ N2(µq, Σq)
x ∼ N2(µx, Σx)
ψ ∼ N (µψ, σψ)
v ∼ N (µv, σv)
a ∼ N (µa, σa)

, (7)

where µq, Σq, µx, Σx, µψ, σψ, µv, σv, µa, and σa, are the calibration parameters included in the
parameters vector pp. All of the false positive objects are assumed to move in the direction
of their orientation ψ with a constant acceleration, and thus their state (included in the
parameters vector pp) is updated according to these assumptions at each sensing update.

Operations of false positive objects creation, update, and removal after corresponding
Tf p are denoted as the following mapping:

Mp(pp) : {Sd i}(d)i=1..ndd
→
{

Sd j

}(p)

j=1..np
. (8)

Lastly, state estimation errors are introduced. State errors in the automotive perception
systems tend to be time-correlated due to the filtering properties of tracking and fusion
algorithms used in them, as well as due to the persistency of environmental triggers (it is
rare for an environmental trigger to impact only a single perception update). In order to
reflect the randomness of the errors, as well as their time-correlated nature, a multivariate
stochastic process based on the Ornstein–Uhlenbeck process is utilized for state values
modeling. The value of an nc-dimensional state estimate vector chunk ŝc at i-th perception
update is calculated according to the process:

POUc(ŝ
(i)
c |s(i), ŝ(i−1), psc) =

{
pou_λc ∗ (s(i)− ŝ(i−1)) ∗ dt + W(i) ∗ dt, for i > 1
Nnc(s

(i), pou_Σ_initc), for i = 0,
(9)

where s(i) ∈ Rnc is the ground-truth value at i-th perception update, ŝ(i−1) ∈ Rnc is the
previous value of state estimate, dt is the time between perception updates, and Wi ∈ Rnc

is drawn from a multivariate normal distribution Wi ∼ Nnc(0, pou_Σ_uc). pou_λc , pou_Σ_initc

and pou_Σ_uc are the calibration parameters included in the vector psc .
The state of the dynamic environment is updated according to the mapping:

Mstate_est(pstate_est, S(t−1)
state_est) : {Sd i}(d)i=1..ndd

→
{

S(t)
state_estj

}(p)

j=1..np
, (10)

where S(t)
state_estj

is calculated using a process:

S(t)
state_estj

= POU(Ŝ(t)|S(t), Ŝ(t−1), pstate), (11)

parameterized with a vector pstate consisting of pou_λ, pou_Σ_init and pou_Σ_u calibration matrices.
The final model can be described as the mapping:

Mr(p) = M(v)(pv) ◦M(d)(pd) ◦M(p)(pp) ◦M(state_est)(pstate_est). (12)

The proposed model, depending on the calibration parameters, may imitate an arbi-
trary dynamic environment perception system, including false positive and false negative
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errors, as well as time-correlated state perception errors. Values of calibration parameters
used in a further evaluation are provided in Appendix A.

2.2. Static Environment Perception

Features of a static environment of the ego vehicles relevant to ADAS/AD algorithms
can be categorized into two main types: road features such as the geometry of the road,
lane markers or barriers, and static obstacles such as parked cars, or debris. Since static
obstacle detection is often based on similar sensor stack and perception algorithms as the
dynamic environment perception, they can be represented using the Sd state vector with
reasonable accuracy. Depending on the object type, v̂ and â may be set to 0, though in
certain situations allowing for non-zero velocity and acceleration may be desirable to reflect
potential errors e.g., in state estimation of recently stopped or potentially moving vehicles.

The road features most relevant to RL-based driving policies are represented as a
set Sr(t) = {Sri (t)}i=1..ns

composed of ns l-dimensional vectors Sr i ∈ Rl f or i = 1..ns
representing lane markers in the vicinity of the ego vehicle. Each vector describes a single
lane marker in a following form:

Sri =

[
c
h

]
, (13)

where c ∈ R4 denotes coefficients c = [c0, c1, c2, c3] of a cubic polynomial d(s) = c3 ∗
s3 + c2 ∗ s2 + c1 ∗ s + c0 that encodes the lateral offset d of a lane marking (road edge or
line) from the vehicle’s longitudinal axis as a function of a longitudinal distance from the
vehicle’s rear axis, and h denotes the longitudinal distance up to which the lane marking
is observed. Similarly, as in the case of the dynamic environment, the ground truth of the
static scene representation Sri (t) is generated by a simulation package and processed by
the static environment sensor models to acquire an approximation of a perception stack’s
static environment estimate Ŝr(Sr, p, t) composed of an arbitrary number of lane markers

state estimates Ŝri (t) =
[
ĉ(t), ĥ(t)

]T
.

The sensing process for the static environment can be thus modeled as a series of
mapping operations:

Mr(d) = M(nm)
r (dnm) ◦ ... ◦M(2)

r (d2) ◦M(1)
r (d1), (14)

defined analogically to the mappings proposed for the dynamic environment sensing model.

Model of Static Environment Perception Stack

Static environment errors modeled in the proposed approach include marker length
limitations (e.g., due to occlusions or detection performance limitations), false negative
detections, and geometry estimation errors.

The detection range limitation model is intended to imitate the lane detection quality
decrease on long distances due to the perspective, occlusions, and environmental factors
such as fog or rain. It should be noted that the range limitation impacts the quality of lane
markers geometry estimation - the model assumes that the lane marker geometry can be
estimated solely based on the part of the lane assumed to be visible.

The model uniformly samples the ground truth lane markers geometries Sr, mapping
each lane marker definition Sri to a set {si}j=1..nsamples

of samples sij = [xs, ys]T , where xs

and ys are the longitudinal and lateral position of the lane marker sample in the Vehicle
Coordinates System (VCS). The occlusion model is defined as a mapping:

M(occ)(pocc) : {si}j=1..nsamples
→ {socc

i }j=1..nocc
(15)

evaluates whether each lane sample is occluded by any of the dynamic objects from the Sd
set and discards them from the final samples set

{
socc

i
}

j=1..nocc
. If at least ncons consecutive
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samples in a lane marker are occluded, all of the samples placed farther from the vehicle
are discarded as well.

The distance of the farthest sample from each lane marker from the set is treated as a
base marker length hgt. The value of the marker length is calculated similarly to dynamic
objects state estimates, using a stochastic model based on the Ornstein–Uhlenbeck process:

Ph(ĥ(t)|h(t)gt , h(t−1)
gt , ĥ(t−1), ph) =



(
plm_ou_λ_h

((
h(t)gt − plm_lim

)
− ĥ(t−1)

)
+ W(t)

)
∗ dt

if t > 0 and
(

h(t)gt − h(t−1)
gt

)
≥ plm_jump

N
(

h(t)gt − plm_lim, pσ_h

)
otherwise,

(16)

where plm_ou_λ_h, plm_lim, plm_jump, and pσ_h are the calibration parameters included in
parameters vector ph. Note that if the ground truth lane length is severely decreased
between the time updates, i.e.,

(
h(t)gt − h(t−1)

gt

)
≥ plm_jump, the Ornstein-Uhlenbeck process

is reset, and the length value is drawn from a normal distribution to more accurately model
sudden lane occlusions.

The geometry of the lane markers is calculated using a mapping M(geom)(pc, ph), that
calculates the geometry of lane markers as:

S(t)
j =

[
POU(ĉ(t)|c(t), ĉ(t−1), pc)

POU(ĥ(t)|h(t)gt , h(t−1)
gt , ĥ(t−1), ph)

]
for j = 1..nocc, (17)

where pc is a vector of calibration parameters, consisting of calibration matrices plm_ou_λ,
plm_ou_Σ_init and plm_ou_Σ_u.

Finally, the false negative lane markers detection model is applied. The model is based
on intuition, that lane markers with a higher lateral offset from the ego vehicle, as well as
shorter (occluded) ones, have a higher probability of being not detected by the perception
system. Lane offset o ∈ N denotes the number of lane markers between the ego vehicle and
the given marker, where o = 0 corresponds to a lane marker on either the left or right side
of the ego’s current lane.

The mapping Mfp(pfp) :
{

Sgeom
i

}
i=1..ngeom

→
{

Sfp
j

}
j=1..nfp

is randomly discarding

lane markers according to the probability Pdiscard:

Pdiscardi (pfn) =


plm_disc_c_0 + plm_disc_l_0 ∗ hmax−hi

hmax
if o = 0

plm_disc_c_1 + plm_disc_l_1 ∗ hmax−hi
hmax

if o = 1

plm_disc_c_2 + plm_disc_l_2 ∗ hmax−hi
hmax

otherwise,

for i = 1..ngeom, (18)

where plm_disc_c_0, plm_disc_l_0, plm_disc_c_1, plm_disc_l_1, plm_disc_c_2, and plm_disc_l_2 are the
calibration parameters included in the parameters vector pfn, and hmax denotes the maxi-
mum length of the lane marker that can be detected by the modeled perception system.

Discarded lane markers remain false negatives, with a probability Plm_recovery of re-
turning to their true positive state on each perception update:

Plm_recovery = prec_hyst ∗ (1− Pdiscard) + min(prec_pps ∗ tdisc, prec_sat), (19)

where tdisc is the duration of the false negative, and prec_hyst, prec_pps, prec_sat are the
calibration parameters.

The lane markers perception system is thus modeled as a mapping:

Mstatic(p) = M(occ)(pocc) ◦M(geom)(pgeom) ◦M(fn)(pfn). (20)
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3. Driving Policy

Autonomous Driving (AD) tasks are known to be challenging due to the imperfect
environment perception, uncertainty around the future actions of other road users, as well
as comfort and performance goals that the AD vehicle is expected to fulfill. Since deter-
ministic rule-based control methods rarely can achieve the required performance in such
difficult environments, Reinforcement Learning (RL) approaches are a frequently proposed
alternative [21].

In a typical RL setup for the AD applications, a traffic simulator in which a virtual
ego vehicle can interact with the surrounding road users and infrastructure is described as
an environment ε, that maps the agent’s actions at to the environment’s transition from a
current state st to the new state st+1. Actions a are selected by the agent’s stochastic policy
πθ(a|o) parametrized by parameters vector θ based on an environment’s observation ot.

3.1. Proximal Policy Optimization

Proximal Policy Optimization (PPO)[22] is an on-policy RL algorithm commonly used
for training deep neural networks used for control tasks. The parameters update in the
PPO is performed according to the following equation:

θk+1 = arg max
θ

Ê
θ∼πθk

[L(s, a, θk, θ)], (21)

where L(s, a, θk, θ) is a clipped loss function defined as:

L(s, a, θk, θ) = min
(

πθ(at|st)

πθk (at, st)
Âπθk (s, a), clip

(
πθ(at|st)

πθk (at, st)
, 1− ε, 1 + ε

)
Âπθk (s, a)

)
, (22)

where πθ(at|st) is the action probability under the new policy, πθk (st|st) is the probability
under the current policy, Âπθk (s, a) is the estimated advantage at the time t, and ε is a hy-
perparameter. Advantage estimation is performed by a Generalized Advantage Estimator
(GAE) [23] in form ÂGAE(γ,λ)

t = ∑∞
l=0(γλ)l(rt+l + γVφ(st+l+1)−Vφ(st+l)

)
, where λ and

γ are calibration parameters, rt denotes the reward at time t, and Vφ(s) is an estimate of
the value function, performed by a learned neural network (critic network) parametrized
by a parameter vector φ. Advantage estimation is based on a set Dk = {τi}i=1..nepisodes

of
trajectory segments τi = {s0, a0, r1, s1, a1, r2, s2, a2, ...} collected at each iteration by observ-
ing the interaction of the policy πθk with the environment e, typically in a parallelized
simulation setup.

3.2. Direct Control Policy

Both observations and actions chosen by the policy may take various forms. Observa-
tion typically includes the state of the ego and the environment description, either in a form
of grid maps or object vectors. Output actions may select the high-level semantic actions
(such as the “change lane” action), describe the ego’s trajectory followed by a deterministic
controller, or control the vehicle’s actuators directly.

For the purpose of studying the perception errors impact on the performance of the
driving policies, I focus on the direct control network with object-lists inputs, due to its
lightweight implementation and high impact of individual actions on the agent’s performance.

Inputs to the network are composed of three main sets described below.

• Ego state observed at the time t defined as o(t)
ego =

[
v(t)se , v(t)exe , a(t)se , a(t−1)

se , γ
(t)
e

]
, where

v(t)se is a current longitudinal velocity, v(t)exe is a speed limit execution, defined as ratio

of v(t)se to the current speed limit, a(t)se denotes current longitudinal acceleration, a(t−1)
se

describes the acceleration at the previous time update, and γ
(t)
e is the ratio of the

current yaw rate to the absolute velocity.
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• Other road users state, where each vehicle perceived by the ego is described with
a vector oobji = [qi, xi, ψi, vi, ai]

T for i = 1..nobj_max, where qi ∈ R2 is the width and
length of the vehicle, xi ∈ R2 its position relative to the ego vehicle, ψi ∈ R rotation
with respect to the ego, vi = [vsi , vdi

]T denotes the vehicle’s velocity relative to the
ego, and ai ∈ R2 its relative acceleration. Depending on a setup, the observation is
created based on the sensor models’ output, or the ground truth data.

• Lane markers state, where each lane marker registered by the ego’s perception system

is encoded with a vector olmi =
[
dlmi , hlmi , γlmi , mlmi

]T , where dlmi ∈ R10 is a vector
of uniformly placed lateral position samples that describe the lane marker’s geometry,
hlmi ∈ R is the observed length of the marker, γlmi ∈ R is the marker’s rotation at the
point adjacent to the ego’s position, and mlmi ∈ [0, 1] encodes the marker type, where
mlmi

= 0 if marker is a broken line, and mlmi = 1 otherwise.

All of the observation values are normalized and processed by the transformer input
model, which encodes them as shown in Figure 1 and passed to a deep fully connected
network. The network returns output vector aφ(oego, oobj, olm) = [aacc, asteer]T of values
ranged [−1, 1] that control the acceleration and steering angle of the ego vehicle. Both
values are scaled by calibration parameters paacc , pasteer accordingly.

Transformer encoder layer

Steering
angleAcceleration

Direct control network architecture

Transformer encoder layer

Transformer encoder layer

FC

Transformer encoder layer

Multi-Head Attention

Add & Normalize

Feed Forward

Add & Normalize

Object ...Object 2Object1

Lane
Marker...Lane

Marker2Lane
Marker1EgoOutput

token

FC FC FC

Legend
FC Fully connected layer

Deep Fully Connected

Concatenation

Input (embedding)

Output

Figure 1. Architecture of the direct control network. nembd-dimensional input embeddings
of a const output token, Ego features (oego), objects oobji for i = 1..nmax_obj, and lane markers

olmi
for i = 1..nmax_lm are concatenated into matrix I ∈ Rnembd×(1+1+nobj+nlm) and consumed by

the transformer encoder layers. Encoders use a masking mechanism to prevent non-existing objects
or lane markers from impacting the outputs. Ultimately transformer encoder layers produce the

output O ∈ Rnembd×(1+1+nobj+nlm). The first column of O is then processed by a deep fully con-
nected network to generate the control values aacc and asteer. Note that the transformer structure
used for observation lacks positional encodings, as there is no need for sorting or prioritizing the
environmental features.

3.3. Rewards

The control policy described in the previous section is trained with a PPO algorithm
with a reward function composed of several terms listed below.

• Speed limit execution calculated at each step as a ratio of ego’s current velocity to a
current speed limit, multiplied by a factor rspeed_limit.
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• Action values, specifically a squared acceleration and squared steering angle values,
scaled by factors racc and rsteer respectively.

• Lane centering defined as a current distance of the ego vehicle’s center from the lane
center multiplied by a factor rcentering.

• Time To Collision calculated as a time at which a collision between the ego and another
road user would collide if neither of them would change their current longitudinal
acceleration nor lateral position. If constant accelerations would not lead to a collision
or the time to collision is lower than rttc_max, the value for this reward component is
set to 0, otherwise, TTC scaled by rTTC factor is assigned.

• Terminal states reward component assigned in events of a collision between the ego
and other road user or a road barrier and exceeding the speed limit by 10 m/s or more.

3.4. Training Setup

The experimental setup used for the evaluation of the proposed methods consisted of
the simulation environment representing a randomly-generated multiple-lane highway
featuring merge-in lanes, exit lanes, and vehicle traffic of varied density (see Figure 2).
The movement of the road users (except for the ego vehicle) has been governed by a
proprietary simulation package TrafficAI with rule-based semi-random driving policies.
Simulation has been updated in 0.05 s timesteps, with the ego’s control values updated
at every two steps. The direct control policy described in a previous chapter was trained
for roughly 24 h in a distributed computing setup with 100 simulation threads used for
data collection.

Figure 2. Simulation environment. Training and evaluations were performed in the simulation of a
randomly-generated multi-lane highway. Ground truth vehicles and road (light gray on the figure)
are parsed by the sensor models to produce vehicle state estimations (in blue) and lane markers
geometry model (in red). The ego vehicle (green) is controlled by the direct control policy.

4. Evaluation Setup

Evaluation of the proposed sensor models in the context of the Reinforcement Learning
policy training task comes with several challenges. Since one of the main purposes of the
RL-based driving policy is to govern interactions with other road users, the end-to-end
evaluation typically requires a closed-loop setup. On-road testing, while most informative,
poses severe collision risks due to inherent limitations of the policy trained in a ground-
truth environment.

Certain open-loop tests could be performed to assess policy’s robustness, e.g, through
the comparison of the actions chosen based on ground-truth data to the sensor-based
actions, similarly to Probably Approximate Correct sensing system evaluation methodology
described in [24]. Since models proposed in this article focus mostly on object-level radar-
based sensing systems, this method is unfortunately not feasible due to the lack of open
datasets with radar-based object detection and tracking outputs.

Considering these limitations, I evaluate the policy’s performance in two ways:
through large-scale driving tests in the simulation environment, and in the distribution
of pre-defined test scenarios. In order to provide an insight into the impact of the sensor
model’s use in the training process on the end policy performance, an additional set of
baseline sensor models (described in the next subsection) is introduced for testing and
comparison purposes. Policies trained in environments with both types of sensor models
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(proposed and baseline), as well as in the ground-truth environment, are cross-tested in all
three types of training environments.

4.1. Baseline Sensor Models

A set of baseline sensor models is used to evaluate the impact of the particular sensor
model’s design on the end policy’s performance, as well as to enable comparison of the
policy trained in the ground-truth environment to the policy trained with the proposed
sensor model in a relatively independent experimental setup. Baseline models fulfill the
following set of tasks:

• introduction of state estimation errors through the addition of Gaussian noise,
• limitation of the observed lane markers distance to a value drawn from a normal dis-

tribution,
• simulation of the false negative object detection errors by random assignment of the

binary visibility flag at each timestep,
• simulation of the false positive object detections through the creation of single-timestep

objects with normally distributed state values,
• disturbance of the observed lane markers geometry performed through adding the

Gaussian noise to the coefficients of the lane markers polynomials.

The parameterization of the models is described in Table A5.

4.2. Test Scenarios

In order to acquire an in-depth understanding of how various error patterns impact
the trained policies, they are additionally evaluated in a set of short test scenarios. Each
scenario is defined by a set of parameters that are drawn from pre-defined distributions.
This approach allows running evaluation over a large distribution of scenarios of a given
type and gathering statistical information about the agents’ performance.

Test scenarios incorporate common error patterns such as late detection of a vehicle,
state estimation errors, and false negative detection errors. Scenarios parameter distribu-
tions are defined in a way that makes scenarios relatively challenging, and the performance
is evaluated by counting a fraction of scenarios that ended in a collision with other vehicles
or a road barrier.

Each of the evaluated policies is tested in 100 sampled variants of each scenario class,
providing an insight into agents’ robustness to different types of errors.

A detailed description of the test scenarios with the parameter distributions is provided
in Appendix B.

4.3. Evaluated Policies

Training has been performed in three setups: one with the sensor models described
in a previous chapter (denoted Ornstein–Uhlenbeck-based sensor models environment,
or OU-SM), one with baseline sensor models (denoted Gaussian-based sensor models
environment, or G-SM), and one with ground-truth data (GT environment). All three
trainings were performed with identical values of training hyperparameters and simulation
parameters, listed in Table A4.

5. Results

Progress of the training in all three environments (ground-truth (GT), with baseline
Gaussian-based sensor models (G-SM), and with sensor models proposed in previous
chapters (OU-SM)) is presented in Figure 3. In all cases, the training progressed in a similar
manner, showing a rapid increase in the terminal states’ reward value, followed by a fast
increase in speed limit execution value, and a long phase of entropy decrease, resulting
in a slow improvement of rewards related to steering angle and acceleration. The final
values of all rewards are relatively close, with a noticeable advantage of the agent in the
GT environment.
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Figure 3. Training progress. Training was performed separately in environments with the described sensor
models based on Ornstein–Uhlenbeck processes (OU-SM), baseline sensor models that utilize Gaussian
noise (G-SM), and with the ground-truth sensor data (GT). Training in all environments progressed
similarly, with the agent trained in the OU-SM environment reaching a slightly lower performance.

Evaluation of the trained agents was performed in the highway simulation envi-
ronment by running 100 simulation episodes, terminated after a collision, or reaching
1000 simulation steps. The evaluation was performed in nine experimental setups, testing
the performance of each of the agents (trained in GT environment, G-SM environment,
and OU-SM environment) in each of the three training environments.

A set of Key Performance Indicators (KPIs) was calculated based on performed evalu-
ations, including the mean length of the episode (while the maximum length is 1000 simu-
lation steps, an episode can be terminated early due to collisions), the average number of
heavy braking events (defined as situations in which the agent applies acceleration below
2.0 m

s ), a fraction of episodes failed (terminated before reaching 1000 simulation steps due
to collision with other vehicles or road barrier), and other indicators. A full list of the KPIs
with the values evaluated in all experimental setups is presented in Table 1.

Table 1. Key Performance Indicators for evaluated agents. The table summarizes the evaluation
of three driving policies (GT agent - policy trained in the ground-truth environment, G-SM agent -
policy trained in the environment with baseline sensor models based on Gaussian noise, and OU-SM
agent, which was trained in an environment with sensor models proposed in previous chapters). Each
policy was evaluated in three simulation environments - with GT data, with G-SM setup, and with
OU-SM setup.

GT Agent G-SM Agent OU-SM Agent

Performance Indicator in GT
env

in
G-SM

env

in OU-
SM
env

in GT
env

in
G-SM

env

in OU-
SM
env

in GT
env

in
G-SM

env

in OU-
SM env

Mean episode length (sim steps) 977.4 716.8 291.5 925.8 927.2 804.0 907.6 941.8 910.8
Average speed [ m

s ] 27.6 27.9 26.0 29.1 29.4 29.0 26.0 26.2 27.1
Average abs steering angle [rad] 0.35 0.56 0.30 0.54 0.57 0.62 0.41 0.46 0.48
Average abs acceleration [ m

s2 ] 0.64 0.91 1.23 0.68 0.76 0.82 0.98 0.91 0.99
Heavy braking events 1.7 8.7 1.5 2.9 7.6 4.1 2.7 8.2 3.5
Fraction of episodes failed 0.03 0.48 0.84 0.04 0.07 0.27 0.03 0.02 0.03
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Trained policies were additionally evaluated in a set of test scenarios described in
Appendix B. Results of the evaluation are presented in Table 2, with a performance ex-
pressed in a fraction of the scenario episodes that ended in a collision of the ego vehicle
with a road barrier or other vehicle. Note that the parameters of the scenarios are drawn
from random distributions, and a certain subset of scenarios may incorporate situations,
in which a collision is unavoidable.

Table 2. Performance of the agents in test scenarios. Each agent was evaluated in each scenario type
100 times, where scenarios for each run were sampled from the distributions described in Appendix B.
Performance in the table is measured by a fraction of sampled scenarios evaluations that ended in
collisions (the lower the better).

Scenario Type GT Agent G-SM Agent OU-SM Agent

A. Late detection of a slow-moving
object in front, empty highway 0.16 0.23 0.06

B. A constant error of front object’s
speed estimation 0.41 0.73 0.31

C. Normally distributed error of
front object’s speed estimation 0.45 0.30 0.24

D. Normally distributed front ob-
ject’s lateral position estimation er-
ror

0.26 0.37 0.12

E. Random occurrences of false neg-
ative detection errors of front object 0.12 0.14 0.06

F. Frequent false negative road
markers detections 0.11 0.06 0.04

6. Discussion

An agent trained in the ground-truth (GT) environment achieves satisfactory per-
formance in the randomly-generated GT evaluation episodes. The ego controlled by the
trained policy reaches the speed limit in a smooth manner and is able to keep constant ve-
locity on an empty road. The presence of the slower-moving vehicles results in an expected
velocity decrease, where the agent adjusts its velocity to a vehicle in front of it, keeping a
moderate distance from it. The agent typically moves near the lane center, sporadically
performing a lane-change maneuver, e.g., when the front vehicle moves with a velocity
significantly below the speed limit.

As shown in Table 1, evaluation in the environment with proposed sensor models
(OU-SM environment) results in a significantly lowered performance. The presence of
the sensor errors results in increased absolute accelerations, due to frequently observed
late sudden breaking, and lowered overall speed. The most significant issue, however, is
related to collisions with the road barriers, reflected in significantly lowered mean episode
length. Analysis of the evaluation episodes shows three major situations in which the agent
is prone to road barrier collisions, listed below.

• Lane geometry errors in absence of nearby vehicles. Even minor geometry errors
frequently result in situations, where the agent drives close to the side of the road,
triggering the road barrier collision terminal state due to touching the road barrier.

• Late detection of the vehicle in front. Since the situation in which a slow-moving
vehicle appears in close proximity to the ego cannot be observed in the ground-truth
environment, where the vehicle is observed as soon as it enters the detection area,
the driving policy is not trained to handle such situations properly. Late detection
typically results in a severe steering maneuver in an attempt to avoid the collision.
Excessive control values applied to achieve this however result in a sharp turn, causing
a severe collision with a road barrier.

• False-positive object detections. False positives appearing in front of the ego vehicle
result in behaviors similar to the ones described in a previous point. The ego attempts
to avoid the collision through a severe steering maneuver, crashing into a road barrier
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due to an excessively sharp turn. Interestingly, false-positive objects that appear
outside the road (behind a road barrier) also seem to destabilize the control policy -
often triggering unexpected steering maneuvers that result in a collision.

An agent trained with an environment with baseline sensor models (G-SM) demon-
strates significantly improved robustness to such issues, although it still does not achieve
satisfactory performance in terms of collision avoidance, with 27% episodes in OU-SM
environment ending prematurely due to a collision.

The use of the sensor models in the training alleviates described issues. The per-
formance of the driving policy trained this way is slightly lower compared to the policy
trained in GT and G-SM environments, likely due to more cautious behaviors, such as
keeping larger distances from other vehicles. The overall behavior of the OU-SM agent
however remains similar to the GT and G-SM agents evaluated in their respective training
environments. Interestingly, the OU-SM policy tested in the G-SM environment slightly
exceeds the G-SM policy’s performance in aspects related to collision avoidance. This may
be due to more cautious behaviors learned in a response to long-lasting time-correlated
errors observed in the OU-SM environment.

Analysis of the test scenarios evaluation results leads to similar conclusions as the
evaluation in the highway driving environments. The OU-SM agent demonstrates increased
robustness to common error patterns, such as late detections and state estimation errors,
compared to the policies trained in GT and G-SM environments.

The difference in the performance is especially visible in cases of long-lasting er-
rors, such as constant velocity estimation error present in Scenario B. The presence of
time-correlated state estimation errors in the OU-SM environment likely prevented the
policy from overly relying on a small subset of observed environmental features, and the
resulting agent seems to perform reasonably well even if one of the state parameters is
severely disturbed.

Interestingly, in several test scenarios agents trained in the GT environment achieved
better performance compared to the G-SM environment. This may be caused by the G-SM
policy’s tendency to avoid severe actions. Since the observation in G-SM frequently changes
due to introduced state estimation noise, quick responses in form of large accelerations
and/or steering angles would lead to significantly lower reward values in the training.
The resulting policy is thus unable to quickly react to dangerous situations, leading to poor
performance in challenging test scenarios. Both GT and OU-SM policies are able to react to
sudden risks with more appropriately severe actions, executing harsh braking and steering
maneuvers to avoid collisions.

7. Conclusions

Performed experiments allow drawing several conclusions related to the robustness
of driving policies based on Reinforcement Learning and the impact of sensor errors on
their training and performance.

Reinforcement Learning (RL) is often proposed as a candidate for driving policies
training due to its good generalization capabilities and robustness to slight variations
in the environment. Experiments performed in this study seem to partially confirm the
generalization capabilities of RL-based policies, as the agent trained in the GT environment
is able to navigate in the traffic environment, even if the observation is severely disturbed
by the introduced sensor models. Nonetheless, the experiments with sensor models
expose several safety hazards caused by the sim-to-real gap in the policies trained in GT
environments, such as the tendency to overreact in events of late detection or false positive
detection errors.

Relatively good performance of the agent trained in GT environments may result in a
false sense of safety - so it is especially important to ensure the presence of the additional
safety mechanisms and to extensively test all machine-learning-based driving policies in
challenging environments. While the errors introduced in the SM environment in this
study were severe enough to expose the hazards, realistic sensor errors observed in good
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weather and lighting conditions may not be sufficient to trigger safety-critical errors in the
evaluation with real-world data. Possible ways to alleviate this issue include testing in
various SM environments, or the use of automatically-generated adversarial test scenarios
to ensure good coverage of edge cases [25].

High-level sensor models proposed in this publication may be utilized for both testing
and training driving policies. Policy trained in the environment with the sensor models
is able to achieve performance levels similar to ones trained in GT environments while
providing robustness against false positive and false negative object detection errors,
object and lane markers state estimation errors, as well as false negative lane markers
detection errors.

Funding: Industrial PhD carried out at the AGH University of Science and Technology realized in
cooperation with Aptiv Services Poland S.A.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Calibration Parameters

Table A1. Values of sensor models calibration parameters used in the experimental setup.

Parameter Name Value Unit Description

pµ_delay 0.3 s Mean object detection delay
pσ_delay 0.55 s Object detection delay standard deviation
pfn_prob 0.001 - Probability of false negative object detection

pfn_µ 1.47 s Mean duration of false negative object detection
pfn_σ 1.5 s False negative object detection duration standard deviation

pfp_prob 0.0175 - Probability of false positive object detection
pfp_µ 0.5 s Mean duration of false positive object detection
pfp_σ 2.8 s False positive object detection duration standard deviation

µq [4.34, 1.89]T - Mean false positive object size

Σq

[
0.21 0

0 0.01

]
- False positive object size covariance matrix

µx [45.1, 0]T - Mean false positive object position

Σx

[
19.3 0

0 0.97

]
- False positive object position covariance matrix

µψ 0.0 - Mean rotation of false positive object
σψ 0.44 - Standard deviation of false positive object rotation
µv 0.0 m

s Mean speed of false positive object relative to ego
σv 11.7 m

s Standard deviation of false positive object speed
µa 0.0 m

s2 Mean acceleration of false positive object relative to ego
σa 3.46 m

s2 Standard deviation of false positive object speed
pou_λ diag(0.5, 0.65, 0.11, 0.45, 0, 0.5, 0) - State estimation noise parameter

pou_Σ_initi diag(1.3, 1.0, 1.4, 0.7, 0, 2.2, 0) - State estimation noise parameter
pou_Σ_u diag(2.0, 1.6, 1.3, 0.7, 0, 2.5, 0) - State estimation noise parameter

plm_ou_λ_h 0.4 - Lane markers length noise parameter
plm_lim 5.0 m Mean lane markers length shortening

plm_jump 15.0 m Min lane markers length change for noise reset
pσ_h 5.6 - Lane markers length noise parameter

plm_disc_c_0 0.001 - Marker false negative probability parameter
plm_disc_l_0 0.01 - Marker false negative probability parameter
plm_disc_c_1 0.01 - Marker false negative probability parameter
plm_disc_l_1 0.01 - Marker false negative probability parameter
plm_disc_c_2 0.02 - Marker false negative probability parameter
plm_disc_l_2 0.01 - Marker false negative probability parameter

hmax 90.0 m Maximum length of lane marker
prec_hyst 0.005 - Marker false negative recovery probability parameter
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Table A1. Cont.

Parameter Name Value Unit Description

prec_pps 0.05 - Marker false negative recovery probability parameter
prec_sat 0.3 - Marker false negative recovery probability parameter

plm_ou_λ diag(5.5, 5.5, 1.5, 2.5) - Lane marker geometry noise parameter
plm_ou_Σ_init diag(2.5, 0.05, 0.001, 0.0001) - Lane marker geometry noise parameter
plm_ou_Σ_u diag(0.15, 0.007, 10−4, 10−6) - Lane marker geometry noise parameter

Table A2. Values of parameters related to direct control network and its inputs/outputs.

Parameter Name Value Description

paacc 3.5 Acceleration output scaling.
pasteer 0.125 Steering output scaling.

nmax_obj 10 Max number of observed objects.
nmax_lm 6 Max number of observed lane markers.

Table A3. Values of reward components weights for the direct control driving policy training.

Parameter Name Value Description

rspeed_limit 0.04 Speed limit execution squared.
racc −0.003 Ego acceleration squared.

rsteer −1.0 Steering angle squared.
rcentering −0.006 Lane centering.
rTTC_max 6.0 Max Time To Collision to be included in reward in m/s.

rTTC −0.01 Time to collision (inversed).
rterminal −10.0 Terminal states (collisions, speed limit violations.)

Table A4. Proximal Policy Optimization training hyperparameters.

Hyperparameter Value

Train batch size 250,000
Minibatch size 5000
Num epochs 15
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ε) 0.3
KL coefficient 0
Entropy coefficient 0
VF coefficient 1.0
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Table A5. Parameters of baseline sensor models (G-SM).

Parameter Value

Object position error covariance matrix
[

1.2 0
0 0.7

]
Velocity error variance 2.0
Object length error variance 0.5
Object length error lower limit −1.0
Object width error variance 0.5
Object width error lower limit −1.0
False positive detection probability 1 0.0575
False negative detection probability 2 0.1
Lane marker mean observed length 87.0
Lane marker observed length variance 5.0
Lane marker observed length upper limit 90.0
Lane marker coefficients errors covariance matrix diag(0.005, 0.0005, 0.00005, 0.000005)

1 Parameters of the false positive object detections are drawn from the same distributions as described in Table A1.
2 Duration of the false negatives is fixed to a single timestep.

Appendix B. Test Scenarios

Appendix B.1. Scenario A: Late detection of a slow-moving object in front, empty highway

The ego vehicle is placed on a random lane of a straight two-lane highway. After 2 s
of the simulation, the object appears in front of the ego.

Table A6. Distributions of Scenario A parameters.

Parameter Value

Ego’s initial velocity [m
s ] U (20.0, 30.0)

Object’s initial relative longitudinal position [m] N (30.0, 3.02)
Object’s initial relative lateral position [m] N (0.0, 0.32)
Object’s initial absolute speed [m

s ] N (10.0, 2.02)
Object’s acceleration [m

s2 ] N (0.0, 1.02) .

Appendix B.2. Scenario B: Constant error of front object’s speed estimation

The ego vehicle is placed on a random lane of a straight three-lane highway, with a
slower-moving vehicle placed in front of it. Velocity estimation performed by the ego’s
perception algorithm is disturbed by a constant value (object is perceived to drive faster),
while other state values remain accurate.

Table A7. Distributions of Scenario B parameters.

Parameter Value

Ego’s initial velocity [m
s ] U (20.0, 30.0)

Object’s initial relative longitudinal position [m] N (40.0, 3.02)
Object’s initial relative lateral position [m] N (0.0, 0.32)
Object’s initial absolute speed [m

s ] N (10.0, 2.02)
Object’s acceleration [m

s2 ] N (0.0, 1.02) .
Constant velocity estimation error [m

s ] 20

Appendix B.3. Scenario C: Normally distributed error of front object’s speed estimation

The ego vehicle is placed on a random lane of a straight three-lane highway, with a
slower-moving vehicle placed in front of it. Velocity estimation performed by the ego’s
perception algorithm is disturbed by a value sampled at each time step from a normal
distribution, while other state values remain accurate.
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Table A8. Distributions of Scenario C parameters. Ego and object initial state parameters are identical
as in Scenario B.

Parameter Value

Velocity estimation error [m
s ] N (0.0, 10.02)

Appendix B.4. Scenario D: Normally distributed front object’s lateral position estimation error

The ego vehicle is placed on a random lane of a straight three-lane highway, with a
slower-moving vehicle placed in front of it. Lateral position estimation performed by the
ego’s perception algorithm is disturbed by a value sampled at each time step from a normal
distribution, while other state values remain accurate.

Table A9. Distributions of Scenario D parameters. Ego and object initial state parameters are identical
as in Scenario B.

Parameter Value

Lateral position estimation error [m
s ] N (0.0, 3.52)

Appendix B.5. Scenario E: Random occurrences of false negative detection errors of front objects

The ego vehicle is placed on a random lane of a straight three-lane highway, with a
slower-moving vehicle placed in front of it. Front object perception is impacted by a
randomly occurring false negative detection error.

Table A10. Distributions of Scenario E parameters. Ego and object initial state parameters are
identical as in Scenario B.

Parameter Value

Probability of false negative detection occurrence at each time step. 0.1
Duration of false negative detection error events. [s] 0.2

Appendix B.6. Scenario F: Frequent false negative road markers detection errors

The ego vehicle is placed on a random lane of an empty straight three-lane highway.
Lane markers can be randomly removed (treated as false-negative detection errors).

Table A11. Distributions of Scenario F parameters. Ego initial state parameters are identical as in
Scenario B.

Parameter Value

Probability of lane marker false negative detection. 0.4
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