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Abstract: Clustering is an effective topology control approach that evenly distributes loads across
sensor nodes, enhances network scalability, and increases the lifetime in wireless sensor networks. In
this paper, we propose a novel energy-efficient weighted cluster head (CH) selection approach that
improves the overall performance of the network and increases energy efficiency. An optimization
strategy is proposed that emphasizes adjusting the transmission range with the appropriate node
density, which increases energy efficiency for intra- and inter-cluster communications to 86% and 97%,
respectively. In addition, the implementation of a quantum search algorithm for choosing the CH is
explained. Compared to the classical method such as EECS and HEED, the proposed quantum search
algorithm has a quadratic speed-up advantage. The classical search algorithm requires N steps to
find a specific element in an array of N elements, but instead of using a classical algorithm, Grover’s
quantum search algorithm minimizes the complexity to O (

√
N). In this work, an energy-efficient

cluster head selection approach is illustrated through a classical weighted clustering algorithm,
and its implementation is also extended through a quantum weighted search algorithm which is
demonstrated by the simulation results.

Keywords: cluster head selection (CH); clustering; classical weighted clustering algorithm; quantum
weighted search algorithm; time complexity; energy efficiency; intra- and inter-cluster communications

1. Introduction

In recent decades, wireless sensor networks (WSNs) have attracted a lot of attention,
mostly as a result of their diverse applications across a wide range of fields. Many military
and civilian applications (for example, intelligent transportation systems) integrate tasks
such as detection, classification, plus the localization and tracking of events or targets in
sensor fields [1–4]. Wireless sensor nodes communicate with each other to collect data,
process them, and then transmit the sensed data to a base station (BS). Apart from their
miscellaneous applications, energy efficiency in a WSN is still a vital issue. Wireless sensor
nodes are identified as major energy-consuming sources in WSNs [5–7]. Generally, wireless
sensors are limited in terms of their size and battery lifetime. In addition, in most cases it is
difficult to replace or recharge the sensors, hence, limitations on energy resources in WSNs
specify energy consumption is a major problem.

For the efficient conservation of energy in WSNs, various mechanisms have been used
by researchers, including single-hop, multi-hop, and cluster-based transmission. Briefly,
important parameters such as the distance between the source and the destination, as
well as path loss, are inevitable factors in multi-hop transmission [8]. Additionally, the
efficiency of multi-hop transmission will be influenced by the correlation between the
power costs of receiving and transmitting [9]. If the nodes are communicating with the
minimum amount of power necessary to reach the destination, and if that is considered to
be the total power transmitted along the path, then single-hop communication [10] would
be the most energy-efficient strategy [11]. In the sensor network, there are two different
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routing protocols: flat routing and hierarchical routing. In the flat routing protocol, the
nodes directly communicate with the base station (BS) to send data packets. Therefore, the
energy of the nodes rapidly drains out due to direct interaction with the BS. To improve
the lifetime and performance, the sensor network must utilize the least amount of energy.
For extending the network’s lifespan, scalability, and load balancing, various cluster-based
routing methods have developed [12]. The hierarchical routing models provide both
single-hop and multi-hop routing through the formation of several clusters by considering
CH in the network for improving the performance of WSN. So, cluster head selection
is important to handle the limited energy in the best possible way to uplift the network
lifetime. However, for efficient data transmission and energy management, clustering is
one of the most effective methods in WSNs [13–18]. Typically, sensor nodes in networks are
organized into several clusters, as shown in Figure 1, and each cluster has a cluster head
(CH) that collects information from each member node (sensor) in the cluster and transmits
data to the BS.
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There are numerous clustering protocols focused on transmission power control or
network topology. EECS, HEED, UCR, EECF, and others are energy-based. LEACH, C-
LEACH, I-LEACH, P-LEACH, and PEGASIS are protocols in homogeneous networks. Low-
Energy Adaptive Clustering Hierarchy (LEACH) was the first cluster-based hierarchical
routing protocol. The probability of selecting the CH in LEACH and LEACH-based
clustering networks is a totally random process with no guarantee of the number of
CHs, which adversely affects the overall performance of the network [19]. On the other
hand, transmission-power-based protocols such as EECS and HEEDS use residual energy
as a rudimentary factor, as well as intra-cluster communication cost as a secondary factor.
However, multi-hop inter-cluster communications increases the network overhead and
costs. To control the network topology, transmission power control has been widely
explored by the research community [20,21], but the interactions of transmission power
with clustering algorithms are still uninvestigated.

In this paper, we propose a modified CH selection method by assigning an individ-
ual weight to each sensor node based on its node degree, the average distance between
the CH and its member nodes, as well as this, we assign residual energy as a function
of transmission power. As mentioned, our work focuses on a homogeneous, randomly
connected network, and our goal is energy-efficient CH selection by controlling the trans-
mission power. Two nodes can communicate directly if their transmission ranges overlap,
which signifies the connectivity between them. For multi-hop communications, connec-
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tivity is a fundamental property, but because we are concerned with finding the optimum
transmission range, we must consider a fully connected network with a minimum node
degree (i.e., 1-connectivity). A network with k-connectivity (k ≥ 2) has much better fault
tolerance than a network does with only 1-connectivity, but higher connectivity requires
more power consumption [22]. Therefore, a fully connected network with a minimum
node degree (1-connectivity) is believed, in this paper, to lessen the energy consumption.
During intra-cluster communications, each node adjusts its transmission power based
on the cluster range or radius, instead of transmitting at maximum power. This ensures
that the nodes are restrained from unwanted power usage, which reduces the amount of
battery drainage. However, for fast data transmission from the CH to the BS, the maximum
amount of transmission power is needed, which resembles single-hop communications.
In a communication model, there exist several problems which can be classified into their
hardness on different categories. These problems can be categorized into four complexity
classes as: P (easy), NP (medium), NP-complete (hard), and NP-hard (hardest). The main
concept of the complexity is how efficiently an algorithm can solve a problem [23].

Hierarchical clustering algorithms are based on classical algorithms in which several
clusters are formed [24,25]. If the number of clusters and the total number of elements are
represented by k and n, respectively, then the time complexity of a hierarchical algorithm is
O(kn2). This time complexity represents time complexity that is similar to that of NP-hard
(non-deterministic polynomial) problems [26]. Hence, CH selection is generally recog-
nized as an NP-hard optimization problem [27,28], and its time complexity is equivalent
to O(kn2) if the clustering problem is solved by a classical approach. As a result, the CH
selection procedure is also time consuming. Therefore, the main challenge is to overcome
time complexity, which incurs huge computational and data processing times. In order to
improve on the time complexity problem, quantum algorithms can play significant roles.
Recently, CH selection was proposed via the Quantum Approximate Optimization Algo-
rithm (QAOA) [29]. The QAOA structure is classified into two parts: parameterization and
classical optimization. A parameterized quantum circuit consists of building a Hamiltonian
problem where the proper optimization of the parameters is essential [30]. In a parameter-

ized quantum circuit, the components of the circuit are demonstrated by
→
δ and the output

state |Φ(
→
δ )〉. The Quantum Max Cut problem solved by the QAOA needs to optimize the

circuit parameters efficiently [31]. The main problem of the QAOA algorithm is that it con-
siders each qubit (qi) as an individual node, which unintentionally limits it from forming
clusters in the whole network. For instance, IBM’s 127-qubit Eagle is the biggest quantum
computer, yet it has only 127 qubits. Consequently, the highest number of network nodes
that can be used is only 127. For a larger network (>127), the above-mentioned algorithm is
impractical. To overcome this issue, we present a new CH selection technique based on the
Quantum Search Algorithm (QSA) using weighted targets [32,33]. The platform of the QSA
is related to Grover’s search algorithm. According to Panchi et al. [34], the probability of
obtaining each search target is equal in the traditional quantum search algorithm. In order
to resolve this problem, they proposed a weighted target-based quantum search algorithm
where the probability of finding each target resembles the corresponding weight coefficient,
and it is constituted as a quantum superposition state. If all the sensor nodes are assigned
by an individual weight, then it is possible to apply the weighted-based QSA algorithm
to select the appropriate cluster head. In addition, we apply this algorithm to select a CH,
which efficiently improves the time complexity compared to that of the classical approach.
This weighted approach to Grover’s search algorithm has time complexity O (

√
n), where n

is the number of search items or, in our case, the total number of sensor nodes in the whole
network. As mentioned above, it is necessary to have individual weights for each search
item in the weighted Grover’s search algorithm, and on that account, we also propose a
weight-based algorithm that is similar to the classical approach. Moreover, we compare
the CH selections between the classical and quantum search algorithms. Our proposed
CH selection via the Grover’s Quantum Weighted Search Algorithm (QWSA) represented
the nodes as qubit states, allowing it to cover numerous networks with a limited number
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of qubits. In our knowledge, this is one of the pioneering works of cluster head selection
through Grover’s Quantum Weighted Search Algorithm.

The remainder of this paper is organized as follows. Section 2 briefly summarizes
the previous clustering algorithms. Section 3 describes the system model, including the
network models and energy models. Section 4 demonstrates the detailed approach to
CH selection based on weights, a mathematical representation of the quantum weighted
search algorithm (QWSA), and its implementation in CH selection. Section 5 presents a
performance evaluation of the proposed classical and quantum algorithms, along with
results and a discussion. Section 6 concludes the paper and briefly describes the future
work and the limitations of this research.

2. Related Work

Among the clustering algorithms, the energy-efficient clustering scheme (EECS) [20]
was proposed for effective topology control in wireless sensor networks. Under this
protocol, the nodes select a CH at the minimum distance for cluster formation. The CH
selection procedure is based on the probability of a certain threshold value between 0 and
1, which is a random process that is similar to the that of the LEACH protocol [35]. A
candidate node that is going to become a CH needs to ensure that its residual energy is
within radio range Rcompete. This radio range is inversely proportional to the square root
of kopt, which is the optimal range of the CH. Under EECS, the optimal range selection
equation is taken from the LEACH protocol, and there is no relation to transmission power
for Rcompete. Therefore, the control of optimum transmission power in the whole network is
somehow overlooked. To resolve this problem, the selection of an optimal number of cluster
heads is proposed in this work, while managing optimum transmission power. On the other
hand, in the EECS cluster formation phase, a complex cost function for distance prioritizes
only the cluster-head-to-BS distance, which eventually increases the overhead and time
complexity in the whole network. The total control of the given overhead complexity is
O(N), and to overcome this, we propose a quantum algorithm for CH selection where the
overhead complexity is reduced to O (

√
N).

Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [36] is an im-
provement over the LEACH protocol. The fundamental idea behind PEGASIS is for each
node to communicate with and send data to its immediate neighbors, while they take turns
acting as the leader, transmitting to the BS. The nodes arrange themselves into a chain by
using a greedy algorithm. The data transmission is direct between the leader and the BS
within a fixed transmission range. However, an adjustment of the transmission power level
in the whole network is not discussed.

Energy-efficient unequal clustering (EEUC) [37] was proposed for multi-hop routing.
This clustering technique is based on competition range Rcomp as a function of the distance
to the BS. As the node moves farther from the base station, its competition range becomes
narrower. Consequently, reduced cluster sizes are anticipated for the clusters that are
closer to the base station. Although this protocol is efficient in intra-cluster communication,
inter-cluster communication increases the energy overhead complexity O(N) due to multi-
hop routing.

Energy-Efficient Cluster Formation (EECF) [38] is known for being a distributed
clustering protocol that considers the node degree and residual energy for cluster head
selection. There is no mention of re-adjusting the transmission power level during each
round, but a fixed transmission range for at least one cluster head cannot guarantee efficient
communications. Like EECS, EECF has a worst-case algorithmic complexity of O(N) at
each node.

The Hybrid Energy-Efficient Distributed (HEED) [8] protocol considers CH selection
based on the ratio of the estimated current residual energy in a sensor node and its maxi-
mum energy. Transmission power level control can be optimized by setting one specific
cluster power level for intra- and inter-cluster communications. The connectivity require-

ment setting cluster range Rt ~
√

log n
n (where n is the total number of nodes) is for a unit
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square region in intra-cluster communications. However, the probability of connectivity in
the whole network does not consider any specific limit on the transmission range, and no
detailed explanation is given. Node density (ρ) and node degree (d) play essential roles
in establishing connectivity in the network, but under the HEED protocol, it is somewhat
questionable to not consider those parameters. To resolve this issue, we studied minimum
network connectivity where at least one node in the network can connect to achieve the
optimum transmission power level depending upon node density. Another important
point is to consider the time complexity, which is O(N) per node under this protocol. To
the best of our knowledge, there is still no classical algorithm that can improve on this
time complexity.

Researchers in quantum computing have been researching quantum algorithms that
can outperform classical algorithms. Due to the advancements in quantum hardware and
the inherent features of quantum entanglement, quantum computing has demonstrated
promising advantages over classical counterparts in a wide range of applications [38–40].
Grover’s quantum search algorithm has been extensively studied over the past few decades,
including theoretical explanations of the algorithm’s effectiveness and its utilization in a va-
riety of problem domains. Quantum computing using Grover’s search algorithm performs
a database search, and it quadratically outperforms the classical counterparts in terms of
time. Classical NP-hard tasks can be performed on quantum computers in polynomial
time, showing a tremendous increase in speed over that of the classical computers [41].

3. System Model
3.1. Network Model

The following properties are used to simplify the network model, with a few reason-
able assumptions.

X The sensor nodes and the base station are assumed to be stationary once they are
deployed in the environment.

X The base station is aware of each sensor node’s location.
X A sensor node determines its neighbor node(s) within a specific distance.
X All sensor nodes are homogeneous in terms of their energy and processing capabilities.
X The basic component of intra- and inter-cluster communications is the single hop.
X Communication is symmetric, and a sensor node can compute the approximate

distance based on the received signal strength if transmission power is given.
X Two nodes can communicate with each other via wireless link if they are within range.
X The base station is not limited in terms of energy, memory, and computing power.
X The sensor nodes are eligible to determine their own power levels via the standard

system call [42].

Considering a set of n network nodes, each node is independently and randomly
placed in a two-dimensional simulation area (A). A uniform random distribution is used
such that for a large network (n) and a large area (A), we can define a constant node

density, ρ =
n
A

, which denotes the expected number of nodes per unit area. A radio
link model is assumed in which each node has a specific transmission range to represent
wireless communications between the nodes. If two nodes are within range of one another,
they can directly communicate through a wireless link. To establish connectivity in the
whole network, a necessary condition is that each node has at least one neighbor node
(dmin > 0) [9]. If the node degree is defined by d(n), then the minimum node degree of a
network is denoted as:

dmin(N) = min{d(n)} (1)

Therefore, a node is considered to be isolated if d = 0. From the definition of a k-
connected network, each node pair has at least k mutually independent path(s) (k = 1,
2, 3 . . . ), and the probability of that network is indicated with P(k-con). In our analysis,
we consider k = 1 to represent the probability of a 1-connected network, P(1-con), so a
network is steadily connected if P(1-con) ≥ 0.95 [43]. Because we are interested in finding
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the optimum transmission power for the whole network, it is dependent on the distributed
node density (ρ) and the contemplated node degree (dmin > 0). If no node is isolated, then
the transmission range (r0) can be represented as a function of node density and probable
node degree, as proposed by Bettstetter [22].

P (dmin > 0 ) = Pnon−iso = ∏n
u=1Pnon−iso = (1− e−ρπr2

)
n

(2)

The transmission range of each node is denoted with rtx. By adding ln to both sides of
Equation (2), we can determine the transmission range as follows [22]:

rtx=

√
− ln (1− Pnon−iso

1
n )

ρπ
(3)

The significance of this equation is demonstrated by the following example.

Example 1: Consider a network of totally deployed sensor nodes, n = 100, in a square area,

A = 100 m × 100 m, which yields a node density of ρ =
n
A

=
100

100 × 100
= 0.01 m−2.

If the probability of connectivity is P = 0.94, then the transmission rangertx can be calculated
with Equation (3):

rtx=

√√√√√− ln (1− 0.94
1

100 )
0.01 ∗ π

= 15.0 m

If the transmission range rtx = 15 m, then Figure 2a depicts two nodes that are isolated.
In order to connect at least one of those nodes, the transmission range needs to be modified.
For this reason, the probability of connectivity needs to be p ≥ (0.95) to reconnect the nodes.
Here, we consider p = 0.99. Therefore, the modified transmission range will be:

rtx=

√√√√√− ln (1− 0.99
1

100 )
0.01 ∗ π

= 17.12 m
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Figure 2. (a) Isolated nodes are found. (b) By increasing transmission range rtx, connections are
established in the whole network, and no isolated nodes are observed.

After increasing the transmission range to 17.12 m, as shown in Figure 2b, the whole
network is connected. Therefore, the node degree and the node density are considered in
designing an adjustment model of the transmission range to establish an energy-efficient
network with full reachability.
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3.2. Energy Model

We used a simplified energy model shown in [15] for radio hardware energy dissipa-
tion transmitting an l-bit message (ETX) with distance d as follows:

ETX(l, d) =
{

l ∗ Eelec + l ∗ ∈ f s ∗ d2; d ≤ d0 (4)
l ∗ Eelec + l ∗ ∈mp ∗ d4; d ≥ d0 (5)

All parameter descriptions are in Table 1.

Table 1. The energy model’s parameters and their descriptions.

Parameters Description

Eelec
Energy required to run the transmitter

or receiver

∈ f s
Amplifier’s power loss for

a short distance, called free space

∈mp
Amplifier’s power loss for

a long distance, called multipath fading

dnon−CH to CH (d2) Distance from a non-CH to a CH

dCH to BS (d4) Distance from a CH to the BS

d0 =
√ ∈ f s

∈mp
Threshold transmission distance

EDA∗ Data aggregation

When receiving data, the radio expends the following [35]:

ERX(l) = l ∗ Eelec (6)

Additionally, the energy dissipated by the cluster head during a single frame is:

ECH = l Eelec (m− 1) + l EDA m + lEelec + l ∈mp d4 (7)

Assuming that there are N nodes which are distributed uniformly, if there are k

clusters, then on the average number of nodes per cluster, m =
N
k

. Each CH dissipates
energy by receiving signals from the nodes, collecting the signals, and transmitting the
gathered signals to the BS. The energy required in each non-cluster-head node can be
expressed by [35]:

Enon−CH = lEelec + l ∈ f s d2toCH (8)

4. Proposed Clustering Algorithm
4.1. Expected Number of Clusters

Before the selection of the CH, it is necessary to define the expected number of clusters
in the network. Using the following computation and connectivity model, we analytically
estimate the expected number of clusters (kopt). Let us assume there are N nodes which
are distributed uniformly in area A. The nodes are stationary, and therefore, the density
is constant. The transmission area of a sensor node can be assumed to be AS = πrtx

2,
where rtx is the transmission range of the sensor node (from Equation (3)). As mentioned
before, transmission range depends on node connectivity and density, and using these
two assumptions, the expected number of clusters, En, is computed as En = A

AS
. An

illustrative example is given to clarify the above assumptions: nodes n = 100, and area
A = 100 m × 100 m. Because the nodes are stationary, the node density ρ = n

A = 0.01 m−2.
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From Example 1, we already found that our expected transmission range is 17.12 m. The
transmission area of one sensor node will be AS = πrtx

2 = [3.1416 × (17.12)2] = 921 m2.
Now, we must calculate the expected number of clusters by dividing the entire sensing
area through the obtained transmission area:

Expected number of clusters En=
100× 100

921
≈ 10.

4.2. CH Selection Approach (Classical)

Based on the preceding assumptions, in this work, an algorithm called the classical
weighted clustering algorithm (CWCA) is proposed to efficiently combine the necessary
parameters, such as the node degree, node-to-node average distance, and current residual
energy, with certain weighting factors being chosen according to the network system. In
wireless networks, for instance, power regulation is crucial, and hence, the weight of the
corresponding parameter might be larger. The adaptability from altering the weighted
variables enables us to apply this proposed method across different networks. A predefined
value/threshold for node degree needs to be set in the clusters to ensure that the cluster
heads are not encumbered and that throughput is achieved by optimizing the number
of member nodes of each cluster head (the node degree). In addition, the battery power
of a sensor node needs to be effectively utilized within a particular transmission range;
for instance, communication between the nodes will use less power if they are close to
one another. Since a CH is responsible for additional tasks, it uses more battery power
than an ordinary node does. It can interact more smoothly with the neighbors within the
transmission range and those located closer to it. Due to signal attenuation, communication
between the nodes and the CH becomes challenging as the distance increases. According
to [44], this has been considered for wireless ad hoc networks, so we modified it, and we
propose it for our algorithm. Considering all the above preliminaries, the CH selection
procedure consists of the following steps.

Step 1: Within transmission range, find the neighbors of each node, s, which define their
node degree, ds, as follows:

ds = | N(s)| = ∑
n∈S
{dist(s, n) <rtx} (9)

where ds represents the degree of each sensor node s; S = the set of sensor nodes; n = the
neighbors of sensor node s; rtx = the transmission range of sensor node s.
Step 2: Evaluate the degree difference, d f , for every node.

d f = | ds − γ| (10)

where d f = the current node degree of the sensor node, and γ = the expected or predefined
node degree.
Step 3: Compute the sum of the distances of the member nodes within the transmission
range, and find the average distance, Davg:

Ds = ∑n∈ S(s){dist(s, n)} (11)

Average distance Davg = ∑ Ds

ds
.

Step 4: Compute the residual energy to find the node with the highest energy level:

Es =
Ere(s)
Ei(s)

(12)

where Ere(s) = the residual energy of node s, and Ei(s) = the initial energy of node s.
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Step 5: Calculate combined weight, Ws, for each node s which might become a CH. The
lowest weighted node will be chosen as CH:

Ws = w1∆s + w2Davg + w3Es (13)

where w1, w2, and w3 are the weight factors for the corresponding system parameters. The
node with the minimum weight will be selected as the cluster head, so:

w1 + w2 + w3 = 1 (14)

The first component, ∆s, or the node degree difference, is the important factor for a
CH in order to control several nodes in its cluster. This also ensures that the CH is not
overloaded, and the efficiency of the system is retained at the intended level. The second
component Davg, is mainly related to energy consumption because more power is required
to communicate over a larger distance. It is important to find the node which is located
at the center of a cluster. The last component, Es, contemplates a sensor node’s available
battery power. The CH battery drainage will occur quickly compared to that which occurs
in other nodes. Within the transmission range, each node compares its energy level with
the other nodes. The node with the highest energy level has an increased probability of
becoming the CH. Overall, this term is dependent on the node’s starting power along with
the power needed over time based on the network traffic. The flowchart for the proposed
cluster head selection is presented in Figure 3.
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An Illustrative Example

In our proposed classical weighted algorithm, we assume that 15 nodes are initially
deployed in an area 50 m × 50 m, as shown in Figure 4a. The red arrow shows each node’s
transmission range (rtx), which is equal for all of the nodes, and the dotted circles represent
the transmission area (As). Figure 4b identifies the neighbor(s) of sensor nodes within the
transmission range rtx. For instance, node 11 has only one neighbor within the transmission
range rtx, whereas node 10 and node 2 have five and three neighbor nodes, respectively.
Therefore, in Table 2, the current node degree ds is calculated according to Figure 4b. The
degree difference is important and needs to be set, otherwise, some clusters will be heavily
loaded, and others will be lightly loaded. To quantitatively determine the well-balanced
clusters in our algorithm, we use the following expression for degree difference:

γ =
N − kopt

kopt
(15)
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Table 2. Calculation of CH selection parameters, and implementation of the CWCA.

Node ID Current Node
Degree, ds

Current and Expected Node
Degree Difference,
df=|ds−γ| (γ = 7)

Normalized Node
Degree Difference,

∆s= |ds−γ|
γ

Sum of All Member
Node Distances

∑DS

Average Distance

Davg= ∑Ds

ds

Energy Ratio

Es=
Ere(s)
Ei(s)

Total Weight
Ws

1 3 4 0.57 11 3.67 1 1.23

2 3 3 0.43 12 4 1 1.20

3 2 5 0.71 10 5 1 1.60

4 2 5 0.71 15 7.5 1 2.10

5 4 3 0.43 9 2.25 1 0.85

6 2 5 0.71 3 1.5 1 0.90

7 4 3 0.43 16 4 1 1.20

8 3 4 0.57 6 2 1 0.90

9 2 5 0.71 12 5 1 1.60

10 5 2 0.29 10 2 1 0.70

11 1 6 0.86 6 6 1 1.90

12 2 5 0.71 11 5.5 1 1.70

13 4 3 0.43 7 1.75 1 0.75

14 5 2 0.29 12 2.4 1 0.78

15 3 4 0.57 13 4.33 1 1.37
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In this example, the total number of nodes n = 15, the area A = 50 m × 50 m, and

the node density ρ =
n
A

=
15

2500
m−2 = 0.006 m−2. Hence, no node is isolated, based on

Figure 4a, and the probability of connectivity will be 99%. Now, we can determine that our
expected transmission range from Equation (3) is 20 m. Therefore, the transmission area
of each sensor node (AS = πrtx

2) will be 1256 m2. The expected number of clusters (kopt)

for area A can be computed as En =
50 × 50

1256
≈ 2. From Equation (15), we calculate the

expected node degree difference (γ) as 6.5~7. The sum of the distances, DS, for each sensor
node is shown in Figure 4c, where the unit distance was chosen randomly. To ensure that
the probable location of the CH is in the center, we consider the average distance, Davg,
instead of taking the sum of DS. Because long-distance communication consumes more
energy, Davg minimizes the intra-cluster communication energy consumption. In the next
step, we calculate residual energy Ere(s) for the candidate cluster heads. Now, in the final
step, the minimum weighted node will be selected as the CH.

The weighting factors which are assumed in order to calculate total weights in Table 2
are w1 = 0.7, w2 = 0.2, and w3 = 0.1 [44]. We note that weighting factors are chosen randomly,
such that w1 + w2 + w3 = 1. This is basically used to normalize the appropriate combination
of weighting factors, such as the degree difference, the distance from neighboring nodes,
and the energy usage. By adjusting the weighting factors, the combination of various
eligibility requirements can be set in a suitable way. In our example, node degree has the
highest priority as a result, so the weight w1 = 0.7 is chosen to represent the node degree.
In this experiment, each node begins with only 1 J of energy. Therefore, the energy ratio is
one, as depicted in Table 2 for all of the nodes. From Table 2, the lowest weighted nodes,
which are node no. 10 and node no. 13, will be selected as the cluster heads. It is worth
mentioning that no two cluster heads are adjacent neighbors. We found that all member
nodes of each cluster are quite close to the desired node degree set earlier: γ = 7. Figure 4d
clearly identifies the CHs and the member nodes. The member nodes that are outside of
the selected cluster head’s transmission range (nodes 11, 3, 12, and 7) will send their data
to the nearest neighbor node within the transmission range.

4.3. CH Selection Approach (Quantum)

Before conducting CH selection through QSA, we must discuss the basics of the
weighted Grover’s search algorithm. We want to search for one specific item in a search
space that consists of N elements. For instance, we assume N = 2n, which states that the
index of the search items can be kept to n bits. Additionally, the search problem has exactly
M solutions within the range of 1 ≤ M ≤ N. The algorithm starts with the state: 〈0|⊗ n.
The algorithm starts with 〈0|⊗ n state which can be transformed into a superposition state
via Walsh–Hadamard transformation [34]:

|Φ〉 = 1√
N
(|0〉+|1〉+ . . .+|q1〉+ . . .|qM〉+ . . .+|N − 1〉) (16)

where |q1〉 , |q2〉 , . . . . . . . . .|qM〉 are the marked states, and the set is Q = {q1, q2, . . . . . . . . . qM}.
If these marked states have weighted coefficients, which are denoted as wq1 , wq2 . . . . . . .
wqM , they must satisfy ∑i∈Q wi = 1, wi < 0, as the denoted degree of significance of each
search item. From [34], it can be written as:

|q〉= ∑N−1
i=1 ci〈i|=

{
∑
√

wi
∣∣i〉

0|i〉 (17)

Based on Equation (17), the Oracle operator can be stated as follows:

O = I− 2 | q〉 〈q | (18)
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After assigning the weight coefficients in Equation (16), it can be represented by the
following expression:

|Φ〉 = x0|0〉+x1|1〉+xq1

∣∣q1
〉
+ . . . + xqM

∣∣qM
〉
+ . . . + xqN−1

∣∣N − 1)
〉

= ∑N−1
i=1 xi|i〉

(19)

Now multiplying Equation (18) with Equation (19), which gives system state using
Oracle operator O and it can be represented as follows:

O|Φ〉=|Φ〉∗[I− 2| q〉 〈q |]
=|Φ〉−(2 | q〉 〈q |)|Φ〉
=|Φ〉− 2 |q〉 〈q|Φ 〉

= ∑N−1
i=1 xi|i〉|−2 ∑N−1

i=1 ci|i〉| 〈q|Φ〉

(20)

The iterative equation can be constructed from [45], and the first sub-step of the
superposition becomes:

|Φ〉(t+
1
2 ) = ∑N−1

i=1 xi
(t)|i〉−2 ∑N−1

i=1 ci|i〉〈q|Φ〉 (t) (21)

The second sub-step of the equation is:

|Φ〉(t+1) = 2 ∑N−1
i=1

〈
Φ(t+ 1

2 )
〉
|i〉 −∑N−1

i=1 xi
(t+ 1

2 )|i〉 (22)

Now, after inserting the value of |Φ〉(t+ 1
2 ) into Equation (22), we obtain:

|Φ〉(t+1) =2(∑N−1
i=1 〈xi

(t) − 2〈q|Φ〉(t)〉|ci)〉 − xi
(t) + 2 ∑N−1

i=1 ci|i〉 〈q|Φ〉(t) (23)

The term 〈q
∣∣∣Φ〉(t) above can be written with the following assumptions:

〈q|Φ 〉t= V sin(ωt + ϕ) (24)

The parameters of Equation (24) are obtained as follows:

V = 1 (25)

ω = 2 arc sin(〈q|Φ 〉) (26)

ϕ = arc sin(〈q|Φ 〉) (27)

If |Φ〉 is equal to the superposition state, |q〉 , after some iterations, then the success
probability should be equal to one, which means (〈q|Φ 〉)2 = 1. The success probability can
be illustrated after t Grover iterations, as follows [46]:

t = CI
( π

2 − ϕ

ω

)
= CI

(
acr cos 〈q|Φ〉
2arc sin 〈q|Φ〉

)
(28)

where CI means integer closest to the real number.
In terms of security perspective, the quantum algorithm is more reliable than the

classical algorithm is [47,48]. Quantum algorithms are superior to their classical analogues
when the input exists in a superposition state. In our case, all of the node information is
encrypted in the superposition state which ensures high degree of security [49].

An Illustrative Example of the Quantum Approach

In our proposed quantum weighted algorithm, as mentioned before, the limitations
on the number of qubits are the main obstacles in quantum computing systems. Therefore,
we only used an n = 4 qubit system to simulate the performance of our proposed quantum
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algorithm. Before approaching the quantum part, it is worth mentioning that in some
previous research of clustering algorithms, such as EECS, all of the nodes need to send
a message to the BS, and the CH needs to send at least three messages, which heavily
increases the overhead complexity. Under HEED, a CH probably generates at least N
iterations, which is a similar range of time complexity: O(N). Our main approach to
implementing a quantum algorithm for CH selection is to reduce the time and overhead
complexity. In a quantum computing system, CH selection can be achieved from one to two
iterations using Grover’s weighted search algorithm, which reduces overhead complexity
to O (

√
N).

The above-mentioned nodes, N = 16 = 24, can be formed into a superposition state
with four qubits. Therefore, the initial state can be written from Equation (16):

|∅〉= 1√
16

(|0000〉+|0001〉+|0010〉 . . . . . . . . . . . . . . . . . .+|1111〉 )

where |0000〉 , |0001〉, |0010〉, . . .|1111〉 represent node 1, node 2, node 3, . . . node 16, re-
spectively. Our probable CHs are node 10 and node 13 which is the marked state. Grover’s
algorithm will search for this marked state within one iteration, which can be proven by
the mathematical formulation and IBM’s QISKIT quantum simulation.

In the classical CWCA algorithm, the nodes with the lowest weights, node 10 and
node 13, will be eligible for CH selection. However, in a quantum algorithm, the highest
weighted node will be selected as the CH. Therefore, to select the CH in the quantum
approach, all of the nodes’ corresponding weights need to be inverted, which is called
inversion about the mean. In this process, the nodes’ average weights will be calculated,
and then, each node’s corresponding weight is subtracted from two times the average
value. By this process, we obtain new values for the nodes. From Table 3, we can see
that the lowest weight nodes become the highest weighted ones. The target that needs
to be found must be the node that has the highest weight under Grover’s search algo-
rithm. Using the traditional search algorithm, the complexity is linear, but Grover’s search
algorithm will predict comparatively better complexity. In terms of function, the above
expression becomes:

Table 3. Our quantum algorithm based on weighted target parameters, and its implementation.

Node ID Node State Node Weight (Wi)
Inversion of Mean Value

Winv = 2 ∗Wi + Wavg

1 |0000〉 1.23 1.27

2 |0001〉 1.20 1.30

3 |0010〉 1.60 0.90

4 |0011〉 2.10 0.40

5 |0100〉 0.85 1.65

6 |0101〉 0.90 1.60

7 |0110〉 1.20 1.30

8 |0111〉 0.90 1.60

9 |1000〉 1.60 0.90

10 |1001〉 0.70 1.80

11 |1010〉 1.90 0.60

12 |1011〉 1.70 0.80

13 |1100〉 0.75 1.75

14 |1101〉 0.78 1.72

15 |1110〉 1.37 1.13

16 |1111〉 Null Null

Average weight Wavg = 1.25 Winv_avg = 1.25
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f (x) =
{

1, i f the weight is highest
0, i f the weight is lowest

(29)

Since, Grover’s algorithm based on weighted targets requires

∑n
i=1ωi = 1 (30)

it means the sum of all of the search target node weights should be one. To obtain the sum
value of one, it is necessary to normalize the corresponding weight values. Normalization
can be performed via the following formula:

ωi =
Winv

∑n
i=1 Winv

(31)

where n is the number of candidate nodes. From Table 3, we can see that our candidate
nodes are 10 and 13. The sum of their inverted weights is 3.55. As a result, when the
normalized weights of node 10 (=0.51) and node13 (=0.49) are added together, they equals
one. As mentioned earlier, Equation (16) represents the initial state of the nodes. Our
marked state is constructed as follows:

|q〉=
√

0.51
∣∣∣1001

〉
+
√

0.49
∣∣∣1100

〉
(32)

Now, the iteration steps can be found with Equation (28) by applying the original
Grover’s algorithm, which comes from [50]:

t = CI

 π

2
− ϕ

ω

 = CI

 arc cos
√

m
N

2arc sin
√

m
N

 (33)

where m = number of candidate nodes/CH nodes, and N = total number of maximum nodes.
Table 4 shows that when comparing both iteration values, Equation (28) depicts a value

that is closer to two. Therefore, it can be stated that the targets from Grover’s weighted
search algorithm are more perfect than the original Grover’s search algorithm ones are.

Table 4. Iterations for finding the target nodes.

Angular Frequency ω Phase Angle ϕ
Iteration Steps Via

Equation (28) t0

Iteration Steps Via
Equation (33)

0.6908 0.3454 1.77∼2 1.60

5. Performance Evaluation
5.1. Classical Approach

First, we discuss the classical clustering performance evaluation. We are interested
in optimizing the transmission range, which depends highly on node density. In a WSN,
the nodes are stationary after deployment, but it is necessary to deploy sensor nodes
wisely because, in our network model, we introduce the network connectivity equation as
a function of the transmission range, which is related to node density and the number of
sensor nodes in each cluster.

From Table 5, we can see that the relationship between the expected number of clusters
and the transmission range is reciprocal. The transmission range rtx needs to be higher
if the expected number of clusters decreases. If we can change the network area, for
example A = 100 m × 100 m in Table 5, and if the number of nodes is 100, the node density
will be 0.01 m−2, which is an increase from the previous node density. According to the
calculation, the transmission range has decreased from 34 m to 17 m, but the number of
clusters remains the same. This illustration, along with data from Table 5, demonstrates
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how the transmission range will decrease as node density increases. Figure 5a shows
the relationship between total number of sensor node and transmission range. When the
number of clusters increases, transmission range decreases that is depicted in Figure 5b.

Table 5. Transmission range for a fixed network area and different node densities. (Probability of
connectivity is 0.99).

Network Area (A) No. of Sensor Nodes (N) Node Density (ρ) m−2 Expected Number
of Clusters

Transmission
Range (rtx) m

200 m × 200 m

500 0.0125 46 16.59

450 0.01125 42 17.40

400 0.01 38 18.36

350 0.00875 33 19.51

300 0.0075 29 21

250 0.00625 25 22.70

200 0.005 20 25

150 0.00375 16 29

100 0.0025 11 34

50 0.0013 6 47
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In a practical sense, the selection of the optimum number of clusters should be energy
efficient and consume low level of power. In order to select energy-efficient cluster heads,
it is essential to calculate the energy consumption between the CH and its member nodes,
which is referred to as intra-cluster communications, and between the CH and the BS,
which is inter-cluster communications. In the next step, we must characterize intra- and
inter-cluster energy consumption, and determine how much energy is saved for different
cluster formations through the energy model discussed in Section 3.2. It is worth depicting
how, in a cluster, the node consuming the most energy is the CH because it needs to gather
information from its member nodes, aggregate their data, and then send them directly to
the BS (in our model, we assume that there is single-hop communication with the BS). For
this reason, we show the energy dissipation of each member node and the CH separately.
In our energy calculation, the power levels of data from the Berkeley CC2420 chip set [51]
are used. Before starting the computation, some parameters (showed in Table 6) need to
be set (Eelec = 50 nJ/bit, e f s = 10 pJ/bit/m2 and emp = 0.0013 pJ/bit/m4, EDA = 5 pJ/bit
per signal) from [35].
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Table 6. Computation parameters and values.

Parameters Values

Sensing Region 200 m × 200 m
N 50

Eelec 50 nJ/bit
e f s 10 pJ/bit/m2
emp 0.0013 pJ/bit/m4
EDA 5 nJ/bit per signal

Data packet size (l) 1 packet = 800 bits

We consider that one cluster has eight member nodes which need to send one packet of
data to the corresponding CH. Therefore, each member node’s transmission energy per packet
can be calculated from Equation (8): 43.2 µJ/packet (distance to the CH, dto CH = 20 m). In
intra-cluster communications, the CH receives a total of eight packets from its member nodes,
which consumes 3200 µJ, as calculated from Equation (6). The total energy consumption of
intra-cluster communications is shown in Table 7.

Table 7 clearly shows that as the number of clusters increases, energy consumption
decreases, just as energy savings increase in the network. The next step for energy con-
sumption is from the CH to the BS, (inter-cluster energy consumption). From Equation (7),
CH energy consumption can be calculated. The total inter-cluster energy consumption is
shown in Table 8.

We note that the transmission power level should be at a maximum value for inter-
cluster communications. From Table 8, we can see that very low inter-cluster transmis-
sion energy is required if the number of clusters increases. Therefore, in both intra- and
inter-cluster communications, energy savings is at the highest level when the cluster
size increases.

5.2. Quantum Approach (IBM’s Quantum Simulator Results and Discussions)

The second phase of the performance evaluation shows the results from the CH
selection formulated using Grover’s weighted search algorithm in IBM’s quantum simulator
(QISKIT). In the initialization of this algorithm, the quantum states |0〉⊗n and |1〉 are set to
an equal superposition state, which can be achieved by implementing a Hadamard gate
(H) for each qubit. For this simulation, the algorithm needs five qubits, where one qubit
(q4) represents an ancilla/auxiliary qubit that is initialized to state |1〉 by applying a NOT
(X) gate, as shown in Figure 6a. After the implementation of the Hadamard gate (H), the
amplitude can be represented by 1√

N
. The next step is to build an Oracle to mark the state.

This Oracle can be made by a CZ gate which is a combination of a Hadamard gate and
a controlled X (CNOT) gate for a two-qubit system. Our required target states are |1001〉
and |1100〉, which represent node 10 and node 13. Therefore, to build an Oracle with four
qubits, we need to use a quadruple-controlled (cccc-X) gate that can be constructed using a
Multi-Controlled Toffoli (MCT) gate, as shown in Figure 6b. Then, we build the circuit by
creating a superposition of all of the states, and the final (ancilla) qubit needs to be placed
in the |−〉 state (negative), as required.
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Table 7. Energy calculation of intra-cluster communications.

No. of Clusters
No. of Member Nodes

in One Cluster

Average Distance from
a Member Node to the

CH (Assumption)

Transmission Energy
(ETx (µJ)/Packet) from

Member Nodes

Transmission Energy
ETx(µJ) from
One Cluster

Receiving Energy
ERx(µJ) of the CH from

One Cluster

Total Energy in the
Cluster (Millijoules) Energy Savings

1 50 90 104.8 5240 20,000 25.24 1%

2 25 85 97.84 2445 10,000 12.45 51%

3 16 60 73.8 1181 6400 7.58 70%

4 12 50 60.6 720 4800 5.52 78%

5 10 30 47.2 472 4000 4.47 82%

6 8 20 43.2 346 3200 3.55 86%

Table 8. Energy calculations for inter-cluster communications.

No. of Clusters No. of Member Nodes in
One Cluster Non-CH Node (m−1) Average Distance from CH

to BS (m) (Assumption)
Transmission Energy of the
CH per Cluster (Millijoules) Energy Savings

1 50 49 20 110.01 1%

2 25 24 25 27.51 75%

3 16 15 30 11.28 89%

4 12 11 35 6.35 94%

5 10 9 40 4.43 96%

6 8 7 45 2.85 97%
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Figure 6. (a) Initialization of the quantum circuit; (b,c) represent Oracle marked states |1001〉 and
|1100〉, (Note: the #1100 element is marked as (lsb to msb)); (d) the diffusion operator to invert the
mean; (e) the complete quantum circuit ready to run on a simulator or quantum system to find the
target element with high probability.

The next stage in Grover’s algorithm is related to implementing a diffuser, which is
also called the amplification stage, which inverts the average of the amplitudes. This can
be accomplished using the formula HRH, in which H is the Hadamard transform, and R
is a phase shift transform [41]. The amplitudes of the N possible states associated with
the newly decreased mean are inverted by a diffuser. The target state’s negative phase is
reversed by this inversion, which also contributes to differentiating the target from the
other states. The last and final step is the measurement of the qubits. After conducting this
measurement, the qubits are not in the superposition state, and they collapse to give the
outcome of one of the possible states.

The execution of the proposed quantum algorithm is performed on IBM’s Qasm-
Simulator, with the results being shown in Figure 7. The marked states are found within
(t0) = 2 iterations with 1024 shots, as shown in Figure 7a. If we increase the number of
shots to 8192, then the probability of finding the states remains the same at the highest
values of the two states.
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The above results indicate that for the two states, |1001〉 and |1100〉, the probabilities
are 40% and 37%, respectively, which means if we run the algorithm every time, the
two states will have the highest probability. Within two iterations, we will reach our
probable destination. There are negligible discrepancies between the theoretical values
of the iterations and the simulation results because if we increase the iteration values in
the simulator, then the probability of success will increase by around 10%, but we can
still obtain the same state with the same results. Therefore, we can state that with the
two single Grover’s operator, the desired results can be found. The maximum number of
iterations for this experiment is O ( π

4

√
N), where N = 16 nodes. However, here, we can

see that within two iterations, we can find our target state. If we increase the number of
iterations (t0) of Grover’s operator, the algorithmic success probability (ASP) will be high.
In the classical algorithm, in order to find the search state, we need to check each value (in
the worst case) for the required time complexity O(N). For time complexity, the quantum
algorithm surpasses the classical algorithm in terms of the CH selection procedure. In sum,
this reduction in time will improve the overall performance of the network by decreasing
the end-to-end delay and power consumption.

6. Conclusions and Future Lines of Research

This paper introduced an optimization approach for a WSN-based hierarchical net-
work with the focus on topology control as a function of the transmission range and power.
A new approach to cluster head selection (in both classical and quantum computing) at-
tributed to transmission power will help to establish an energy-efficient network. The
factors (the node degree, average distance between nodes, and energy consumption) which
are essential for CH selection and proposed for the CWCA algorithm are scalable in terms
of weight. MATLAB simulations of the classical algorithm show that around 86% and
97% of the energy efficiency is achievable in the whole network for intra- and inter-cluster
communications, respectively. On the other hand, by reducing the time complexity and
with a faster search for CH selection, an improved weighted target-based quantum search
algorithm was proposed. By implementing the QWSA algorithm, the cluster head can be
selected within two iteration steps, which is a favorable agreement between the mathematic
approach and the QISKIT simulation result.

A probable limitation of the CWCA technique is that it requires a computationally
expensive system when taking into account a large number of cluster heads. It will also
be necessary to evaluate the end-to-end reliability and the delay in the sensor data. In
addition, it is essential to ensure security in the cluster head selection process such as
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identify selfish and duplicate nodes. Future research directions will focus on implementing
the proposed QWSA algorithm in significant networking systems. Now, the performance is
bounded because of the limited number of qubits. For instances, if we increase the number
of qubits by two times, we can easily implement this algorithm for about 256 (28) nodes,
and increasing it by three times the number of qubits in the simulation can cover up to 4096
(212) nodes in the whole network.

We also demonstrated that qubit selection can have a significant impact on how
the quantum algorithms are implemented, and researchers will need to pay attention to
this when they are trying to accurately implement algorithms in the future. IBM and
other experts in quantum computing are continuously enhancing and introducing new
quantum devices. In the future, it will be essential to follow the development of these
new and advanced devices to gain a sense of how rapidly quantum computing technology
is progressing.
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