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Abstract: Human activity recognition (HAR) is a popular and challenging research topic driven by
various applications. Deep learning methods have been used to improve HAR models’ accuracy
and efficiency. However, this kind of method has a lot of manually adjusted parameters, which cost
researchers a lot of time to train and test. So, it is challenging to design a suitable model. In this paper,
we propose HARNAS, an efficient approach for automatic architecture search for HAR. Inspired by
the popular multi-objective evolutionary algorithm, which has a strong capability in solving problems
with multiple conflicting objectives, we set weighted f1-score, flops, and the number of parameters as
objects. Furthermore, we use a surrogate model to select models with a high score from the large
candidate set. Moreover, the chosen models are added to the training set of the surrogate model,
which makes the surrogate model update along the search process. Our method avoids manually
designing the network structure, and the experiment results demonstrate that it can reduce 40%
training costs on both time and computing resources on the OPPORTUNITY dataset and 75% on the
UniMiB-SHAR dataset. Additionally, we also prove the portability of the trained surrogate model
and HAR model by transferring them from the training dataset to a new dataset.

Keywords: HAR; NAS; surrogate model; multi-objective; transferability

1. Introduction

HAR is an essential task in computer vision, which aims at analyzing the long-term
behavior pattern and recognizing the specific type of behavior from the input data [1].
It has been widely used in virtual reality [2], automatic driving [3], and smart home
environment monitoring [4]. Especially with the significant rise in the population over 65,
the personal expenditure on medical service and long-term care are increasing sharply due
to the awakening of health consciousness [5], HAR also plays a vital role in helping the
elderly living alone, and the youth who need medical care [6].

Traditional HAR uses video data to identify human activity [7–9], which extracts
Red-Green-Blue (RGB) and depth feature first, then sends these features into an end-to-
end network, such as CNN [10], LSTM [11], etc. However, due to difficulties in camera
deployment and the noise in video data, there is still a long way to go for large-scale
commercial applications. As wearable devices and smartphones become more and more
popular these days, a mass of human activity data can be easily accessed, and various sensor
devices have been integrated into our lives (accelerators, gyroscopes, magnetometers, etc.),
they are small in size and independent of the environmental setting, which makes human
motion data including velocity, acceleration, and position offset can be generated, recorded
or even calculated easily. In addition, their characteristics such as low price, low energy
consumption, and high capability of data processing are valuable from an engineering
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perspective [12]. In this paper, we concentrate on the sensor-based HAR method and find a
better solution to build a high accuracy and low consumption model.

Network designing is vital in a deep learning task. Networks, such as Resnet [13],
Vggnet [14], and Densenet [15], are designed artificially by experts who have rich experi-
ence. Beyond all doubt, they have excellent performance, but also have a large number of
parameters, which means the model needs much data to train. Besides, the model designing
process heavily depends on prior knowledge, which is difficult for new researchers. A new
approach is urgently needed. The successful application of NAS in deep learning helps
researchers save both time and resources [16], and a model can be designed efficiently by
defining a search space and a search algorithm. Furthermore, NAS’s structures always
perform better than the manually designed ones.

Unlike the typical image classification tasks, the HAR task needs to extract both
spatial and temporal features, and the models become heavier. To find an optimal set of
parameters for a model, researchers need to repeat the experiments several times to adjust
the parameters, which causes a severe waste of time and computing resources. NAS-based
methods can automatically find the optimal network structure, which liberates the labor
force. However, learning the optimal parameters of the network still costs iterations of
stochastic gradient descent, and the computing load can reach hundreds of GPU-days [17].
Therefore, existing approaches primarily focus on mitigating the computational overhead,
especially the SGD-based weight optimization [18–20]. Seeking to extrapolate rather than
interpolate the performance of the architecture using surrogates is also an effective way to
save resources. Furthermore, HAR models are always deployed in edge devices, which
require a low-latency network to create a better user experience. So, we choose to use
multi-objective NAS to focus on not only the accuracy of the HAR model but also its size
of it.

This paper focuses on the recognition of human action based on the multi-objective
NAS with online surrogates. We combine CNN with LSTM as a search space to extract
both spatial and temporal features. The former can process the long-term features and
avoid gradient vanishing by a gating mechanism, while the latter can extract different
feature patterns by different convolutional kernels. Additionally, to promote the economic
and intensive utilization of resources, we pay special attention to finding a lightweight
but accurate HAR model that can quickly adapt to different types of edge devices. The
contributions of the proposed methods can be concluded as follows:

(1) We propose an efficient NAS for HAR application. The proposed method signifi-
cantly reduces the training cost using the surrogate model. Besides, we propose a
CNN–LSTM-based model for search space, which uses CNN to extract the features of
the data automatically and uses an LSTM neural network to classify the action into a
specific category.

(2) We add floating-point operations per second (FLOPs) and the number of parameters
into the model as the second and third objectives. The objective function ensures
the model has low computation and communication overhead, which can achieve
excellent performance in resource-limited scenarios.

(3) The portability of the proposed method is proved by migrating the models trained on
the OPPORTUNITY dataset to the UniMiB-SHAR dataset. The experimental results
show that the model obtained through the searched network and the surrogate model
can be applied to data with different distributions, which is of great significance for
practical application.

The rest of this paper is organized as follows. In Section 2, we summarize the previous
works that are related to neural architecture search and human activity recognition. In
Section 3, exact expressions are derived for the proposed NASHAR scheme. In Section 4,
we introduce the experiment settings, including hyperparameter settings and experimental
environment. In Section 5, the results of the experiment are analyzed, including the
performance of the searched architectures and the surrogate models. Finally, the potential
future development of NAS-based HAR is discussed in Section 6.
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2. Literature Review and Background
2.1. Literature Review on NAS Theory and Applications

In recent years, deep learning has achieved great success in many fields, including
computer vision (CV), natural language processing (NLP), and auto speech recognition
(ASR). Compared to traditional machine learning methods, deep learning has a strong
learning ability and can extract the feature automatically, which liberates manual labor.
Because of its practicability, deep learning has become more and more popular in many
tasks. However, the problem remains that even though network structures in many tasks
have been well-designed and architecture modifications do result in significant gains in
the performance of deep learning methods, the search for suitable architectures is still
a time-consuming, arduous and error-prone task. In the past several years, with the
development of hardware equipment, NAS has been regarded as a revolution in network
structure designing and has also placed high hope on breaking through the limitation of
manual designing.

Generally speaking, NAS is cast as a search problem over a set of strategies that define
the structure of a neural network, aiming at finding an optimal network from search space
by using the search strategy. The search strategy details how to explore the search space;
reinforcement learning (RL) and EA, for example, are the top two used methods. Zoph et
al. [17] first defined NAS as an RL problem, considering the explore procedure as actions
selection. It uses RNN as a controller to select an appropriate structure from the search
space and then tests the network in the validation set to get the accuracy, which is regarded
as the reward. Subsequently, the agent continues to maximize the reward until convergence.
For EA [21–23], a population is generated firstly, followed by selection, crossover, and
mutation, which is carried on periodically until it obtains the optimal structure. The
above traditional methods regard NAS as a bilevel optimization problem on both network
structure and weight in discrete domains, which are computationally expensive and limit
the number of architectures that can be explored. Specifically, Refs. [24,25] both perform
standard training and validation of the architecture on the dataset, which cost a lot of time
and prevent the large-scale use of NAS.

Currently, the optimization of NAS is an important research topic that can help users
find the optimal network structure in less time. The emergence of DARTS [26] breaks a
logjam. It transforms the network structure search into a continuous space optimization
problem. Therefore, the gradient descent method can be used to solve the problem while
selecting the candidates, which makes the search process more efficient. In addition,
sequence optimization is another implementation of search strategies. Liu et al. [17] use
a sequential model-based optimization (SMBO) algorithm to improve the complexity
(depth) of the search space and uses the surrogate model to optimize the exploration
process. Compared with the previous methods, this method has substantially reduced the
computational resources required for NAS (from thousands to a few GPU days). More
specifically, the computational complexity is reduced by about 88%, the number of models
that need to be trained is reduced by about 80%, and the quality of the production is almost
unchanged. Besides, strategies like Monte Carlo tree search (MCTS) [27] and Bayesian
optimization [28] are also used.

The Performance estimation strategy is also essential. The candidate models are
sampled and then trained to convergence to measure their performance on the specific
task. The architecture that achieves the highest predictive performance on the validation
set will be chosen. During the search, each evaluation of a candidate involves an expensive
process of training and testing, which is computationally expensive and time-consuming.
As mentioned above, the computational bottleneck of NAS is the training of each child
model to convergence. Therefore, it is necessary to reduce the cost. The simplest way is
to reduce the training time (the number of iterations), that is, to train the network on a
subset of the training set or to reduce the number of layers of the network. Although these
methods can speed up the evaluation process, they will inevitably introduce biases, which
cause severe damage to the model performance, and even retain the low-performance
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model by mistake. Guo et al. [29] try to use a surrogate model to evaluate the performance
of the generated candidates before testing on the validation set, and the model with poor
performance will be discarded, thus significantly reducing the time-consuming on the
premise of ensuring the accuracy.

We categorize methods for NAS according to three dimensions: search space, search
strategy, and performance evaluation strategy (respectively corresponding to N1, N2, and
N3 in Table 1). The search space is a set of candidate network architectures. To save time
and resources, we permanently reduce the search space with prior knowledge to simplify
the search process. The search strategy means the specific method to find the optimal
network structure. Performance evaluation strategy refers to the process of estimating the
candidate network structure, which aims at discarding the poor candidates and selecting
better models. In Table 1, we introduce three types of literature N1, N2, and N3. Refs. [26,30]
are about the search space. Refs. [17,21,24,27,28,31–33] introduce the research on different
search strategies. Refs. [17,22,29,34] are some innovate performance evaluation strategies.

Table 1. Related work on NAS.

Ref. Method Description Type

[26] 2018 DARTS Continuous relaxation in architecture representation N1[30] 2021 OPANAS An efficient one-shot search method

[21] 2021 AS-NAS Solve the non-convexity problem in NAS.

N2

[24] 2019 AmoebaNet-A Age property to favor the younger genotypes
[31] 2018 BlockQNN Use Q-Learning to build networks
[17] 2018 PNAS Use SMBO strategy to search
[27] 2019 MCTS Learn action space by MCTS
[28] 2019 BANANAS Use bayesian optimization
[32] 2020 AttentiveNAS Focuses on sampling the networks
[33] 2020 HourNAS Make the vital blocks the priority

[17] 2016 NASnet Use RL-based model to search

N3

[22] 2020 Nsganetv2 Use surrogate model for efficiency
[29] 2020 ST-NAS Stabilized share-parameter proxy
[34] 2021 RLNAS Ease-of-convergence hypothesis

2.2. Literature Review on HAR Methods

Traditional HAR methods require complex handcrafted features, which make it hard
to apply for practical tasks. They need to extract features such as shape [35], trajectory [36],
optical flow, and local spatiotemporal interest points [37], specifically including static
features such as contours and shapes, dynamic features such as optical flow or motion
information, spatiotemporal features such as space-time cubes, and descriptive character-
istics. Manual feature extraction is time-consuming and not flexible. When new data is
available, researchers need to reanalyze the data and repeat the above process.

With the development of deep learning, automatic feature extraction has gradually
become mainstream. Three main approaches are two-stream-based, Convolutional3D
(C3D)-based, and CNN-LSTM-based methods.

The two-stream-based method focuses on extracting the optical flow feature, which
represents the motion pattern of the human, and then fuses with the RGB feature to classify
the input. Karen et al. [38] proposed a two-stream CNN architecture combined with a
spatial and temporal network, both of which are trained on multi-frame dense optical
flow and can achieve excellent performance. Tang et al. [39] use a two-stream network
to predict human action and achieve impressive results in both short-term and long-term
predictions. This kind of two-dimensional (2D) convolution can extract spatial features
well, but rarely deals with temporal features. So, Ji et al. [40] extended the traditional
2D-CNN [41] to 3D-CNN, performing feature extraction in both the time dimension and
space dimension, which means the feature maps among adjacent frames can interact during
the convolution process. Guo et al. [42] employ 3D-CNN and statistic analysis algorithms
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to extract video and WiFi features, respectively, and propose a novel multi-modal learning
approach for video and WiFi feature fusion. Although 3D-CNN grew dramatically to
improve the recognition accuracy, it also increases the number of parameters. Therefore,
new methods are urgently needed.

RNN-based models have also been widely used to exploit the short and long-term
temporal dynamics for their powerful ability to model temporal dependencies. However, it
has a severe short-term memory problem. Long-term data has little influence on subsequent
data, even if it is essential. Thus, variants such as LSTM and gated recurrent unit (GRU)
emerge to effectively retain long-term information, which can not only learn the reliability
of the sequential input data, but also use the memory cell to adjust its effect. Many network
structures combine CNN with RNN to extract both spatial and temporal features. Arvind
et al. [43] propose a multi-task recurrent neural network architecture that uses inertial
sensor data to segment and recognize activities and cycles, which outperforms or defines
state-of-the-art HAR and cycle analysis using inertial sensors.

We divide the research of HAR into three categories, data enhancement, feature
extraction, and model training, and collect related works in recent years, as shown in the
Table 2, where H1 denotes the studies on data enhancement as Refs. [44–48], H2 denotes the
studies on feature extraction as Refs. [48–51], and H3 denotes the studies on spatio-temporal
network design as Refs. [17,52–55].

Table 2. Related work on HAR.

Ref. Method Description Type

[44] 2020 LRCN Transfer-learning-based approach

H1

[45] 2020 ActivityGAN GAN-based data generation architecture
[46] 2020 CSI Eight channel state information transformation
[47] 2019 SFGM Sample fusion-based generation model
[48] 2018 FS-LSTM An ensemble of data augmentations in feature space

[48] 2018 FS-LSTM A spectrogram-based feature extraction approach

H2
[49] 2020 PSDRNN An explicit feature extraction
[50] 2021 PEN-based Perceptive extraction net (PEN) feature extractor
[51] 2020 EPS-LDA An efficient and reduce dimension feature extractor

[56] 2020 STDAN Enrich the initial level of video representation

H3

[52] 2021 DMCL A distillation multiple choice learning framework
[53] 2021 DOGV capture the cues between spatial appearance and temporal motion
[54] 2021 Swin-B An inductive bias of locality Transformers
[55] 2020 PAN A persistence of Appearance (PA)-based model

2.3. Background and Significance

This paper mainly proposes a model auto search method for HAR. The neural net-
work model is a basic current action recognition method that can accurately classify data.
However, for different data and application scenarios, the parameters and structure of the
model usually need to be adjusted manually, which requires manual experience and is
time-consuming. The business background of this paper is to solve the problem of auto-
matic model construction of HAR tasks to achieve automatic model updating and reduce
manual workload. NAS provides a method to search neural network models automatically,
but it also has the problem of a time-consuming search. The method proposed in this paper
first solves the model search problem on HAR tasks, dramatically improving the search
efficiency and ensuring good migration performance. It has significant application value
for HAR tasks.

3. Methology

In this section, we first introduce the network structure and the definition of search
space. Then we present the search strategy and the surrogate models, which are used
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to optimize the search process. The overall search procedure is summarized in Figure 1
as follows.

Figure 1. The proposed HAR framework based on NAS with surrogate model and NSGA-II.

Firstly, the model randomly selects 30 different architectures as the initial training
samples of surrogate models. Specially, we train four different types of surrogate models,
including multi-layer perceptron (MLP) [57], classification and regression tree (CART)[58],
radial basis function (RBF) [59] and Gaussian process (GP). The optimal surrogate model
is chosen through 10 cross-validations. Secondly, we apply the surrogate model to the
candidates generated by the multi-objective genetic algorithm, then individuals with
excellent performance are picked and trained on the complete dataset. Finally, we add the
selected individuals to the training set for the retraining of the surrogate models. We repeat
the above process several times until the Pareto front is convergent.

3.1. Search Space

LSTM is commonly used in NLP tasks to extract relations among words, which has
some similarities with extracting temporal features in HAR tasks. Additionally, to analyze
the spatial features, we combine CNN with LSTM to design a high-precision but lightweight
network. As advocated above, compared with the hand-craft method, NAS serves as a
more appealing method for optimizing neural architectures to get a lightweight model.
For the CNN part, we define a cell search space to be a set of basic operations where the
input and output feature maps have two types of spatial resolution, which are proposed
in DARTS [26]. Each cell consists of multiple blocks, and it can be regarded as a directed
acyclic graph (DAG) with N nodes where N equals 5 in this paper. Each cell has two inputs
and one output. The specific schematic diagram is shown in Figure 2. In the CNN module,
the two inputs of the cell correspond to the output of the previous two layers. Specifically,
the two types of cells are normal ones and reduction ones, and the difference between
them is that the latter will reduce the height and width of the feature maps by half, 1/3,
and 2/3 of the network. These searching cells will repeat over all the cells in the network
topology level.

Layer0 Layer1

1

2

4

3

5 Concat
Layer 2

Ⅰ Ⅱ

Ⅲ

Ⅳ Ⅴ

Ⅵ Ⅶ

Roman n: Connection No.

: Operation No.n

Figure 2. Search operations and connections.
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The blocks mentioned above contain three main operations, namely skip connect,
convolution and pooling. Additionally, there are ten types of subcategory operations.
The continuation strategy of these candidate operations between nodes can be expressed
as follows:

o(i,j)(x) = ∑
o∈O

exp (α
(i,j)
o )

∑o′∈O exp (α
(i,j)
o′ )

o(x), (1)

where O denotes the operation set described in Table 3, while α
(i,j)
o refers to the weight

of operation o on directed edge e(i,j) from i to j . The discretization value of the mixing
operation between node pairs can be depicted as follows:

o(i,j) = arg max
o∈O

α
(i,j)
o (2)

All operations have the same stride equals 1. Moreover, proper padding is used to
keep the size of the feature map the same. The details of optional operations of the search
space are summarized in Table 3.

Table 3. Optional operations in search space.

Operations Kernel Size

Skip connection -
Average pooling (3,1),(1,3),(3,3)
Max pooling (3,1),(1,3),(3,3)
Convolution (1,1),(3,3),(5,5),(7,7),(3,1) (5,1),(7,1),(11,1)
Dilated convolution (3,3), (5,5)

3.2. Search Strategy

The search strategy defines an algorithm to select individuals from the population to
hybridize and generate new individuals. After mutating and screening, individuals with
bad performance are eliminated and then a new population is generated. In this paper,
we use NSGA-II [60] as the basic search strategy. NSGA-II is a kind of multi-objective
EA, which is optimized from the algorithm NSGA-I [61]. Compared with the NSGA-I,
NSGA-II, a more efficient and elitist search method, has some improvements, as follows:
(1) It proposes a fast non-dominated sorting algorithm. (2) It uses congestion degree and
congestion degree comparison operators to select candidates. (3) It applies the elite strategy
to generate offspring. Multi-objective optimization purports that we must pay attention
to two or more objectives when a task needs to be completed. For example, in the design
of automobile body parts, it is required that the designed parts have great stiffness and
lightweight, which is a two objective optimal problem with some conditional constraints,
such as dimensional constraints and modal constraints. Multi-objective optimization
Objmuti can be described as follows:

Objmulti =

{
min f (x) = [ f1(x) + f2(x) + ... + fn(x)]T

s.t.gi(x) ≥ 0, i = 0, 1, ..., p

}
(3)

where fn(x) refers to different objective function, gi(x) denotes constraint function and x
represents the feasible region in the task.

As for details of NSGA-II, it is a fast non-dominated multi-objective optimization
algorithm with elite retention, which is based on Pareto Optimality (PO). Based on natural
selection and survival of the fittest, NSGA-II obtains the optimal target population through
population cycle iteration. First, it randomly generates the initial population. Then, it
uses the non-dominated sorting (NDS) method to select individuals. Finally, it sets a loop
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iteration through a multi-objective optimizer with crossover and mutation operations to
find the final population. The process of the NSGA-II algorithm is described as Algorithm 1.

Algorithm 1 General process of NSGA-II.
Input: Populations P, number of generations g, offspring S, basic operations O, select

operations Os, crossover operations Oc, mutation operations Om
Output: Final population Pf inal
1: Start: Random G(P) // Initial population
2: for Each p ∈ P do
3: Pselected ← NDS(P) //Use non-dominated sorting algorithm(NDS) to sort alternative

populations.
4: end for
5: g = 1 // The first generation.
6: while g < gmax do
7: S← G(P, Os, Oc, Om) // Generate off-springs by genetic operations.
8: for Each s ∈ S do
9: Sselected ← NDS(S)

10: end for
11: P← P ∪ Sselected
12: Pf inal ← S(P) // Limit the number of individuals in the populations.
13: g = g + 1
14: end while
15: return Pf inal

In this paper, weighted f1-score, FLOPs, and the number of parameters (PaNo) is
used as the training objectives. The weighted f1-score denotes the recognition accuracy.
FLOPs and PaNo indicate computing complexity. Generally, high accuracy always brings
more computing complexity. With the widespread of smartphones and other edge devices,
HAR models also need to be deployed on those devices with limited computing power.
Therefore, we compromise accuracy and model complexity and choose the above indicators
to measure the searched model in our HAR task.

3.3. Surrogate Model

Two main computing bottlenecks remain on the general NAS task. One is complete
training, which usually takes several days with a multi-GPU server. The other is that
many alternative network structures need to be evaluated, which consumes much time
and computing resources before the Pareto front convergence. To overcome the above
bottlenecks, we use a surrogate model to predict the weighted f1-score from integer strings
that encode architectures, which is depicted in Figure 2, and select those with high scores
to the new population. The specific process can be described as follows:

Aacc−s =
[

A0
acc−s, A1

acc−s, ..., Ai
acc−s

]
, Ai

acc−s = S
(

xi
nodes

)
, (4)

where Ai
acc−s denotes the accuracy value of ith model architecture, xi

nodes denotes the node
coding matrix of NAS searched model structures and refers to the surrogate model to
get the best surrogate model for each round adaptively. We use an adaptive switching
(AS) selection mechanism, which firstly builds four types of surrogate models in each
iteration, namely MLP, CART, RBF, GP, and then selects the best one by cross-validation. It
is worth mentioning that the surrogate model is trained and set online. Compared with the
previous methods, which use offline methods to construct the surrogate model, means the
surrogate model is trained completely before the search process and without an update,
of which the timeliness performance is low and the effects are greatly influenced by the
initial random sample. By using an online surrogate model training strategy, the selected
models are added to the training set of the surrogate models. Therefore, each update of the
population is also accompanied by an update of the training set of the surrogate model.
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By using the surrogate model, the searching procedure can be lighter and fast with almost
constant accuracy.

3.4. Proposed Approach

In our proposed HARNAS method, we used NSGA-II as the multi-objective optimiza-
tion and some simple methods as the surrogate model. The model is categorized into five
parts that give a detailed account in Figure 3. They are the initial layer, pre-select layer,
optimization layer, output layer, and objective task layer.

max_pool_3×1

max_pool_3×1

max_pool_3×1

max_pool_3×1

conv_1×1

conv_1×1

conv_1×1max_pool_1×3

Figure 3. The detailed approach and experiment description for HARNAS.

In order to construct the surrogate model, we first randomly sample 30 alternative
models and obtain the weighted f1-score of these candidates by thoroughly training on
the dataset in the initial layer. Then, we encode these candidate models into integers as
the input features, and weighted f1-score, FLOPs, and PaNo serve as labels while training
surrogate models in the pre-select layer. After that, the surrogate model with the best
cross-validation result is obtained. Next, in each iteration, 20 new individuals are generated
through genetics, crossover, and mutation. The surrogate model infers the weighted f1-
scores of these 20 individuals and selects the top eight of them as the new individuals
of the population in the optimization layer. Then, these new individuals are evaluated
without deviation by the genetic algorithm and are added to the training set of the surrogate
model before the next iteration. The surrogate models are reupdated each round with the
population iterates. Especially as the number of samples increases and individuals tend to
the Pareto plane, the prediction performance of the surrogate model increases. Repeat the
above process. We can finally obtain a convergent Pareto plane in the output layer. Then,
we can choose to use it in downstream tasks.

4. Experiments
4.1. Datasets Description

There are many public datasets for HAR tasks, such as OPPORTUNITY [62], UniMiB-
SHAR [63], J-HMDB [64] and Event-version UCF-11 [65]. Considering that low-noise and
rich-category data can maximize the potential of the model, we use sensor data to validate
our model, which contains less noise compared with RGB ones.

Dataset OPPORTUNITY: This dataset is collected by installing wearable devices,
including seven inertial measurement units, twelve 3D acceleration sensors, and four 3D
localization devices on the upper body (buttocks and legs) of four volunteers to capture
their seventeen daily activities, which contains explicitly getting up, drinking coffee, eating
a sandwich, cleaning the table, etc. All the activity recognition environments have been
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designed to generate many activity primitives, yet in a realistic manner. For each subject,
six different runs were recorded. Five of them are called activity of daily living (ADL),
while the remaining one, a drill run, was designed to generate many activity instances.
The ADL run consists of temporally unfolding situations, which contain a large number
of action primitives that occur. We trained our model on the ADL of the first and fourth
subjects, as well as ADL1, and ADL2 of subject 2 and subject 3, and we evaluated the
classification performance of the ADL4 and ADL5 of subject 2 and subject 3. The ADL3
dataset of subject 2 and subject 3 is left for validation.

Dataset UniMiB-SHAR: This dataset of acceleration samples was collected by An-
droid smartphones. It equips with a Bosh BMA220 three-axis low-gravity acceleration
sensor and can measure the acceleration on three vertical axes simultaneously. The dataset
contains 11,771 human activities and falling samples from 30 subjects, ranging from 18 to
60 years old. During the data collection, the subjects were asked to put their smartphones
in their front trouser pockets: half of the time in the left trouser pocket, and the rest in
the right trouser pocket. According to different behaviors, the samples are divided into
17 fine-grained categories and 2 coarse-grained categories: one sample contains 9 activities
of daily living (ADL), and the other has 8 types of falls. We used 10-fold cross-validation
based on the predecessors, which means that all data are randomly divided into 10 parts,
each of which is used as the test set in turn, and the remaining 9 parts are used as the
training set. Then, we recorded 10 rounds of test results and took the average.

4.2. Data Processing

Before model training, it is necessary to pretreat data to ensure effectiveness. To avoid
the missing data causing an unknown impact on the model training, we use linear interpo-
lation to complete the data. Linear interpolation is the most convenient method to retain as
much data information as possible. Other effective strategies can also be conducted here to
increase and complete the data processing (e.g., synthetic minority oversampling technique
(SMOTE), nearest neighbor interpolation, bilinear interpolation, etc.). Additionally, we
treat each sensor axis as a separate channel and generate an input of 113 channels. As for
data extraction, we first extract frames by sliding a fixed length. T denotes the size of the
time window, and S represents the sliding stride. Each frame is built as a data matrix in the
shape of T*S, of which the channel size is 113. For OPPORTUNITY, we use a time window
of 2 s, and the T is selected as 64, and S is 3. For UniMiB-SHAR, we use a time window of
3 s, and T is designed as 151 and S is 3, which is similar to the settings in [66].

4.3. Evaluation Indexes

As depicted in Section 3.2, three indexes are selected as the multi-objectives. Weighted
f1-score, FLOPs, and PaNo are expressed as Aw− f 1 , AFLOPs and APaNo. Aw− f 1 is calculated
to evaluate the performance of the model. AFLOPs and APaNo are computed to test the
complexity of the model. Weighted f1-score (Aw− f 1): To evaluate the effect of classification
results, we choose the weighted f1-score as the index, performing a weighted average of
the f1-score of each category, according to the number of samples for each label. This alters
"macro" to account for label imbalance, and it can result in an f1-score that is not between
precision and recall. The confusion matrix is shown in Table 4.

Table 4. Confusion matrix.

Positive Negative

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

TP refers to the number of samples that are positive and also predicted to be positive
with ATP, FP refers to the number of samples that are negative but predicted to be positive
with AFP, FN refers to the number of samples that are actually positive but predicted to be
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negative with AFN , and TN refers to the number of samples that are actually negative and
predicted to be the negative class with ATN .

According to these indexes, we can calculate the recall and precision. Recall refers to
the ratio of the positive samples that are correctly predicted, while precision focuses on
the part that is predicted to be a positive sample. These evaluation indexes are calculated
as follows:

Aprec =
ATP

ATP + AFP
(5)

Arecall =
ATP

ATP + AFN
(6)

A f 1(ci) =
2× Aci

prec × Aci
recall

Aci
prec + Aci

recall
(7)

Aw− f 1 =
M

∑
i=1

(A f 1(ci)× wi) (8)

where M represents the total number of classes. wi = Ni
N , which represents the sam-

ple proportion of corresponding class labels. i denotes the data category in the dataset.
Floating-point operations per second (FLOPs): FLOPs is the abbreviation of floating-point
operations, which means the amount of floating point operations. It is usually used to
measure the complexity of the model. The specific formulation in the convolutional layer
and fully connected (FC) layer are as follows:

Acov
FLOPs = (2× Ain−ch × Aker nel

2 − 1)× Aout−h × Aout−w × Aout−ch (9)

AFC
FLOPs = (2× Ain−neu − 1)× Aout−neu (10)

where Acov
FLOPs and AFC

FLOPs refer to FLOPs of convolutional layer and FC layer, Ain−ch is the
input channel, Aker nel is the convolutional kernel size, Aout−h is the output map height,
Aout−w is the output map width, Aout−ch is the output channel, Ain−neu is the input neuron
numbers and Aout−neu is the output neuron numbers. The number of parameters (PaNo):
It refers to the size of the model, which has nothing to do with the input size and only
describes the memory required by the model itself. The difference between the number of
parameters and the FLOPs is that the latter refers to the number of operations including
additions, subtractions, multiplications, and divisions in the actual process, which is related
to the input.

Model Training Details

The proposed model is implemented using Python combined with the PyTorch library
on a single NVIDIA 1080Ti GPU. Data processing, model training, and testing are all in the
environment of Ubuntu 16.04, RTX 1080Ti*1, Cuda10.1, Python3.7.7, and PyTorch1.2.0.

The setting of hyperparameters is crucial. We first weigh up both efficiency and
accuracy and finally choose 30 randomly sampled architectures as the initial training set
of the surrogate model. Then, to prevent the model from over-fitting, the searched layers
(number of cells) are set to 1, and the blocks (number of blocks in a cell) are set to 5. The
population generates 40 new individuals each round, and then 8 optimal individuals are
selected from them based on the latest surrogate model and iterates the above process
for 10 rounds. As for model optimization, the batch size is set to 128. The stochastic
gradient descent algorithm and cross-entropy are used for parameter optimization, and
cosine annealing is used to adjust the learning rate. Each model trains for 25 rounds before
the parameter converges.
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5. Results and Discussion

In this section, we evaluate the weighted f1-score and the search efficiency of the
obtained architectures on OPPORTUNITY and UniMiB-SHAR. Additionally, to increase
network utilization, we make reusability one of our goals.

5.1. Performance of the Searched Architecture

Table 5 shows the HAR performance on two datasets of the proposed HAR-NAS
method, which also lists several comparable basic methods and previous methods to
demonstrate the effectiveness of our method.

Table 5. Performance of comparative methods and the proposed NAS model on datasets OPPORTU-
NITY and UniMiB-SHAR.

Type Model Name OPPORTUNITY UniMiB-SHAR
Aacc Am− f 1 Aw− f 1 Aacc Am− f 1 Aw− f 1

Basic model

MLP 91.11 68.17 90.86 71.62 59.97 70.81
LSTM 91.29 69.71 91.16 71.47 59.32 70.82
CNN 90.58 65.26 90.19 74.97 64.65 74.29
AE 87.80 55.62 87.60 65.67 55.04 64.84

Previous model

CNN-based [55] 76.83 - - - - -
CNN + LSTM [67] 78.90 70.40 91.70 - - -
CNN-based [68] 89.60 - 85.10 - - -
CNN-based [69] 90.58 65.26 90.19 74.66 64.65 74.29
CNN + RNN [66] - - 92.07 - - -
CNN + NAS [70] - - - 72.8 - -
CNN + LSTM [71] - - - - - 73.19
LSTM-based [66] - - - - - 69.24

The proposed
NAS model HAR-NAS 91.41 68.87 92.09 75.52 64.47 76.10

We present a survey of different approaches toward the goal of higher performance on
these two datasets as shown in Table 5. CNN and RNN-based models are widely used in
HAR task, among the methods on the OPPORTUNITY dataset, the best accuracy is 91.29,
the best micro-f1 score is 70.40 and the best weighted-f1 score is 92.07, while the models
searched by our method achieve the state-of-the-art performance that the accuracy reaches
91.41, the micro-f1 score reaches 68.87 and the weighted f1-score reaches 92.09. Similarly,
these indexes in the UniMiB-SHAR dataset are 75.52, 64.47, and 76.10, respectively, each of
which is better than the performance of the existing methods. Additionally, we also present
experimental studies on accuracy vs. efficiency trade-offs. Table 6 shows the parameter
settings of the above models.

Table 6. Parameter settings of comparative experiments on OPPORTUNITY and UniMiB-SHAR.

Model Name Parameters Setting

MLP Neurons numbers: 2000, 2000, 2000

LSTM LSTM cells: 64, 64
Output dimensions: 600, 600

CNN
Convolution kernel sizes: (11, 1) (10, 1) (6, 1)
Convolution siding strides: (1, 1) (1, 1) (1, 1)
Pooling kernel sizes: (2, 1) (3, 1) (1, 1)

AE Neurons in encoder and decoder layer (5000)

Pareto fronts are usually calculated by turning the multi-objective optimization prob-
lem into a sequence of single-objective optimization problems or exploiting evolutionary
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methods. A set of candidate solutions gradually evolve into the Pareto set. In multi-
objective tasks, conflicts and incomparability always exist among different objectives,
which means the better the performance of an objective, the worse the performance of other
objectives, and the solutions are called non-dominant solutions or Pareto solutions. The set
of the optimal solution is called the Pareto optimal set, and the surface formed by the set
with three objectives in space is called the Pareto frontier surface. In the experiment, we
set the multi-objective to be an error index (weighted f1-score), FLOPs, and the number of
parameters. Figure 4 shows the Pareto fronts on the datasets. Besides, to analyze in detail,
we also draw the relationships between every two objectives of the total three objectives on
the two datasets.

(a) (b)

Figure 4. Pareto fronts output in the experiment process.(a) Pareto front on OPPORTUNITY. (b) Pareto
front on UniMiB-SHAR.

Figures 5 and 6 draw the relations between objectives on the two datasets, which show
that the individuals searched eventually tend to converge on the coordinate axis, that is the
Pareto front.

In our task, the initial channel of the model is also a searchable parameter. As shown
in Figure 7 below, we set the initial channel number to be 40, 48, 56, and 64, and search
for 30 rounds, then use a box chart to make a visual analysis. We conclude that the
larger the initial channel number, the relatively larger the parameters and FLOPs are,
while the relationship is not strictly linear. In addition, it can also be seen that there is no
apparent difference between the error rate of the selected models under these four different
initial channels. That is to say, a complex model is not necessarily needed to improve
recognition accuracy.

(a) (b) (c)

Figure 5. The pairwise relationships of three objectives on dataset OPPORTUNITY. (a) Change
relation between number of parameters and error. (b) Change relation between error and FLOPs.
(c) Change relation between number of parameters and FLOPs.
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(a) (b) (c)

Figure 6. The pairwise relationships of three objectives on UniMiB-SHAR. (a) Change relation
between number of parameters and error. (b) Change relation between error and FLOPs. (c) Change
relation between number of parameters and FLOPs.

(a) (b) (c)

Figure 7. The population searched on UniMiB-SHAR based on the tri-objectives search objective.
(a) Number of Parametres. (b) Error. (c) FLOPs.

5.2. Performance of the Surrogate Predictors

The surrogate model greatly reduces the number of models that need to be completely
trained by estimating the accuracy of the newly generated individuals, thereby solving
the problem of unbearable time-consuming general NAS methods. Specifically, we train
four different surrogate models each time and select the best one according to the Kendall-
tau (TAU) distance [72], the correlation coefficient between the prediction and target. As
shown in Figure 8 below, the adaptive method is much better than using just one type of
surrogate model.

Figure 8a is the TAU of the optimal surrogate model on the two data sets. It is shown
that TAU oscillates along the whole process while still gradually tending to converge to a
stable value. Figure 8b,c are the TAU of each surrogate model and the optimal surrogate
model on OPPORTUNITY. We comprehensively consider the mean and variance of TAU
during the entire 30-round iteration process, that is, we do not simply choose the model of
the maximum TAU, but also consider the stability of the model.

(a) (b) (c)

Figure 8. TAU of the different surrogate models on OPPORTUNITY and UniMiB-SHAR. (a) The
selected surrogate model on two datasets. (b) OPPORTUNITY. (c) UniMiB-SHAR.
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5.3. Search Efficiency

To compare the search efficiency of our surrogate-based HARNAS method, we take
the weighted f1-score as the index and compare the consumed time as well as the needed
computing resource, which can be quantified to be the number of models that need to
be trained along the whole process, and the fewer models need to be trained, the fewer
resources to be consumed.

As shown in Table 7, for OPPORTUNITY, when the weighted f1-score of the general
NAS method reaches 92.17, the number of models that need to be trained is 200. Compared
with the NAS method using surrogate models, when the weighted f1-score reaches nearly
the same level of 92.09, the number of models that need to be trained is 120, which is
1.67 times less than the general NAS method. Similarly, for UniMiB-SHAR when the
weighted f1-score of the general NAS method reaches the best 75.64, the number of models
that need to be trained is 100. Compared with the NAS method using surrogate models,
when the weighted f1-score is best of 76.12, the number of models that need to be trained is
24, which is 4.17 times less than the general NAS method.

Table 7. Efficiency comparison between the NAS model with surrogate model or not.

Dataset Model F1-Score Trained
Model

Speed
up

Opportunity Original NAS 92.17 200 1×

Opportunity The proposed
method 92.09 120 1.67×

UniMiB
SHAR Original NAS 75.64 100 1×

UniMiB
SHAR

The proposed
method 76.12 24 4.17×

In addition to reducing the number of models that need to be trained and improving
the training speed of the model while reaching roughly the same index as a general NAS
method, we also compared the FLOPs and the parameters of these two indicators. On
OPPORTUNITY, while reaching the same weighted f1-score, the FLOPs of the model
searched by the surrogate-based NAS method are 1.22 times less than the general one, and
the number of the parameters is 1.48 times less. For the UniMiB SHAR dataset, these two
numbers are 2.54 and 1.66, respectively.

Our method can achieve better results in the multi-objective task, including accuracy,
parameter amount, and FLOPs. We draw some of the architectures on the Pareto front
of UniMiB-SHAR as Figure 9. As shown below, the input data is firstly operated by
ReLUConvBN. The structure in the rectangular box is obtained by NAS search. The small
rectangular boxes are the elements listed in Table 3. The hollow circle represents the
summation operation. After the spatial feature is extracted through the NAS-searched
structure, the spatial features are extracted by bi-LSTM, and finally, through the FC, the
predicted output result is obtained.

5.4. Transferring from OPPORTUNITY to UniMiB-SHAR

It is a common practice that models searched on one dataset need to be transferred to
the other datasets or tasks dual to the limited resource. To test the transferability of our
searched model and surrogate models, we transfer the model with the lowest error rate
and its surrogate models from OPPORTUNITY to UniMiB-SHAR.
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(a) Alternative model structure (1) (b) Alternative model structure (2)

(c) Alternative model structure (3) (d) Alternative model structure (4)

(e) Alternative model structure (5) (f) Alternative model structure (6)

(g) Alternative model structure (7) (h) Alternative model structure (8)

(i) Alternative model structure (9) (j) Alternative model structure (10)

Figure 9. Set of network models searched on the Pareto frontier of UniMiB-SHAR.

(1) Reusability of the Surrogate Model
Dealing with the same problem on different datasets will significantly save both time

and computing resources if the trained surrogate model can be reused, and we can be
searched for models directly without repeating the online surrogate training process.

We select the surrogate model of the model that achieves the best results in OPPOR-
TUNITY to be directly used as the surrogate model on UniMiB-SHAR and use the offline
method, that is, the searched individuals are not added to the training set of the surrogate
model, and this model is reused throughout the whole search process. We compared the
weighted f1-score with the method using general NAS methods. The results are shown in
the following Table 8.

Table 8. Reusability of the surrogate model.

Model Weight F1-Score FLOPs Number of Parameters Number of Training Model
NAS 75.64 52.52 0.233 100

Nas with Surrogate Model 76.12 20.66 0.140 24
Nas with old Surrogate Model (online) 75.37 19.40 0.122 88
Nas with old Surrogate Model (offline) 73.51 23.77 0.183 16

As shown in Table 8, the general NAS methods can reach a weighted f1-score of
75.64, slightly lower than the method using the new surrogate model. Still, it is similar to
the old surrogate-based method, which is trained from OPPORTUNITY. To improve the
performance of the old surrogate model, we retain the surrogate model online, that is, each
round of searching on UniMiB-SHAR uses the updated surrogate model. As seen above,
when the HAR models reach nearly the same weighted f1-score, the parameter amount and
FLOPs of the models searched by the migrated online-surrogate model are much smaller
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than those searched by general NAS methods, and the number of models needs to be
trained to obtain the optimal architecture is also reduced by 12. Similarly, we compared the
model directly using the old surrogate model and offline training. Our method obtains the
optimal model of convergence in less time, while the performance is slightly lower than
the model of online training.

(2) Reusability of the Searched Model
Similar to (1), we directly transfer the optimal model searched on OPPORTUNITY

to UniMiB-SHAR, and the weighted f1-score reaches 72.1%, which is only slightly lower
than the best result searched by the general NAS. In some practical applications, what we
often pursue is not the highest accuracy, but the deployment ability of the model. The
method that directly migrates models from one dataset to another significantly improves
the engineering efficiency and iteration capability of edge applications.

6. Conclusions

In this paper, we apply the surrogate-based NAS method to the HAR task, adopt
an adaptive method to flexibly select the optimal surrogate model, and continuously
improve its performance through online training. This method solves the unbearable
time-consuming problem and provides a new solution for traditional NAS methods. Using
efficient NAS allows our method to deliver strong empirical performances while using
much fewer GPU hours than existing automatic model design approaches, and notably,
4× less expensive than standard NAS on the premise of achieving the same classification
accuracy. Besides, the searched model and surrogate model perform well on the new
dataset, which shows a strong ability of reusability.

The proposed method will help people build HAR frameworks conveniently and
efficiently. This work has specific significance for further improving the construction
efficiency, migration, and generalization of HAR models in the future. In the field of
NAS and HAR, we will try in-depth research on lightweight models to help them deploy
on-edge devices. Besides, considering the layers in deep neural networks are not isolated,
the traditional rule-based pruning strategies are not optimal and cannot be migrated from
one model to another, so we will try to use reinforcement learning, for example, to further
improve search efficiency.
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