
Citation: Lee, H.-K.; Han, S.-H.; Lee,

D. Kernel-Based Container File

Access Control Architecture to

Protect Important Application

Information. Electronics 2023, 12, 52.

https://doi.org/10.3390/

electronics12010052

Academic Editor: Zbigniew

Kotulski

Received: 17 October 2022

Revised: 18 December 2022

Accepted: 20 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Kernel-Based Container File Access Control Architecture to
Protect Important Application Information
Hoo-Ki Lee 1, Sung-Hwa Han 2 and Daesung Lee 3,*

1 Department of Cyber Security, Konyang University, Nonsan 35365, Republic of Korea
2 Department of Information Security, Tongmyong University, Busan 48520, Republic of Korea
3 Department of Computer Engineering, Catholic University of Pusan, Busan 46252, Republic of Korea
* Correspondence: dslee@cup.ac.kr

Abstract: Container platforms ease the deployment of applications and respond to failures. The
advantages of container platforms have promoted their use in information services. However, the
use of container platforms is accompanied by associated security risks. For instance, malware
uploaded by users can leak important information, and malicious operators can cause unauthorized
modifications to important files to create service errors. These security threats degrade the quality of
information services and reduce their reliability. To overcome these issues, important container files
should be protected by file-access control functions. However, legacy file-access control techniques,
such as umask and SecureOS, do not support container platforms. To address this problem, we
propose a novel kernel-based architecture in this study to control access to container files. The
proposed container file-access control architecture comprises three components. The functionality
and performance of the proposed architecture were assessed by implementing it on a Linux platform.
Our analysis confirmed that the proposed architecture adequately controls users’ access to container
files and performs on par with legacy file-access control techniques.

Keywords: Linux container; para-virtualization; file-access control; SELinux

1. Introduction

Cloud platforms can be classified into virtual machines (VMs), which include operating
systems (OSs), and containers, which do not include OSs, in terms of instance type. VMs
implement complete virtualization and run their instances on Hypervisor. In contrast,
container platforms are implementations of Linux containers (LXC) [1]. An LXC is a
runtime environment comprising tools, templates, and libraries [2]. A container is a unit
that composes files and directories into a single package. Technical implementations of LXC
are referred to as container platforms. A container platform includes a container execution
environment and related supporting systems [3]. An information service manager creates
a container image, including an application file/directory, registry, and other application
environments, whenever an application or information is required to be distributed via a
container platform [4]. The information service manager can create a container by executing
the container image [5]. Because the container is executed based on the file/directory and
other environments included in the container image, the application execution environment
is independent of the user environment. Moreover, containers are protected from other
containers and system applications because they operate in isolated environments [6].
Therefore, multiple applications can be simultaneously executed on container platforms.
Container platforms exhibit high resource efficiency because they support dynamic resource
management [7]. For instance, container platforms provide high-availability (HA) and
load-balancing (LB) functions [8]. Because of these characteristics, a significant number of
recent information services are being constructed using container platforms [9,10].

Container-based information services may include important files depending on the
service object and structure during the creation of a container image or during operation,

Electronics 2023, 12, 52. https://doi.org/10.3390/electronics12010052 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010052
https://doi.org/10.3390/electronics12010052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2435-6867
https://doi.org/10.3390/electronics12010052
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010052?type=check_update&version=1

Electronics 2023, 12, 52 2 of 17

impacting the provision of application services significantly. If the configuration file
included in the container is deleted or modified because of incorrect management, the
application service may malfunction [11]. In other cases, users may upload malware to a
server, which can access the application configuration file and leak important information
to external agents. Therefore, important files, such as configuration files, that may be
included in containers must be protected from unauthorized access [12].

In legacy information services, either umask or SecureOS is used to protect important
files from unauthorized access [13]. Although the system manager can easily set up the
umask policy, detailed configurations cannot be established. Additionally, the umask
function cannot prevent superuser access. SecureOS addresses a few of the aforementioned
limitations of umask. It is a policy-based access control technique that supports multiple
access control models such as mandatory access control (MAC), discretionary access control
(DAC), and role-based access control (RBAC) [14]. Because SecureOS can effectively
protect important application files and directories, it is extensively utilized in real-world
information services. However, SecureOS was developed before container platforms were
introduced. Therefore, although SecureOS focuses on the access control function for files in
the OS’s file system, it does not provide access control for files located inside containers.
Therefore, it cannot be used to prevent unauthorized access to container files.

To address this limitation, we propose a kernel-based container file-access control
architecture to prevent unauthorized access to container files. The proposed architecture
provides a policy-based access control function that monitors the access of container
files, allowing authorized processes to proceed and denying permission to unauthorized
processes. The proposed architecture is implemented at the kernel level, preventing users
from bypassing the access control function. Furthermore, the security manager can verify
the enforcement of the access control function based on log files.

Ideally, the function and performance of the proposed architecture should be effec-
tive in terms of denying unauthorized access. Therefore, both the positive and negative
functions and the performance of the proposed structure were verified in this study.

The primary contributions of the proposed architecture can be summarized as follows:

• All container file-access events of users can be monitored in real time.
• The security environment of application services is strengthened by denying unautho-

rized access to container files.
• The proposed architecture has minimal effect or other services because only a few

system resources are used to provide the access control function.
• The rapid enforcement of the access control function minimizes the performance

degradation of the application service.
• The proposed architecture can serve as a security tool because it supports the identifi-

cation of potentially malicious attackers and processes.

The remainder of this paper is organized as follows. The operational methodology
and limitations of legacy file access control techniques are explained in Section 2. In
Section 3, the proposed container file access control architecture and the role of each
component are discussed. In Section 4, the implementation of the kernel-based architecture
is presented, and the unit function of each component with respect to container file access
control functions is described. The verification of the functions and the performance of the
proposed architecture is presented in Section 5. Finally, the conclusions of the study are
summarized in Section 6.

2. Related Works
2.1. LXC and Container Platforms

LXC provides an environment for the independent and simultaneous operation of
multiple containers within a single system [15]. The application service manager can create
multiple containers by repeatedly running a single image on a single system. In other
words, containers can be repeatedly executed as long as the system resources allow it [16].

Electronics 2023, 12, 52 3 of 17

The image of a container may include software (SW) that performs a specific function.
The application service manager can use the SW by spawning a container and executing
the container image without actually installing the SW [17], and even modify the container
image if required [18]. Multiple containers that are simultaneously executed share the kernel
of the OS. Typically, containers being executed share all resources of the OS. Although the
OS dynamically allocates resources to each container upon its execution, specific resources
can be pre-emptively selected, if required [19].

The container platform is an implementation of LXC because it satisfies the technical
requirements of LXC and supports various operating environments. In addition to Docker,
examples of currently used container platforms include AWS Fargate, Google Kubernetes,
and Apache Mesos [20,21]. It is evident that container platforms are widely utilized as oper-
ating environments in multiple information services because of their numerous advantages.

As indicated in Figure 1, a container platform comprises a container engine, con-
tainer image, container, container registry, container management interface, storage, and
scheduler [22].

Electronics 2023, 12, x FOR PEER REVIEW 3 of 17

2. Related Works
2.1. LXC and Container Platforms

LXC provides an environment for the independent and simultaneous operation of
multiple containers within a single system [15]. The application service manager can cre-
ate multiple containers by repeatedly running a single image on a single system. In other
words, containers can be repeatedly executed as long as the system resources allow it [16].

The image of a container may include software (SW) that performs a specific func-
tion. The application service manager can use the SW by spawning a container and exe-
cuting the container image without actually installing the SW [17], and even modify the
container image if required [18]. Multiple containers that are simultaneously executed
share the kernel of the OS. Typically, containers being executed share all resources of the
OS. Although the OS dynamically allocates resources to each container upon its execution,
specific resources can be pre-emptively selected, if required [19].

The container platform is an implementation of LXC because it satisfies the technical
requirements of LXC and supports various operating environments. In addition to
Docker, examples of currently used container platforms include AWS Fargate, Google
Kubernetes, and Apache Mesos [20,21]. It is evident that container platforms are widely
utilized as operating environments in multiple information services because of their nu-
merous advantages.

As indicated in Figure 1, a container platform comprises a container engine, container
image, container, container registry, container management interface, storage, and sched-
uler [22].

Figure 1. Container platform structure.

The container engine provides an isolated environment for the execution of contain-
ers [23]. A container image is a deployment unit that remains static prior to container ex-
ecution [24]. A container registry is a server on which container images are registered, and
the container management interface serves as a user management interface for the execu-
tion and monitoring of containers [25]. The container storage is a repository for container
images [26]. Finally, the scheduler handles periodic executions of the container [27].

The system manager can configure network configurations, such as the maximum
session and throughput, of each container [28]. The HA or LB function of the information
service can be implemented by executing a container and applying the network configu-
rations of the container platform. These advantages have promoted the use of container
platforms [29].

Figure 1. Container platform structure.

The container engine provides an isolated environment for the execution of contain-
ers [23]. A container image is a deployment unit that remains static prior to container
execution [24]. A container registry is a server on which container images are registered,
and the container management interface serves as a user management interface for the exe-
cution and monitoring of containers [25]. The container storage is a repository for container
images [26]. Finally, the scheduler handles periodic executions of the container [27].

The system manager can configure network configurations, such as the maximum
session and throughput, of each container [28]. The HA or LB function of the information
service can be implemented by executing a container and applying the network configu-
rations of the container platform. These advantages have promoted the use of container
platforms [29].

2.2. Security Threats and Requirements

Container platform-based information services are susceptible to security threats,
similar to any other service. Any container created by executing a container image includes
an application environment such as a configuration file for application execution, a system
account, or a library path. Therefore, a malicious attacker accessing the system environment
can delete or modify the application environment, inducing the malfunction of container-
based applications [30].

Electronics 2023, 12, 52 4 of 17

In general, important files may be included in the container during its execution or
may be input into the container when an application service is provided. Additionally, the
service manager or users can share or upload important files to the container, respectively.
Thus, a service user may upload malware, which, if executed, may delete or modify user
files stored in the container or leak important information included in the file [31].

Therefore, both important and user files should be protected in this environment. A
secure environment [32] must guarantee confidentiality, availability, integrity, authentica-
tion, and access control. In particular, the access control function monitors user access to
sensitive files and denies unauthorized access or modification by verifying whether the
requesting subject is allowed to access the requested object [33,34].

All security technologies are required to satisfy specific security principles, such
as identifiability, self-awareness, appropriate boundaries, convenience, locatability, and
visibility. Among these, this study focuses on locatability and convenience. Locatability
represents the degree of choice of the security manager, and convenience represents the
ease of security-function enforcement [35]. Therefore, a protection mechanism should be
developed to protect important container files, and security managers can choose to enforce
it on container platforms at their own discretion [36].

2.3. Legacy File Access control Techniques

Umask and SecureOS are the two most widely used file access control techniques.
Umask is an OS-level access control technique for users and user groups that is utilized
in most OSs. Umask operates based on access privileges defined by the owner for each
role (owner, owner group, and others) with respect to the file/directory. Furthermore,
the OS monitors and identifies users (subjects) accessing files (objects). Subsequently, the
roles of users are verified to determine whether access should be provided. Therefore,
umask simply uses the access control function as a policy configured by the file/directory
owner [37].

SecureOS is a policy-based access control technique that monitors access to resources
from a single point in the kernel and denies access when the policy is violated. It provides
access control functions for files/directories, application processes, and devices. Access
control models, such as MAC, DAC, and RBAC, are supported in terms of subject identifiers,
including security groups, user roles, users, and user groups [38].

SELinux and AppArmor are well-established SecureOS architectures provided by the
Linux OS, and the group policy object (GPO) is available on Windows [39,40].

Figure 2 depicts the four-tier structure of SELinux, which is a representative SecureOS
architecture. SELinux is based on an access control policy in which the user sets the
policy identification number (ID) (object), including the user ID (subject), via the policy
management interface, which is then transferred to the Security Server and converted into
an object file/directory path by searching the SELinux Filesystem. If the Security Server
determines the object file/directory to be complete, the user ID and file/directory path
(object) are registered in the Access Vector Cache (AVC). Whenever a file access event occurs,
the corresponding event information is transferred to AVC, which extracts the user ID
and file/directory path accessing the object. If a user’s file access event matches the
access control policy, user access is denied, and the event is logged. Both AppArmor and
GPO provide kernel-based file access control, and their structures are similar to that of
SELinux [41].

Electronics 2023, 12, 52 5 of 17Electronics 2023, 12, x FOR PEER REVIEW 5 of 17

Figure 2. File access control structure of SELinux. SELinux registers the access control policy at the
security server in the kernel and enforces it using the access vector cache.

2.4. Limitations of the Legacy File Access control Techniques
Umask is primarily an access control function for OSs that is also applied to the con-

tainer platforms [42]. Despite its easy application, it suffers from specific limitations. For
instance, umask can identify only three roles—owner, owner group, and others. There-
fore, umask cannot control access provided to specific users or user groups. Additionally,
umask always provides access to superuser accounts, such as root or administrator ac-
counts [43]. This compromises the owner’s understanding of the users and user-group
organizations accessing the files/directories [44]. Most importantly, umask is application-
specific within containers. When a user file is uploaded to a container, configuring umask
for each uploaded file is inconvenient. Additionally, as diverse applications can be up-
loaded to containers, the application service manager is required to understand all the
application characteristics to configure umask correctly, which is practically impossible.

SecureOS mitigates a few of the aforementioned limitations of umask. For instance,
SecureOS uses the access control policy to control access to the files or directories of spe-
cific subjects such as users and user groups. Moreover, the SecureOS policy can deny ac-
cess to the container. However, no SecureOS system, including SELinux, AppArmor, and
GPO, considers the container environment [45–47]. As a result, access to the file/directory
located inside containers cannot be denied using SecureOS.

Thus, the development of a dedicated mechanism for container file access control and
its incorporation within system security frameworks, such as SecureOS, is essential to pro-
tect container files. Unfortunately, no such mechanism has been proposed yet.

3. Kernel-Based Container File Access control Architecture
3.1. Design Considerations

Typically, the protected object and accessing subject must be uniquely identifiable to
ensure access control.

The accessing subject is the user account (user ID) or the user group account (group
ID) of the host OS. Therefore, legacy access control techniques adopt the user account as
the subject of the access control policy. However, this practice cannot be adopted in a
container platform system because of its isolated nature. Figure 3 indicates that the same
user account may exist both in the host OS as well as the container on a container platform
[48]. The container platform internally uses the namespace technique, which ensures the

Figure 2. File access control structure of SELinux. SELinux registers the access control policy at the
security server in the kernel and enforces it using the access vector cache.

2.4. Limitations of the Legacy File Access control Techniques

Umask is primarily an access control function for OSs that is also applied to the
container platforms [42]. Despite its easy application, it suffers from specific limitations. For
instance, umask can identify only three roles—owner, owner group, and others. Therefore,
umask cannot control access provided to specific users or user groups. Additionally, umask
always provides access to superuser accounts, such as root or administrator accounts [43].
This compromises the owner’s understanding of the users and user-group organizations
accessing the files/directories [44]. Most importantly, umask is application-specific within
containers. When a user file is uploaded to a container, configuring umask for each
uploaded file is inconvenient. Additionally, as diverse applications can be uploaded to
containers, the application service manager is required to understand all the application
characteristics to configure umask correctly, which is practically impossible.

SecureOS mitigates a few of the aforementioned limitations of umask. For instance,
SecureOS uses the access control policy to control access to the files or directories of specific
subjects such as users and user groups. Moreover, the SecureOS policy can deny access to
the container. However, no SecureOS system, including SELinux, AppArmor, and GPO,
considers the container environment [45–47]. As a result, access to the file/directory located
inside containers cannot be denied using SecureOS.

Thus, the development of a dedicated mechanism for container file access control
and its incorporation within system security frameworks, such as SecureOS, is essential to
protect container files. Unfortunately, no such mechanism has been proposed yet.

3. Kernel-Based Container File Access control Architecture
3.1. Design Considerations

Typically, the protected object and accessing subject must be uniquely identifiable to
ensure access control.

The accessing subject is the user account (user ID) or the user group account (group
ID) of the host OS. Therefore, legacy access control techniques adopt the user account
as the subject of the access control policy. However, this practice cannot be adopted in
a container platform system because of its isolated nature. Figure 3 indicates that the
same user account may exist both in the host OS as well as the container on a container
platform [48]. The container platform internally uses the namespace technique, which
ensures the independence of user accounts and files/directories in the container. Although

Electronics 2023, 12, 52 6 of 17

the user accounts in the host OS and container have identical user IDs, the container
platform is processed as a different account by namespace. Namespace separates user
IDs into session IDs (SIDs) and independently processes each SID. This isolation feature
is the most significant advantage of container platforms. However, access control suffers
from specific disadvantages in this case. As mentioned above, an identifier is required
to be used as the subject of the file in the container’s access control policy because of the
non-uniqueness of the user account.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 17

independence of user accounts and files/directories in the container. Although the user
accounts in the host OS and container have identical user IDs, the container platform is
processed as a different account by namespace. Namespace separates user IDs into session
IDs (SIDs) and independently processes each SID. This isolation feature is the most sig-
nificant advantage of container platforms. However, access control suffers from specific
disadvantages in this case. As mentioned above, an identifier is required to be used as the
subject of the file in the container's access control policy because of the non-uniqueness of
the user account.

Figure 3. Scenario in which the same account may exist at multiple positions in the container plat-
form.

Legacy file access control techniques, such as SELinux, AppArmor, and GPO, use the
absolute path to the requested file as the object. However, it cannot be used as an object
in container platforms. Figure 4 illustrates the difference between a file path (virtual file
path, Vf) known to the accessing user and a real path (absolute file path, Af) [49]. This
difference can be attributed to the namespace of the container platform. Therefore, the
object of the access control policy must be a real path for the access control policy to be
valid with respect to container files [50].

Figure 4. Difference between virtual and absolute file paths.

Figure 3. Scenario in which the same account may exist at multiple positions in the container platform.

Legacy file access control techniques, such as SELinux, AppArmor, and GPO, use the
absolute path to the requested file as the object. However, it cannot be used as an object
in container platforms. Figure 4 illustrates the difference between a file path (virtual file
path, Vf) known to the accessing user and a real path (absolute file path, Af) [49]. This
difference can be attributed to the namespace of the container platform. Therefore, the
object of the access control policy must be a real path for the access control policy to be
valid with respect to container files [50].

Electronics 2023, 12, x FOR PEER REVIEW 6 of 17

independence of user accounts and files/directories in the container. Although the user
accounts in the host OS and container have identical user IDs, the container platform is
processed as a different account by namespace. Namespace separates user IDs into session
IDs (SIDs) and independently processes each SID. This isolation feature is the most sig-
nificant advantage of container platforms. However, access control suffers from specific
disadvantages in this case. As mentioned above, an identifier is required to be used as the
subject of the file in the container's access control policy because of the non-uniqueness of
the user account.

Figure 3. Scenario in which the same account may exist at multiple positions in the container plat-
form.

Legacy file access control techniques, such as SELinux, AppArmor, and GPO, use the
absolute path to the requested file as the object. However, it cannot be used as an object
in container platforms. Figure 4 illustrates the difference between a file path (virtual file
path, Vf) known to the accessing user and a real path (absolute file path, Af) [49]. This
difference can be attributed to the namespace of the container platform. Therefore, the
object of the access control policy must be a real path for the access control policy to be
valid with respect to container files [50].

Figure 4. Difference between virtual and absolute file paths. Figure 4. Difference between virtual and absolute file paths.

Electronics 2023, 12, 52 7 of 17

However, because typical real paths are considerably long and contain random strings,
it is inconvenient to use them during the configuration of the access control policy. More-
over, it violates certain security principles. Therefore, the file path known to the user is used
to register the access control policy for the container files. However, policy registration
requires the conversion of a file path known to the user (Vf) to a real path (Af).

3.2. Access Control Policy Structure

The enforcement of access control must satisfy the security principles of non-bypassability
and single-point enforcement. To achieve these, kernel-level implementation is essential,
which facilitates the acquisition of information to identify a user’s file-access event. At
this level, the user’s file-access event is processed by an interrupt function, and detailed
information is registered in the interrupt request queue (IRQ). The SID of the user account
and the Af to be accessed are uniquely identified in the IRQ; this information can be used as a
component of the access control policy.

In general, access control policies should be easy to remember and implement. How-
ever, remembering SIDs may be difficult for users. Because the SID of an account in a
container cannot be obtained from the host OS, it cannot be used as an access control policy.
Similarly, Af is unknown to the user; thus, it cannot be included in an access control policy
because it depends on container initialization.

In this study, the container ID (Ct) was used as an additional identifier to facilitate the
identification of files in the user container. Figure 5 illustrates the structure of the access
control policy used to identify the access events associated with container files.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 17

However, because typical real paths are considerably long and contain random
strings, it is inconvenient to use them during the configuration of the access control policy.
Moreover, it violates certain security principles. Therefore, the file path known to the user
is used to register the access control policy for the container files. However, policy regis-
tration requires the conversion of a file path known to the user (Vf) to a real path (Af).

3.2. Access control Policy Structure
The enforcement of access control must satisfy the security principles of non-bypass-

ability and single-point enforcement. To achieve these, kernel-level implementation is es-
sential, which facilitates the acquisition of information to identify a user’s file-access
event. At this level, the user’s file-access event is processed by an interrupt function, and
detailed information is registered in the interrupt request queue (IRQ). The SID of the user
account and the Af to be accessed are uniquely identified in the IRQ; this information can
be used as a component of the access control policy.

In general, access control policies should be easy to remember and implement. How-
ever, remembering SIDs may be difficult for users. Because the SID of an account in a
container cannot be obtained from the host OS, it cannot be used as an access control pol-
icy. Similarly, Af is unknown to the user; thus, it cannot be included in an access control
policy because it depends on container initialization.

In this study, the container ID (Ct) was used as an additional identifier to facilitate
the identification of files in the user container. Figure 5 illustrates the structure of the ac-
cess control policy used to identify the access events associated with container files.

Figure 5. Structure of the container file access control policy.

The container file-access event (Ev) includes SID and Af. SID is generated when the
user logs in, but it changes with every login and, thus, is not suitable to be used as an
element in the container file-access policy. Therefore, the user ID (Uid) of the container
and the container ID (Ct) are used to identify the container SID. Because of its high length,
Af violates the security principle regarding convenience. Therefore, Ct and Vf are used to
identify the Af of a container file.

To define the container access control mechanism, the container file access control
policy and container file access event are defined as follows:

The container file access control policy is denoted by P

Container file access event is denoted by Ev

Access control policy enforcement is denoted by ACE

Figure 5. Structure of the container file access control policy.

The container file-access event (Ev) includes SID and Af. SID is generated when the
user logs in, but it changes with every login and, thus, is not suitable to be used as an
element in the container file-access policy. Therefore, the user ID (Uid) of the container and
the container ID (Ct) are used to identify the container SID. Because of its high length, Af
violates the security principle regarding convenience. Therefore, Ct and Vf are used to
identify the Af of a container file.

Electronics 2023, 12, 52 8 of 17

To define the container access control mechanism, the container file access control
policy and container file access event are defined as follows:

The container file access control policy is denoted by P
Container file access event is denoted by Ev

Access control policy enforcement is denoted by ACE
Access control policy enforcement result is denoted by PER

The e in which the elements of e and P match is denoted by EvP.

PER is defined as follows:

PER = ACE(Ev) =
{

0, Ev /∈ EvP

1, Ev ∈ EvP

PER can have one of two outcomes—allow or deny. The following notations are used
for the two cases:

The ‘deny’ outcome of PER is denoted by PER1
The ‘allow’ outcome of PERis denoted by PER0

P comprises three elements—Ct, Vf, and Uid. The following notations are used
for them:

Ctdefined in access− control policy,P, is denoted byCtp
V f defined in access control policy,P, is denoted by V fp

Uid defined in access control policy, P, is denoted by Uidp

PER1 can be expressed as follows:

PER1 = ACE(EvP) = ACE(EvCtP•V fP•UidP
) (1)

Additionally, when the elements do not match those of the access control policy, the
access request is allowed, corresponding to the outcome, PER0, as follows:

PER0 = ACE(EvP) = ACE(EvCtP
+ EvV fP

+ EvUidP
) (2)

This is obtained by applying De Morgan’s law to Equation (1).
Equations (1) and (2) indicate that the user is denied access if all the three elements

(i.e., Vf, Ct, and Uid) match with the parameters of the access control policy. Conversely,
access is provided if any one of them does not match.

Therefore, if Equations (1) and (2) hold, the proposed intra-container file access control
architecture can be considered to be valid.

3.3. Access Control Architecture for Container Files

The proposed access control architecture for container files is designed to satisfy the
following conditions:

1. Preserve container features.
2. Minimize changes in the container platform configuration.
3. Use information known to users that can be easily used.
4. Minimize resources required for providing the access control function.

Considering the specific characteristics of the container platform, we propose a con-
tainer file access control architecture, whose schematic is shown in Figure 6.

Electronics 2023, 12, 52 9 of 17Electronics 2023, 12, x FOR PEER REVIEW 9 of 17

Figure 6. Schematic of the container file access control architecture.

The proposed access control architecture for container files comprises the following
three components. The Host Agent serves as the interface of the Security Manager that se-
lects the access control policy. The Container Agent denotes a daemon that converts the
access control policy elements to actual information. The File Access Controller monitors
user access to the container files and enforces access control policies.

The Security Manager selects the access control policy based on Uid, Ct, and Vf via the
Host Agent. The access control policy elements (Uid, Ct, and Vf) are transmitted to the Con-
tainer Agent, which converts the Uid and Vf into SID and Af, respectively. Subsequently,
the Container Agent transmits the SID and Af to the Host Agent, which then transmits them
to the File Access Controller for the registration of the access control policy. The File Access
Controller receives the access control policy from the Host Agent and registers it as a kernel-
based access control policy.

When a user accesses a container file, the kernel creates an IRQ for the user file in the
container access event. The File Access Controller monitors the kernel IRQ. If the container
file access event node is registered to the kernel IRQ, the File Access Controller obtains the
SID and Af corresponding to the event. Subsequently, the File Access Controller enforces
the access control policy by comparing the SID and Af with the selected values in the se-
curity policy database. If a matching set of SID and Af is identified, the file-access-event node
is deleted from the kernel and the STOLEN code is returned. The accessing user is dis-
played a denial message. Figure 7 depicts a sequential diagram of this process.

Figure 7. Sequence diagram of providing the container file access control function.

Figure 6. Schematic of the container file access control architecture.

The proposed access control architecture for container files comprises the following
three components. The Host Agent serves as the interface of the Security Manager that selects
the access control policy. The Container Agent denotes a daemon that converts the access
control policy elements to actual information. The File Access Controller monitors user access
to the container files and enforces access control policies.

The Security Manager selects the access control policy based on Uid, Ct, and Vf via
the Host Agent. The access control policy elements (Uid, Ct, and Vf) are transmitted to the
Container Agent, which converts the Uid and Vf into SID and Af, respectively. Subsequently,
the Container Agent transmits the SID and Af to the Host Agent, which then transmits
them to the File Access Controller for the registration of the access control policy. The File
Access Controller receives the access control policy from the Host Agent and registers it as a
kernel-based access control policy.

When a user accesses a container file, the kernel creates an IRQ for the user file in the
container access event. The File Access Controller monitors the kernel IRQ. If the container
file access event node is registered to the kernel IRQ, the File Access Controller obtains the
SID and Af corresponding to the event. Subsequently, the File Access Controller enforces the
access control policy by comparing the SID and Af with the selected values in the security
policy database. If a matching set of SID and Af is identified, the file-access-event node is
deleted from the kernel and the STOLEN code is returned. The accessing user is displayed
a denial message. Figure 7 depicts a sequential diagram of this process.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 17

Figure 6. Schematic of the container file access control architecture.

The proposed access control architecture for container files comprises the following
three components. The Host Agent serves as the interface of the Security Manager that se-
lects the access control policy. The Container Agent denotes a daemon that converts the
access control policy elements to actual information. The File Access Controller monitors
user access to the container files and enforces access control policies.

The Security Manager selects the access control policy based on Uid, Ct, and Vf via the
Host Agent. The access control policy elements (Uid, Ct, and Vf) are transmitted to the Con-
tainer Agent, which converts the Uid and Vf into SID and Af, respectively. Subsequently,
the Container Agent transmits the SID and Af to the Host Agent, which then transmits them
to the File Access Controller for the registration of the access control policy. The File Access
Controller receives the access control policy from the Host Agent and registers it as a kernel-
based access control policy.

When a user accesses a container file, the kernel creates an IRQ for the user file in the
container access event. The File Access Controller monitors the kernel IRQ. If the container
file access event node is registered to the kernel IRQ, the File Access Controller obtains the
SID and Af corresponding to the event. Subsequently, the File Access Controller enforces
the access control policy by comparing the SID and Af with the selected values in the se-
curity policy database. If a matching set of SID and Af is identified, the file-access-event node
is deleted from the kernel and the STOLEN code is returned. The accessing user is dis-
played a denial message. Figure 7 depicts a sequential diagram of this process.

Figure 7. Sequence diagram of providing the container file access control function.

Figure 7. Sequence diagram of providing the container file access control function.

Electronics 2023, 12, 52 10 of 17

Other file-protection techniques, such as umask or SecureOS, cannot obtain the Af
corresponding to the container file and, thus, cannot protect container files. By contrast, the
architecture proposed in this study obtains the Af corresponding to the container file’s Vf.

4. Implementation on the Linux Platform

To verify the effectiveness of the proposed architecture, we implemented the access
control logic in an environment based on CentOS 8.3 (kernel version 4.18.0-394) and
the Docker container platform (version 4.2.0). Figure 8 depicts the implemented access
control logic.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 17

Other file-protection techniques, such as umask or SecureOS, cannot obtain the Af
corresponding to the container file and, thus, cannot protect container files. By contrast,
the architecture proposed in this study obtains the Af corresponding to the container file's
Vf.

4. Implementation on the Linux Platform
To verify the effectiveness of the proposed architecture, we implemented the access

control logic in an environment based on CentOS 8.3 (kernel version 4.18.0-394) and the
Docker container platform (version 4.2.0). Figure 8 depicts the implemented access control
logic.

Figure 8. Structure of the container file access control function implemented on Linux.

In the proposed architecture, the Host Agent was implemented as ConPolicy executed
in the Linux shell, whereas the Container Agent was implemented as Cont_Agt_D, which
acted as a server daemon. The File Access Controller was implemented as the Container File
Access Control Kernel Driver, which was divided into policy management (Kernel Policy
Manager) and enforcement (File Access Control Handler) components. ConPolicy and
Cont_Agt_D communicated using the TCP/IP socket protocol, whereas ConPolicy and Con-
tainer File Access Control Kernel Driver communicated using system calls. The Policy List
was implemented as the Security Policy DB. Kernel Policy Manager served as the system call
handler for system calls initiated by the ConPolicy. It registered SID and Af to the Policy
List. Finally, the File Access Control Handler was a kernel module used to enforce the access
control policies.

4.1. ConPolicy
ConPolicy was an executable command executed in the Linux shell. Here, Ct repre-

sents the number used for identifying Cont_Agt_D. ConPolicy verified Uid, Ct, and Vf. If
all the arguments were determined to be accurate, ConPolicy transmitted them to
Cont_Agt_D and waited for a response from Cont_Agt_D. Once ConPolicy received the SID
and Af from Cont_Agt_D, it transmitted them to the Kernel Policy Manager via a system
call.

Figure 8. Structure of the container file access control function implemented on Linux.

In the proposed architecture, the Host Agent was implemented as ConPolicy executed in
the Linux shell, whereas the Container Agent was implemented as Cont_Agt_D, which acted
as a server daemon. The File Access Controller was implemented as the Container File Access
Control Kernel Driver, which was divided into policy management (Kernel Policy Manager)
and enforcement (File Access Control Handler) components. ConPolicy and Cont_Agt_D com-
municated using the TCP/IP socket protocol, whereas ConPolicy and Container File Access
Control Kernel Driver communicated using system calls. The Policy List was implemented as
the Security Policy DB. Kernel Policy Manager served as the system call handler for system
calls initiated by the ConPolicy. It registered SID and Af to the Policy List. Finally, the File
Access Control Handler was a kernel module used to enforce the access control policies.

4.1. ConPolicy

ConPolicy was an executable command executed in the Linux shell. Here, Ct represents
the number used for identifying Cont_Agt_D. ConPolicy verified Uid, Ct, and Vf. If all the
arguments were determined to be accurate, ConPolicy transmitted them to Cont_Agt_D
and waited for a response from Cont_Agt_D. Once ConPolicy received the SID and Af from
Cont_Agt_D, it transmitted them to the Kernel Policy Manager via a system call.

4.2. Cont_Agt_D

Cont_Agt_D was a daemon program that served as a Container Agent. Cont_Agt_D
received the Uid and Vf from ConPolicy and obtained the SID on this basis. Similarly,
Cont_Agt_D obtained the Af based on the Ct and Vf. Subsequently, Cont_Agt_D transmitted
them back to ConPolicy.

Electronics 2023, 12, 52 11 of 17

4.3. Container File Access Control Kernel Driver
4.3.1. Kernel Policy Manager

The Kernel Policy Manager in the Container File Access Control Kernel Driver received
the SID and Af from ConPolicy and registered them onto the Policy List. Figure 9 depicts
the structure of the Policy List. To ensure rapid search in the access control policy, the
Policy List was considered to be a two-level hashtable based on Af and SID like SELinux’s
policy structure.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 17

4.2. Cont_Agt_D
Cont_Agt_D was a daemon program that served as a Container Agent. Cont_Agt_D

received the Uid and Vf from ConPolicy and obtained the SID on this basis. Similarly,
Cont_Agt_D obtained the Af based on the Ct and Vf. Subsequently, Cont_Agt_D transmit-
ted them back to ConPolicy.

4.3. Container File Access Control Kernel Driver
4.3.1. Kernel Policy Manager

The Kernel Policy Manager in the Container File Access Control Kernel Driver received
the SID and Af from ConPolicy and registered them onto the Policy List. Figure 9 depicts
the structure of the Policy List. To ensure rapid search in the access control policy, the
Policy List was considered to be a two-level hashtable based on Af and SID like SELinux’s
policy structure.

Figure 9. Structure of the Policy List.

4.3.2. File Access control Handler
When a user accessed a container file, the container engine converted Vf into Af and

transmitted it to the kernel. The kernel then generated a file-access-event node and regis-
tered it in the IRQ.

The File Access Control Handler is a kernel function used to enforce the access control
policy. Typically, it registers a file access event hooking function onto the Linux security
module [51]. When a file access event occurs, the file access event hooking function obtains
the corresponding object and subject information [52]. Subsequently, it calls the access
control policy to enforce the function registered in the File Access Control Handler.

In this study, the File Access Control Handler search-policy node in the Policy List cor-
responded to the SID and Af of the file access event. If a matching set of Af and SID were
identified in the Policy List, the file access event was marked as STOLEN. If the interrupt
function was marked as STOLEN in the kernel, its process was halted and the user was
denied access to the file in the container.

Figure 9. Structure of the Policy List.

4.3.2. File Access Control Handler

When a user accessed a container file, the container engine converted Vf into Af
and transmitted it to the kernel. The kernel then generated a file-access-event node and
registered it in the IRQ.

The File Access Control Handler is a kernel function used to enforce the access control
policy. Typically, it registers a file access event hooking function onto the Linux security
module [51]. When a file access event occurs, the file access event hooking function obtains
the corresponding object and subject information [52]. Subsequently, it calls the access
control policy to enforce the function registered in the File Access Control Handler.

In this study, the File Access Control Handler search-policy node in the Policy List
corresponded to the SID and Af of the file access event. If a matching set of Af and SID
were identified in the Policy List, the file access event was marked as STOLEN. If the
interrupt function was marked as STOLEN in the kernel, its process was halted and the
user was denied access to the file in the container.

5. Verification of the Container File Access Control Architecture
5.1. Function Verification Items

To ensure the operational accuracy of the container file access control function of the
proposed architecture, we verified the positive and negative items, as listed in Table 1.

Electronics 2023, 12, 52 12 of 17

Table 1. Functionalities used for verification.

Class Verification Item Description

Positive PEnforce_P1

• Verification of Equation (1)
• After selecting the container file access

control policy, verify whether file access is
denied when the subject and object of the
file accessed are identical to those in the
registered access control policy.

Negative

PEnforce_N1

• Verification of PER0 = ACE(eCtP
), which

is a part of Equation (2)
• Verify whether the container ID of the file

accessed is different from that in the
registered access control policy, even if the
Uid and Vf are identical.

PEnforce_N2

• Verification of PER0 = ACE(eV fP
), which

is a part of Equation (2)
• Verify whether the container ID and Uid of

the file accessed are identical to those in the
registered access control policy, even if the
Vf is different.

PEnforce_N3

• Verification of PER0 = ACE(eUidP
), which

is a part of Equation (2)
• Verify whether the container ID and Vf of

the file accessed are identical to those in the
registered access control policy, even if the
Uid is different.

5.2. Performance Verification

Ideally, the container file access control architecture should not interfere with other
services, and the cost of access control functions should be minimal. To evaluate the
performance of the proposed access control architecture from this perspective, we measured
the central processing unit (CPU) share (%) required for the policy registration and the
enforcement time of the access control policy. The assessment was performed using an
Intel i7-8700 CPU with a memory of 32 GB and a hard disk of 10 TB. The performance of
the proposed architecture was compared with that of SELinux.

5.2.1. CPU Usage

To measure the CPU usage rate required to register the access control policy, we
created a shell script to register multiple access control policies. The policy registration
shell script repeatedly applied ConPolicy a specified number of times. During the execution
of the shell script and the registration of the access control policy, the CPU usage rate was
recorded using the Linux top command.

To validate the performance of the proposed architecture, the same test was conducted
on SELinux. The performances of the two approaches were compared with respect to the
CPU usage rates.

Table 2 summarizes the mean CPU usage rates and the corresponding standard
deviations over 10 iterations, amounting to the registration of 500 access control policies in
SELinux and the proposed architecture for each.

Electronics 2023, 12, 52 13 of 17

Table 2. Central processing unit usage rates of SELinux and the proposed architecture.

SELinux policy
registration

CPU usage rate (%)

1 2 3 4 5 Average Standard
deviation

3.8 3.6 2.9 3.6 3.4
3.60 0.3196 7 8 9 10

3.3 3.6 4.0 4.0 3.8

Proposed architecturepolicy
registration

CPU usage rate (%)

1 2 3 4 5 Average Standard
deviation

4.8 5.1 4.4 3.9 4.4
4.57 0.4456 7 8 9 10

4.2 4.6 4.0 5.1 5.2

The results indicate that the CPU usage rate required for the policy registration was
slightly higher (4.57%) in the case of the proposed architecture than that for SELinux (3.60%).
This increment was attributed to the different tasks performed during the policy registration
process. SELinux directly sets the Af while registering an access control policy. In contrast,
a Vf is used while registering the access control policy by the proposed architecture. This
heightens the CPU usage because the Host Agent is required to convert the Vf into an Af.

5.2.2. Policy Enforcement Time

To minimize the enforcement time of the container file-access control policy, we
measured the final policy enforcement times when multiple access control policies were
registered in the Policy List simultaneously. A dummy policy is a policy that is not actually
used and only serves to delay the final policy enforcement time. In this experiment, it was
generated by a script created for performance measurement by combining a random Vf, a
random container ID, and a random Uid. The measured policy enforcement time of the
proposed architecture was compared with that of SELinux to evaluate the performance of
the former.

The numbers of dummy container file access control policies used to measure the final
policy enforcement time were considered to be 500, 1000, 2000, 4000, 5000, and 6000. The
final policy enforcement time was measured considering the starting time of the matching
access control policy application.

Figure 10 illustrates the average times required to register the final access control
policy during 10 iterations of registering multiple dummy access control policies.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 17

Figure 10. Security policy enforcement times of SELinux and the proposed architecture.

5.3. Verification Analysis
In the functional verification step, we confirmed that the proposed access control ar-

chitecture denied only those events that matched the container file access control policy
and allowed the rest. Thus, based on the access control policy set by the security manager,
authorized users can access sensitive files, but unauthorized users cannot.

Additionally, we determined that the CPU usage rate required to register the access
control policy and the enforcement time of the proposed architecture were slightly higher
than those of SELinux. This is attributed to the methodological differences between the
two architectures. SELinux uses Af as the object element of the security policy. In contrast,
the proposed architecture uses Vf and the container ID. These are combined to obtain the
Af of the target file, which is then added to the policy database. Thus, the more compli-
cated policy registration task of the proposed system naturally requires more time and a
higher CPU usage rate than SELinux.

Depending on the number of dummy policies, there are cases where the policy en-
forcement times of SELinux or the proposed container file access control architecture are
earlier or later than each other. However, the policy enforcement times of the two security
techniques were confirmed to be virtually the same. This is because the policy-list struc-
ture of the proposed container file-access control architecture and the policy structure of
SELinux are all hashtable structures. Although the process of calculating hash ID one
more than SELinux's policy structure was added, it was confirmed that this process did
not significantly affect the policy enforcement time.

Therefore, the proposed access control architecture can be considered to be suffi-
ciently effective in terms of functionality and performance.

6. Conclusions
Container platform-based information services ensure easy distribution and installa-

tion of applications. The numerous advantages of container platforms, such as dynamic
resource-sharing functions and fault tolerance functions, have promoted the development
of information services based on container platforms as well as research on expanding
their scope.

Figure 10. Security policy enforcement times of SELinux and the proposed architecture.

Electronics 2023, 12, 52 14 of 17

As shown in Figure 10, the policy enforcement time of the proposed container file
access architecture is almost the same as that of SELinux.

5.3. Verification Analysis

In the functional verification step, we confirmed that the proposed access control
architecture denied only those events that matched the container file access control policy
and allowed the rest. Thus, based on the access control policy set by the security manager,
authorized users can access sensitive files, but unauthorized users cannot.

Additionally, we determined that the CPU usage rate required to register the access
control policy and the enforcement time of the proposed architecture were slightly higher
than those of SELinux. This is attributed to the methodological differences between the two
architectures. SELinux uses Af as the object element of the security policy. In contrast, the
proposed architecture uses Vf and the container ID. These are combined to obtain the Af
of the target file, which is then added to the policy database. Thus, the more complicated
policy registration task of the proposed system naturally requires more time and a higher
CPU usage rate than SELinux.

Depending on the number of dummy policies, there are cases where the policy en-
forcement times of SELinux or the proposed container file access control architecture are
earlier or later than each other. However, the policy enforcement times of the two secu-
rity techniques were confirmed to be virtually the same. This is because the policy-list
structure of the proposed container file-access control architecture and the policy structure
of SELinux are all hashtable structures. Although the process of calculating hash ID one
more than SELinux’s policy structure was added, it was confirmed that this process did not
significantly affect the policy enforcement time.

Therefore, the proposed access control architecture can be considered to be sufficiently
effective in terms of functionality and performance.

6. Conclusions

Container platform-based information services ensure easy distribution and installa-
tion of applications. The numerous advantages of container platforms, such as dynamic
resource-sharing functions and fault tolerance functions, have promoted the development
of information services based on container platforms as well as research on expanding
their scope.

To ensure stable operation of container platform-based information services, important
files of container-based applications must be protected. However, legacy file access control
techniques do not support container platforms.

Therefore, in this study, a container file access control architecture comprising three
components and a feature implemented at the kernel level was proposed. The proposed
architecture was implemented in a Linux environment to verify the effectiveness of its func-
tions and performance. The analysis confirmed that the proposed access control function
was normally provided, and the performance of the proposed system was satisfactory.

The key contribution of this study is the expansion of the limited access control
coverage of legacy security environments to container platforms, which is the first step
toward comprehensive container platform security. In particular, the container file access
control architecture proposed in this study can monitor user access of container files in real
time and prevent unauthorized access. In addition, because the resources used for access
control were confirmed to be insignificant, it does not affect other application services.
Therefore, the container file access control architecture proposed in this study satisfies
hitherto unfulfilled security principles for access control on container files.

Container-based application services can use various resources such as registries,
processes, devices, and files/directories. The access control policy is registered in memory.
As the policy count increases, the memory usage also increases proportionally. If the
number of container files to be protected increases, the kernel memory-usage rate for
registering the container-file access control policy increases. This can degrade the system

Electronics 2023, 12, 52 15 of 17

performance. Therefore, an appropriate number of container-file access control policies
must be enforced. Although all resources must be protected to provide stable service, this
study proposed a protective architecture only for container files. Therefore, future research
is necessary to consider the protection of other resources.

Author Contributions: Conceptualization, H.-K.L.; investigation, S.-H.H.; writing—original draft
preparation, S.-H.H.; supervision, D.L.; writing—review and editing, D.L.; project administration,
D.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Tongmyong University Research, grant number 2021A017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ferreira, A.P.; Sinnott, R. A performance evaluation of containers running on managed Kubernetes services. In Proceedings of the

IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Bangkok, Thailand, 13–16 December
2019; pp. 199–208. [CrossRef]

2. Casalicchio, E.; Iannucci, S. The state-of-the-art in container technologies: Application, orchestration and security. Concurr.
Comput. Pract. Exper. 2020, 32, e5668. [CrossRef]

3. Sabharwal, N.; Pandey, P. Container image management using Google container registry. In Pro Google Kubernetes Engine; Apress:
Berkeley, CA, USA, 2020; pp. 65–96. [CrossRef]

4. Koschmieder, L.; Hojda, S.; Apel, M.; Altenfeld, R.; Bami, Y.; Haase, C.; Lin, M.; Vuppala, A.; Hirt, G.; Schmitz, G.J. AixViPMaP®—
An operational platform for microstructure modeling workflows. Integr. Mater. Manuf. Innov. 2019, 8, 122–143. [CrossRef]

5. Becker, S.; Schmidt, F.; Kao, O. EdgePier: P2P-based container image distribution in edge computing environments. In Proceedings
of the IEEE International Performance, Computing, and Communications Conference (IPCCC), Computing, Austin, TX, USA,
29–31 October 2021; pp. 1–8. [CrossRef]

6. Ma, S.; Jiang, J.; Li, B.; Li, B. Maximizing container-based network isolation in parallel computing clusters. In Proceedings of the
24th International Conference on Network Protocols (ICNP), Singapore, 8–11 November 2016; pp. 1–10. [CrossRef]

7. Mampage, A.; Karunasekera, S.; Buyya, R. Deadline-aware dynamic resource management in serverless computing environments.
In Proceedings of the 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Melbourne, Australia,
10–13 May 2021; pp. 483–492. [CrossRef]

8. Salhab, N.; Rahim, R.; Langar, R. NFV orchestration platform for 5G over on-the-fly provisioned infrastructure. In Proceedings of
the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April 2019; pp. 971–972.
[CrossRef]

9. Kim, B.S.; Lee, S.H.; Lee, Y.R.; Park, Y.H.; Jeong, J. Design and implementation of cloud docker application architecture based on
machine learning in container management for smart manufacturing. Appl. Sci. 2022, 12, 6737. [CrossRef]

10. Ngo, M.V.; Luo, T.; Hoang, H.T.; Ouek, T.Q.S. Coordinated container migration and base station handover in mobile edge
computing. In Proceedings of the GLOBECOM IEEE Global Commun. Conference, Taipei, Taiwan, 7–11 December 2020; Volume
2020, pp. 1–6. [CrossRef]

11. Huh, J.H. Implementation of lightweight intrusion detection model for security of smart green house and vertical farm. Int. J.
Distrib. Sens. Netw. 2018, 14, 1550147718767630. [CrossRef]

12. Wong, A.Y.; Chekole, E.G.; Ochoa, M.; Zhou, J. Threat Modeling and Security Analysis of Containers: A Survey. arXiv 2021,
arXiv:2111.11475.

13. Westfall, J. Basics of Linux security. In Set Up and Management Your Virtual Private Server; Apress: Berkeley, CA, USA, 2021; pp.
111–131. [CrossRef]

14. Kim, D.K.; Ming, H.; Lu, L. Reflection on building hybrid access control by configuring RBAC and MAC features. In Proceedings
of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), London, ON,
Canada, 18–21 February 2020; pp. 522–526. [CrossRef]

15. Mullinix, S.P.; Konomi, E.; Townsend, R.D.; Parizi, R.M. On Security Measures for Containerized Applications Imaged with
Docker. arXiv 2020, arXiv:2008.04814.

16. Kaiser, S.; Haq, M.S.; Tosun, A.S.; Korkmaz, T. Container technologies for ARM architecture: A comprehensive survey of the
state-of-the-art. IEEE Access. 2022, 10, 84853–84881. [CrossRef]

17. Han, S.H.; Lee, H.K.; Lee, S.T.; Kim, S.J.; Jang, W.J. Container image access control architecture to protect applications. IEEE Access
2020, 8, 162012–162021. [CrossRef]

http://doi.org/10.1109/CloudCom.2019.00038
http://doi.org/10.1002/cpe.5668
http://doi.org/10.1007/978-1-4842-6243-6_3
http://doi.org/10.1007/s40192-019-00138-3
http://doi.org/10.1109/IPCCC51483.2021.9679447
http://doi.org/10.1109/ICNP.2016.7784434
http://doi.org/10.1109/CCGrid51090.2021.00058
http://doi.org/10.1109/INFCOMW.2019.8845141
http://doi.org/10.3390/app12136737
http://doi.org/10.1109/GLOBECOM42002.2020.9322368
http://doi.org/10.1177/1550147718767630
http://doi.org/10.1007/978-1-4842-6966-4_5
http://doi.org/10.1109/SANER48275.2020.9054862
http://doi.org/10.1109/ACCESS.2022.3197151
http://doi.org/10.1109/ACCESS.2020.3021044

Electronics 2023, 12, 52 16 of 17

18. Setiadi, D.R.I.M. PSNR vs SSIM: Imperceptibility quality assessment for image steganography. Multimed. Tools Appl. 2021, 80,
8423–8444. [CrossRef]

19. Ge, Y.; Ding, Z.; Tang, M.; Tian, Y.C. Resource provisioning for mapreduce computation in cloud container environment. In
Proceedings of the 18th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 26–28
September 2019; pp. 1–4. [CrossRef]

20. Kelley, R.; Antu, A.D.; Kumar, A.; Xie, B. Choosing the right compute resources in the cloud: An analysis of the compute
services offered by Amazon, Microsoft and Google. In Proceedings of the International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), Chongqing, China, 29–30 October 2020; pp. 214–223. [CrossRef]

21. Sokolowski, D.; Weisenburger, P.; Salvaneschi, G. Automating serverless deployments for DevOps organizations. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on The Foundations of Software
Engineering, Athens, Greece, 23–28 August 2021; pp. 57–69. [CrossRef]

22. Buchanan, S.; Rangama, J.; Bellavance, N. Container registries. In Introducing Azure Kubernetes Service; Apress: Berkeley, CA, USA,
2020; pp. 17–34. [CrossRef]

23. Aziz Shah, A.; Piro, G.; Alfredo Grieco, L.; Boggia, G. A quantitative cross-comparison of container networking technologies for
virtualized service infrastructures in local computing environments. Trans. Emerg. Tel. Technol. 2021, 32, e4234. [CrossRef]

24. Karn, R.R.; Kudva, P.; Huang, H.; Suneja, S.; Elfadel, I.M. Cryptomining detection in container clouds using system calls and
explainable machine learning. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 674–691. [CrossRef]

25. Duan, J. Design and implementation of vulnerability attack and utilization platform based on container virtualization. In
Proceedings of the 3rd International Acad. Exch. Conference on Science and Technology Innovation (IAECST), Guangzhou,
China, 10–12 December 2021; pp. 368–372. [CrossRef]

26. Sun, Y.; Lei, J.; Shin, S.; Lu, H. Baoverlay: A block-accessible overlay file system for fast and efficient container storage. In
Proceedings of the 11th ACM Symposium on Cloud Computing, Virtual Event, 19–21 October 2020; pp. 90–104. [CrossRef]

27. Hussein, M.K.; Mousa, M.H.; Alqarni, M.A. A placement architecture for a container as a service (CaaS) in a cloud environment. J.
Cloud Comp. 2019, 8, 1–15. [CrossRef]

28. Zhang, Y.; Fu, Y.; Li, G. Research on container throughput forecast based on Arima-BP neural network. J. Phys. Conf. Ser. 2020,
1634, 012024. [CrossRef]

29. Kulkarni, S.G.; Liu, G.; Ramakrishnan, K.K.; Arumaithurai, M.; Wood, T.; Fu, X. Reinforce: Achieving efficient failure resiliency
for network function virtualization based services. In Proceedings of the 14th International Conference on Emerging Networking
Experiments and Technologies, Heraklion, Greece, 4–7 December 2018; pp. 41–53. [CrossRef]

30. Huh, J.H.; Seo, K. A case study of the base technology for the smart grid security: Focusing on a performance improvement of the
basic algorithm for the DDoS attacks detection using Cuda. J. Korea Multimed. Soc. 2016, 19, 411–417. [CrossRef]

31. Kim, S.K.; Kim, U.M.; Huh, J.H. A study on improvement of blockchain application to overcome vulnerability of IoT multiplatform
security. Energies 2019, 12, 402. [CrossRef]

32. Javed, O.; Toor, S. Understanding the Quality of Container Security Vulnerability Detection Tools. arXiv 2021, arXiv:2101.03844.
33. Putra, G.D.; Dedeoglu, V.; Kanhere, S.S.; Jurdak, R. Trust management in decentralized iot access control system. In Proceedings

of the IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 4–7 May 2020; pp. 1–9.
[CrossRef]

34. Reeves, M.; Tian, D.J.; Bianchi, A.; Celik, Z.B. Towards improving container security by preventing runtime escapes. In
Proceedings of the IEEE Sec. Dev. Conference (SecDev), Atlanta, GA, USA, 18–20 October 2021; pp. 38–46. [CrossRef]

35. Lo Iacono, L.; Smith, M.; Zezschwitz, E.; Gorski, P.L.; Nehren, P. Consolidating principles and patterns for human-centred usable
security research and development. In Proceedings of the European Workshop on Usable Security, London, UK, 24–26 April 2018.
[CrossRef]

36. Park, N.K.; An, Y. A study of rent fee assessment on the port railway station: The litigation case study of a Korean container
terminal. J. Mar. Sci. Eng. 2022, 10, 1090. [CrossRef]

37. Nam, S.M. A fuzzy rule-based system for automatically generating customized training scenarios in cyber security. J. Korea Soc.
Comput. Inf. 2020, 25, 39–45. [CrossRef]

38. Vyas, P.; Shyamasundar, R.K.; Patil, B.; Borse, S.; Sen, S. SP*: An information flow secure Linux. In Proceedings of the IEEE
International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New York, NY,
USA, 30 September 2021; pp. 1603–1612. [CrossRef]

39. Han, S.H.; Lee, D. Kernel-based real-time file access monitoring structure for detecting malware activity. Electronics 2022, 11, 1871.
[CrossRef]

40. Cinque, M.; Cotroneo, D.; De Simone, L.; Rosiello, S. Virtualizing mixed-criticality systems: A survey on industrial trends and
issues. Future Gener. Comput. Syst. 2022, 129, 315–330. [CrossRef]

41. Rossi, M.; Facchinetti, D.; Bacis, E.; Rosa, M.; Paraboschi, S. {SEApp}: Bringing mandatory access control to Android apps. In
Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Virtual Event, 11–13 August 2021; pp. 3613–3630.

42. Rothwell, W. Filesystem and process control. In Beginning Perl Programming; Apress: Berkeley, CA, USA, 2019; pp. 165–174.
[CrossRef]

http://doi.org/10.1007/s11042-020-10035-z
http://doi.org/10.1109/NCA.2019.8935023
http://doi.org/10.1109/CyberC49757.2020.00042
http://doi.org/10.1145/3468264.3468575
http://doi.org/10.1007/978-1-4842-5519-3_2
http://doi.org/10.1002/ett.4234
http://doi.org/10.1109/TPDS.2020.3029088
http://doi.org/10.1109/IAECST54258.2021.9695508
http://doi.org/10.1145/3419111.3421291
http://doi.org/10.1186/s13677-019-0131-1
http://doi.org/10.1088/1742-6596/1634/1/012024
http://doi.org/10.1145/3281411.3281441
http://doi.org/10.9717/kmms.2016.19.2.411
http://doi.org/10.3390/en12030402
http://doi.org/10.1109/ICBC48266.2020.9169481
http://doi.org/10.1109/SecDev51306.2021.00022
http://doi.org/10.14722/eurousec.2018.23010
http://doi.org/10.3390/jmse10081090
http://doi.org/10.9708/jksci.2020.25.08.039
http://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00214
http://doi.org/10.3390/electronics11121871
http://doi.org/10.1016/j.future.2021.12.002
http://doi.org/10.1007/978-1-4842-5055-6_11

Electronics 2023, 12, 52 17 of 17

43. Mathas, C.M.; Vassilakis, C.; Kolokotronis, N.; Zarakovitis, C.C.; Kourtis, M.A. On the design of IoT security: Analysis of software
vulnerabilities for smart grids. Energies 2021, 14, 2818. [CrossRef]

44. Kim, H.; Hahn, C.; Hur, J. Real-time detection of cache side-channel attack using non-cache hardware events. In Proceedings of
the International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16 January 2021; pp. 28–31.
[CrossRef]

45. Ko, J.Y.; Lee, S.G.; Lee, C.H. Real-time mandatory access control on SELinux for Internet of Things. In Proceedings of the IEEE
International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–6. [CrossRef]

46. Zhu, H.; Gehrmann, C. Kub-Sec, an automatic Kubernetes cluster AppArmor profile generation engine. In Proceedings of the
14th International Conference on Communication Systems & Networks (COMSNETS), Bangalore, India, 4–8 January 2022; pp.
129–137. [CrossRef]

47. Babu, M.V.; Suman, K.N.; Srinivasa Rao, P. Drafting software as a practicing tool for engineering drawing-based courses: Content
planning to its evaluation in client–server environment. Int. J. Mech. Eng. Educ. 2019, 47, 118–134. [CrossRef]

48. Sparks, J. Enabling docker for HPC. Concurr. Computat. Pract. Exper. 2019, 31, e5018. [CrossRef]
49. Wofford, Q.; Bridges, P.G.; Widener, P. A layered approach for modular container construction and orchestration in HPC

environments. In Proceedings of the 11th Workshop on Scientific Cloud Computing, Renton, WA, USA, 21 June 2020; pp. 1–8.
[CrossRef]

50. Lyu, T.; Atmojo, U.D.; Vyatkin, V. Towards cloud-based virtual commissioning of distributed automation applications with
IEC 61499 and containerization technology. In Proceedings of the IECON, 2021–47th Annual Conference of the IEEE Industrial
Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–7. [CrossRef]

51. Ecarot, T.; Dussault, S.; Souid, A.; Lavoie, L.; Ethier, J.F. AppArmor for health data access control: Assessing risks and benefits.
In Proceedings of the 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Paris,
France, 14–16 December 2020; pp. 1–7. [CrossRef]

52. Kang, H.; Kim, J.; Shin, S. Minicon: Automatic enforcement of a minimal capability set for security-enhanced containers. In
Proceedings of the IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada,
21–24 April 2021; pp. 1–5. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/en14102818
http://doi.org/10.1109/ICOIN50884.2021.9333883
http://doi.org/10.1109/ICCE.2019.8662112
http://doi.org/10.1109/COMSNETS53615.2022.9668504
http://doi.org/10.1177/0306419017754226
http://doi.org/10.1002/cpe.5018
http://doi.org/10.1145/3452370.3466001
http://doi.org/10.1109/IECON48115.2021.9589945
http://doi.org/10.1109/IOTSMS52051.2020.9340206
http://doi.org/10.1109/IEMTRONICS52119.2021.9422529

	Introduction
	Related Works
	LXC and Container Platforms
	Security Threats and Requirements
	Legacy File Access control Techniques
	Limitations of the Legacy File Access control Techniques

	Kernel-Based Container File Access control Architecture
	Design Considerations
	Access Control Policy Structure
	Access Control Architecture for Container Files

	Implementation on the Linux Platform
	ConPolicy
	Cont_Agt_D
	Container File Access Control Kernel Driver
	Kernel Policy Manager
	File Access Control Handler

	Verification of the Container File Access Control Architecture
	Function Verification Items
	Performance Verification
	CPU Usage
	Policy Enforcement Time

	Verification Analysis

	Conclusions
	References

