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Abstract: This paper aims to solve one of the most challenging problems in designing VLSI chips
for common goods, namely an efficient incorporation of security techniques while maintaining high
performances of the VLSI implementation with a reduced hardware complexity. In this case, it is very
important to maintain high performance at a low hardware complexity and the overheads introduced
by the security techniques should be as low as possible. This paper proposes an improved approach
based on a new VLSI algorithm for including the obfuscation technique in the VLSI implementation
of one important DSP algorithm used in multimedia applications. The proposed approach is based on
a new VLSI algorithm that decomposes type IV DCT into six quasi-cycle convolutions and allows an
efficient incorporation of the obfuscation technique. The proposed method uses a regular and modular
structure called quasi-cyclic convolution and the obtained architecture is based on the architectural
paradigm of systolic arrays. In this way we can obtain the advantages introduced by systolic arrays,
especially high speed, with an efficient utilization of the hardware structure. Moreover, using the
proposed VLSI algorithm, we can obtain the important benefit of attaining hardware security. Thus, a
more efficient VLSI architecture for type IV DCT can be obtained, with a significant reduction of the
hardware complexity, and an efficient incorporation of an improved hardware security mechanism
with low overheads. These features are very important for resource-constrained common goods.

Keywords: DCT IV transform; discrete transforms; hardware security; systolic arrays; obfuscation
technique; VLSI algorithms

1. Introduction

The discrete transforms DCT-IV and DST-IV were introduced by Jain [1] and have
some important applications in the area of digital signal processing as spectral analysis,
signal and image coding [2–4] and are valid candidates to be used in data compression.
DCT II, DCT III and DCT IV are computationally intensive, and in order to be used in
real-time applications, it is necessary to use VLSI implementations for them. In order to
obtain an efficient VLSI implementation, it is necessary to design new VLSI algorithms or
to efficiently reformulate the basic form of these algorithms.

To obtain an efficient VLSI implementation, it is very important to take into consid-
eration the data flow within the structure of the algorithm and implicitly to take into
consideration the data dependencies between different operations together with its com-
plexity and its structure, especially regularity and modularity. Using these ideas, in the
present paper, we have efficiently reformulated the algorithm for DCT-IV, taking into
consideration in the same time the complexity and the structure of the data flow and also
its arithmetic complexity. In order to do this, we are using structures that are regular
and modular, and at the same time we have significantly reduced the overall arithmetical
complexity. In this paper, we have used quasi-cycle convolution structures that have some
advantages from a VLSI-implementation point of view similar to those of cyclic convolution

Electronics 2023, 12, 243. https://doi.org/10.3390/electronics12010243 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010243
https://doi.org/10.3390/electronics12010243
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3322-4663
https://doi.org/10.3390/electronics12010243
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010243?type=check_update&version=2


Electronics 2023, 12, 243 2 of 17

and circular correlation that have been used in the literature to obtain efficient VLSI imple-
mentations using appropriate architectural paradigms as systolic arrays architecture [5] or
distributed arithmetic.

In our days, when many companies have to integrate different IP macro-cells from
different supply vendors to reduce the cost of the design, it is very important to protect the
designs from piracy, malicious alteration or reverse engineering. Thus, hardware security
has become one of the most important topics and one of great concern.

There are several hardware security solutions, but one of the most efficient solutions
for solving hardware security problems is obfuscation [6–16].

In the Refs. [6,8], several types of obfuscation are introduced and analyzed: the fixed
obfuscation, the time-varying obfuscation and the dynamic obfuscation.

The principle for a key-based hardware security is that the protected system works
correctly only when the correct key is applied and thus the design is protected by using
encrypting keys for preventing any illegal access. In a mode-based obfuscation using
control flow, we can exploit the properties of control flow to generate functionally incorrect
modes. Thus, for the correct key, the true control signals are transmitted and for erroneous
keys obfuscated false control signals will be applied. This obfuscation solution can be im-
plemented using supplementary gates or by multiplexers. In the case of using multiplexers,
as in our paper, we apply at the inputs of the multiplexer the correct and obfuscated signals,
but the selection of the correct control signal is dependent on the actual key used; this
means that for the correct key, the correct control signals will be selected and the correct
mode will be obtained, and for a wrong key, obfuscated control signals will be selected
resulting in an erroneous function.

There are several VLSI implementations for direct and inverse DCT [17–27], but only
a few optimal VLSI implementations for type IV DCT or type IV DST [28–38]. Until now,
there is no efficient VLSI implementation for type IV DCT or type IV DST that allows an
efficient implementation of a hardware security technique, excepting our papers [31,32].

Based on the obfuscation technique introduced in [6], this paper introduces an efficient
VLSI algorithm for DCT IV that allows an efficient decomposition of the DCT IV computa-
tion into six regular and modular computation structures called quasi-cycle convolutions.
Moreover, the obtained VLSI algorithm has the added advantage of allowing an efficient
incorporation of the hardware security.

The main contributions of this paper can be summarized as follows:

• An efficient reformulation of the DCT IV algorithm that allows a decomposition of the
algorithm into only six regular and modular computation structures called quasi-cycle
convolutions.

• Using the proposed VLSI algorithm, a significant reduction of the hardware complexity
has been attained by using only six matrix-vector products instead of eight, as reported
in the literature.

• The proposed VLSI algorithm allows a further reduction of the hardware complexity
and also improves the speed performances by replacing the general multipliers with
multipliers implemented using a small number of adders or subtractors.

• The proposed solution allows an efficient incorporation of the hardware security
techniques with low overheads, which is important for devices produced on a large
scale such as common goods.

• It allows designing of an efficient VLSI architecture with a significantly reduced
hardware complexity as compared with existing solutions. It also maintains high
speed performances using parallel processing and pipelining, and even improves on
them.

The rest of the paper is organized as follows: Section 2 presents the new VLSI algo-
rithm for type IV DCT with a low computational complexity using regular and modular
computational structures well adapted for an efficient VLSI implementation. Section 3
presents the obtained VLSI architecture that allows a more efficient implementation of the
VLSI algorithm with a significant reduction of the hardware complexity and which allows
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a more efficient incorporation of the obfuscation technique. Section 4 presents the obtained
results. In Section 5, we discuss the results and we put in evidence for the advantages of
the proposed solution. In Section 6 we present the conclusions.

2. A New VLSI Algorithm for DCT IV

The 1-D type IV DCT (DCT-IV) for a real input sequence x(i) : i = 0, 1, . . . , N − 1, is
defined as:

Y(k) =

√
2
N
·

N−1

∑
i=0

x(i) · cos[(2i + 1)(2k + 1)α/2] (1)

for k = 0, 1, . . . , N − 1
with α =

π

2N
(2)

We can drop the constant coefficient from the definition of the DCT-IV, and we will
add it at the end by including a multiplier at the end of the VLSI array to scale the output
sequence with this constant or even better in order to increase the degree of obfuscation
our IP can provide. It can be sent without this multiplier and it will be added in the final
design.

In order to efficiently reformulate Equation (1) in view of obtaining an efficient VLSI
algorithm, we have used some input and output restructuring sequences and we have per-
muted them appropriately. Thus, we can obtain a parallel decomposition of the algorithm
that uses some special computation structures called quasi-cycle convolution.

The output sequence {Y(k) : k = 1, 2, . . . , N − 1} can be computed using the following
equation:

Y(k) = [xp(0) + 2Ta(k)] · cos[(2k + 1)α/2] (3)

for k = 1, . . . , N − 1
In Equation (3) we have used an auxiliary output sequence {Ta(k) : k = 1, 2, . . . , N − 1}

that can be computed recursively as follows:

Ta(0) =
N−1

∑
i=0

(−1)ixp(i) cos(iα) (4)

Ta(k) = Ta(k− 1)− T(k) (5)

for k = 1, . . . , N − 1
where we have introduced the following auxiliary input sequence:

xS(i) = xp(i) · sin[iα] (6)

The input auxiliary sequence
{

xp(i) : i = 0, . . . , N − 1
}

is recursively computed as
follows:

xp(N − 1) = x(N − 1) (7)

xp(i) = (−1)ix(i) + xa(i + 1) (8)

for i = N − 2, . . . , 0
The new auxiliary output sequence {T(k) : k = 1, 2, . . . , N − 1} can be computed in

parallel using six short quasi-cycle convolution structures if the transform length N is a
prime number. In the following we consider the transform length N = 13.

Thus, we can compute the auxiliary output sequence {T(k) : k = 1, 2, . . . , N − 1} using
only six quasi cyclic convolutions, as will be shown below.

The first quasi-cyclic convolution is:

T1a =

 x(4 + 9) −x(3 + 10) −x(1 + 12)
−x(1 + 12) x(4 + 9) x(3 + 10)
x(3 + 10) −x(1 + 12) −x(4 + 9)

 ·
s1a(1)

s2a(2)
s3a(3)

 (9)
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with:
s1a(1) = s(4)− s(5) (10)

s1a(2) = s(3) + s(6) (11)

s1a(3) = s(1) + s(2) (12)

As can be seen from Equation (9) we have a regular and modular computational
structure called quasi-cyclic convolution where all the elements along the main diagonal
are the same excepting the sign. The same property is true for the elements on the lines
parallel with the main diagonal. In this matrix–vector product, the vector has constant
elements as opposed to the case presented in [32] where these elements are variable. This
property can be exploited to significantly reduce the hardware complexity of the VLSI
implementation.

We have also the second quasi-cyclic convolution given by the following equation:

T1b =

−x(2, 4) x(3, 5) x(1, 6)
−x(1, 6) x(2, 4) −x(3, 5)
x(3, 5) x(1, 6) −x(2, 4)

 ·
−s(4)

s(3)
s(1)

 (13)

with:
x(2, 4) = x(2 + 11)− x(4 + 9) (14)

x(3, 5) = x(3 + 10) + x(5 + 8) (15)

x(1, 6) = x(1 + 12)− x(6 + 7) (16)

The third quasi-cycle convolution is given by:

T1c =

−x(2 + 11) x(5 + 8) −x(6 + 7)
x(6 + 7) x(2 + 11) −x(5 + 8)
x(5 + 8) −x(6 + 7) −x(2 + 11)

 ·
−s1c(1)
−s1c(2)
s1c(3)

 (17)

with:
s1c(1) = s(3)− s(5) (18)

s1c(2) = s(1)− s(6) (19)

s1c(3) = s(2) + s(4) (20)

Finally, we can compute the even part of the auxiliary output sequence T(k) combining
the results of the quasi-cycle convolutions presented above as follows:

T(4)
T(8)
T(10)
T(6)
T(12)
T(2)

 =



T1a(1) + T1b(1)
T1c(1)− T1b(2)
−(T1a(2) + T1b(2))

T1c(2)− T1b(3)
T1a(3) + T1b(3)
T1c(3)− T1b(1)

 (21)

As compared with the basic equations from [32], it can be seen that the even part of
the auxiliary output sequence can be computed using only three matrix–vector products
instead of four having also a regular and modular structure. Moreover, the elements of the
vectors in the matrix-vector products are constant as opposed with the situation presented
in [32]. This property can be used to further reduce the hardware complexity as will be
shown in the next sections.

The odd elements of the auxiliary output sequence can be computed as will be pre-
sented below.
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Thus, we are computing the 4th quasi-cycle convolution as:

T2a =

 x(4− 9) x(3− 10) x(1− 12)
x(1− 12) x(4− 9) −x(3− 10)
−x(3− 10) −x(1− 12) −x(4− 9)

 ·
s1a(1)

s1a(2)
s1a(3)

 (22)

with:
s1a(1) = s(4)− s(5) (23)

s1a(2) = s(3) + s(6) (24)

s1a(3) = s(1) + s(2) (25)

and the 5th quasi-cycle convolution as follows:

T2b =

−xb(2, 4) −xb(3, 5) −xb(1, 6)
xb(1, 6) xb(2, 4) xb(3, 5)
−xb(3, 5) −xb(1, 6) −xb(2, 4)

 ·
−s(4)

s(3)
s(1)

 (26)

with:
xb(2, 4) = x(2− 11)− x(4− 9) (27)

xb(3, 5) = x(3− 10)− x(5− 8) (28)

xb(1, 6) = x(1− 12) + x(6− 7) (29)

The 6th quasi-cycle convolution is computed as follows:

T2c =

−x(2− 11) −x(5− 8) −x(6− 7)
x(6− 7) x(2− 11) x(5− 8)
−x(5− 8) −x(6− 7) −x(2− 11)

 ·
−s1c(1)

s1c(2)
s1c(3)

 (30)

with:
s1c(1) = s(3)− s(5) (31)

s1c(2) = −s(1) + s(6) (32)

s1c(3) = s(2) + s(4) (33)

Finally, we can compute the odd part of the auxiliary output sequence T(k) combining
the results of the above quasi-cycle convolutions as follows:

T(9)
T(5)
T(3)
T(7)
T(1)
T(11)

 =



T2a(1) + T2b(1)
T2c(1)− T21b(2)
−(T2a(2) + T2b(2))

T2c(2)− T2b(3)
T2a(3) + T2b(3)
T2c(3)− T2b(1)

 (34)

where we have noted:
x(i + j) = xS(i) + xS(j) (35)

x(i− j) = xS(i)− xS(j) (36)

with
xC(i) = xp(i) · cos[iα] (37)

s(i) = 2 · sin(2iα) (38)

As compared with the basic equations used in [32], it can be seen that the odd part
of the auxiliary output sequence can be computed using also only three matrix–vector
products instead of four such matrix–vector products. It also has a regular and modular
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structure, but the elements of the vectors in such computational structures are constant as
opposed to the situation presented in [32]. This property can be further used to significantly
reduce the hardware complexity of the VLSI architecture that can be obtained using the
proposed VLSI algorithm.

Using two auxiliary input sequences and then an appropriate recurrence given by
Equations (7) and (8) and two auxiliary output sequences, we can appropriately reformulate
the computation of the DCT IV algorithm using six short quasi-cycle convolution structures.

We have reordered the resulting computations using the following permutations:

ϕ(k) =
{

< gk >N i f k > 0
< gN+k−1 >N otherwise

(39)

ζ(k) =< 2k >N (40)

where we have used the primitive root g = 2 of the Galois field formed by the transform
indexes.

3. The VLSI Architecture for DCT IV Obtained Using the Proposed VLSI Algorithm
3.1. Designing the VLSI Architecture

Using the data dependence graph method [5] and the tag control mechanism [39], we
have obtained six linear systolic arrays instead of eight as in [32]. The data dependence
graph (DDG) has been used to put in evidence all the items involved in the proposed VLSI
algorithm and the relations between them and can be used as the main instrument in our
design procedure.

It can be seen from Figures 1–7 that each systolic array consists of three processing
elements. The linear systolic arrays implement six short quasi-cycle convolution structures
having the same structure and the same length which leads to a significant hardware cost
reduction as compared with similar implementations reported in the literature. Moreover,
each processing element in these systolic arrays contains one multiplier with a constant
instead of a general multiplier where both operands are variable. In Figures 2–7 we are
representing the delay with one clock cycle by “*”.
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Due to the fact that in each multiplier one operand is constant, we can obtain an
efficient implementation of these multipliers as will be presented below. It is important
to note that the overall hardware complexity of a processing element is dominated by an
efficient implementation of the multipliers used in each processing element.

First of all, we have represented the constant using an efficient representation in such a
way that the multiplication with a constant can be implemented using adders or subtractors
and shift operations as shown in Table 1.



Electronics 2023, 12, 243 7 of 17

Electronics 2023, 11, x FOR PEER REVIEW 7 of 19 
 

 

multiplier with a constant instead of a general multiplier where both operands are 
variable. In Figures 2–7 we are representing the delay with one clock cycle by “*”. 

 
Figure 1. The function of the processing elements PEs from Figures 2–10. 

 

Figure 2. Systolic array that implements Equation (9). 
Figure 2. The implementation of the multiplier having the constant operand s1a(1).

Electronics 2023, 11, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 3. Systolic array that implements Equation (13). 

 

Figure 4. Systolic array that implements Equation (17). 

Figure 3. The implementation of the multiplier having the constant operand s1c(2).

In Figure 8, the implementation of the multiplier having the constant operand s1a(1)
that requires two adders and two subtracters is shown. The shifters do not involve any
additional circuits but are only implemented using appropriate interconnections. In Figure 1
we have figured the cut-set lines in order to pipeline the structure. At the intersection of the
cut-set lines with the arrows, we are placing pipeline registers. Thus, the critical path has
been reduced from 3 × Ta to Ta where Ta represents the delay introduced by an adder or
subtracter. The same structure can be used to implement multipliers with constants s1a(3)
and s1c(1) that involve the same number of adders/subtracters but the shifting operations
are implemented with a different constant.
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Figure 5. Systolic array that implements Equation (9).

In Figure 9, the implementation of the multiplier having the constant operand s1c(2)
using two adders and one subtracter is shown. In this case, we are using a single cut-set
line. The critical path is also Ta. The same structure is used to implement multiplications
with the constants s1a(2), s(4) and s1c(3) but the shifting operations are implemented with
different constants and the signs could be different.

In Figure 10, the implementation of the multiplier having the constant operand s(1)
using two subtractors is shown. In this case, we have also used a single cut-set line and the
critical path will be Ta, as well. The same structure is used to implement multiplications
with the constant s(3) and s(4) but the shifting operation is implemented with a different
constant and the signs are different.
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Figure 7. Systolic array that implements Equation (17).

Thus, the complexity of processing elements is significantly reduced as compared
with [32] due to the fact that a constant multiplier has a significantly reduced complexity as
compared with a general multiplier on 12 bits. Additionally, the critical path is significantly
smaller compared with the case of a general multiplier.

The function of a processing element is given in Figure 1 and is quite similar with that
of a processing element from [32] but instead of a general multiplier, we have a multiplier
with a constant that is more simple and which has a significantly reduced complexity. It
can be seen that each processing element contains a multiplier and an adder or subtracter.
The selection of the sign is done using a tag control bit denoted in Figure 1 as sgn.
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Table 1. Signed Digit representation of the multipliers with constants.

Multiplier Constant Operand (C) Representation Number of
Adders/Subtractors

s1a(1) 2−1 + 2−4 − 2−6 − 2−8 + 2−10 4

s1a(2) 21 + 2−1 − 2−5 − 2−8 3

s1a(3) 21 + 2−1 + 2−4 + 2−6 − 2−9 4

s(4) 2− 2−3 − 2−8 − 2−10 3

s(3) 21 − 2−6 + 2−10 2

s(1) 20 − 2−4 − 2−7 2

s1c(1) 2−1 + 2−3 + 2−5 + 2−8 − 2−10 4

s1c(2) 2−1 − 2−4 + 2−6 − 2−9 3

s1c(3) 22 − 2−1 + 2−6 + 2−12 3

3.2. The Obfuscation Technique Used in the Proposed Design

In this section, we describe the basic principle of creating obfuscation using a mode
based obfuscation technique [6,15,16].

The control bits from Figures 2–7 are used for controlling the sign of the computations.
Thus, the proposed architecture has three control bits for each systolic array that are
using three Pes, and the technique of obfuscation inspired by [6] can be implemented by
modifying the control bits. In this way we have as a result multiple outputs with only one
being the right one and the rest of them being obfuscated.

As can be seen from Figure 11, the sign bits of the systolic array from Figure 2 can be
obfuscated using the sign bits sgn from the other processing elements or from the other
systolic arrays. Thus, the sign bits of the first processing element from Figure 2 denoted
in Figure 11 as sgn (1,1) can be applied to the first processing element from Figure 2 only
when the key bits K[0:1] are 01. In the other cases, the sign bits that are applied for the first
processing element from the systolic array from Figure 2 will be the sign bits for processing
element two from the systolic array from Figure 3 sgn(2,1) or the sign bits from the third
element from the systolic array from Figure 4 sgn(3,1) or the sign bits from the second
processing element from the first systolic array from Figure 2 sgn(1,2). The same ideas are
used for the sign bits of the second processing element of the systolic array from Figure 5
“s2”. Only when the key bits K[2:3] are 10, the correct sign bits sgn(1,2) are applied for the
second processing element from Figure 5. For the other values of the key bits K[2:3], the
sign bits s2 applied for the second processing element of the systolic array from Figure 2
will be the sign bits sgn(1,1) from the first processing element of the first systolic array from
Figure 2 or the sign bits sgn(3,2) from the second processing element from Figure 4 or the
sign bits sgn(4,3) from the third element of the systolic array from Figure 5. Additionally,
for the obfuscated sign bits s3 of the third element of the systolic array from Figure 2, only
when the key bits K[4:3] are 01 we have the correct sign bits for this processing element.
For the other values of these key bits we are applying the wrong sign bits sgn(2,3) from the
third processing element of the systolic array from Figure 3 or the sign bits sgn(3,2) from
the second processing element from the systolic array from Figure 4 or the sign bits sgn(4,2)
from the second processing element of the systolic array from Figure 5.

The right sign bits s1–s3 for the processing elements from the systolic array from
Figure 2 are obtained when the key bits K[0:5] are 011001, while for the other combinations,
erroneous sign bits are selected using the MUXs from Figure 11 and thus erroneous results
are obtained. The combination formed by K[0:5] represents the obfuscation key.
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The same ideas are used to obfuscate the sign bits for the processing elements of the
systolic arrays from Figures 3–7.

The right sign bits s1–s3 are obtained when K[0:1] = 01, K[1] = 0, K[2:3] = 10 and K[3:4]
= 01, while for the other values, erroneous control signals are selected. The combination
formed by K[0:5], represents the obfuscation key for the first systolic array.

The proposed obfuscation scheme is simple and involves low overheads, which is
very important for common goods that are in mass production. We are using only one
MUX with four inputs on one bit and one output on one bit for each processing element
from Figures 2–7. Additionally, all the signals used in obfuscation are similar and the signal
used in obfuscation represents the correct sign bits but for other processing elements from
the VLSI architecture.

This increases the degree of confusion and implicitly of obfuscation. This could be
very useful in the case where reverse engineering is used to discover the correct signals.

3.3. The VLSI Architecture for the Hardware Core of the VLSI Implementation of DCT IV

Using a hardware sharing technique, we can combine the systolic arrays from Figures 2
and 5 and obtain the unified systolic array from Figure 12. We are also combining the
obfuscation circuits for the two systolic arrays. It can be seen that the same multiplier is
used in each processing element for the two systolic arrays from Figures 2 and 5.
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Using the same hardware sharing technique, we can also combine the systolic arrays
from Figures 3 and 6 and obtain the unified systolic array from Figure 13. It can be seen
also that the same multiplier is used in each processing element for the two systolic arrays
from Figures 3 and 6.
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The same hardware sharing technique is also used to combine the systolic arrays from
Figures 4 and 7, and we obtain the unified systolic array from Figure 14. It can be seen also
that the same multiplier is used in each processing element for the two systolic arrays.
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In addition to the hardware core that consists of the systolic arrays from Figures 12–14,
we have a pre-processing and a post-processing stage. The pre-processing stage computes
the auxiliary input sequences xa(i,j) and xb(i,j) and performs the index mapping given
by Equations (39) and (40) and implements relations (6–8) and (14–16) and (27–29) that
involves mainly addition and one multiplication. The post-processing stage is used to
compute the auxiliary output sequence T(k) using Equations (21) and (34), the auxiliary
output sequence Ta(k) using the recurrences given by (4) and (5) and finally, the output
sequence using Equation (3). Only in the final Equation (3) we have one multiplier in rest
only additions/subtractions.

4. Results

As has been shown in Section 3, using the obtained VLSI algorithm for type IV DCT,
it was possible to use a more efficient obfuscation technique as in [32] with only a slight
increase of the overheads. The overhead involved by the incorporation of the obfuscation
technique is very low and consists only in 18 MUXs on one bit with 4 inputs and one
output.

Additionally, a significant reduction of the hardware complexity as compared with
the best VLSI implementation of the DCT IV [32] could be obtained maintaining in the
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same time the same speed performances. Thus, using the proposed VLSI algorithm, we
have obtained a new VLSI architecture with only three linear systolic arrays elements
working in parallel, containing each three processing elements, instead of eight such
systolic arrays as in the best solution presented in the literature [32]. Moreover, due to
the fact that each processing element contains two multipliers with the same constant,
we can apply a hardware sharing technique, and instead of two such multipliers, we can
use only one in each processing element. The complexity of the multipliers has been
also reduced significantly due to the fact that the multiplication with a constant can be
implemented using only a few adders and subtracters as has been shown in Section 3. Thus,
the complexity of the multipliers has been significantly reduced as compared with that of a
general multiplier used in [32] and we can use in our VLSI architecture of the hardware
core only adders and subtracters and shift operations that can be implemented without
extra circuits.

5. Discussion

We have obtained a new VLSI algorithm for type IV DCT that allows using a more effi-
cient obfuscation technique compared with that proposed in [32] with only a slight increase
of the overheads. In the same time a significant reduction of the hardware complexity has
been obtained. For the proposed VLSI algorithm we have obtained a new VLSI architecture
with only 3 linear systolic arrays working in parallel, containing each 3 processing elements,
instead of 8 such systolic arrays as in the best solution presented in the literature [32]. Due
to the fact that each processing element contains 2 multipliers with the same constant, we
can apply a hardware sharing technique and instead of 2 such multipliers we can use only
one in each processing element. Moreover, the complexity of the multipliers with a constant
can be significantly reduced as compared with the general multiplier used in [32]. Thus, we
can use only adders and subtracters and shift operations, as can be seen from the Table 1,
to implement the constant multipliers.

5.1. Discussion about the Main Futures of the Proposed Solution

As shown in Section 3.2, the hardware security has been increased and the overhead
involved by the incorporation of the obfuscation technique is very low and consists only in
18 MUXs on one bit with four inputs and one output.

We are using only 6 regular and modular computation structures (a matrix–vector
product) where all the elements of the vectors are constant. This feature can be further
exploited by replacing the general multipliers with only a few adders and subtracters
leading to a further reduction of the hardware complexity and in the same time a reduction
of the critical path and an increase of the speed performances.

The proposed VLSI algorithm can be mapped on six linear systolic arrays that can be
merged in only three such systolic arrays.

Due to the fact that three systolic arrays have multipliers with the same constants, we
can further reduce the hardware complexity by applying a hardware-sharing technique,
and instead of two such multipliers, we can use only one in each processing element. The
proposed VLSI algorithm can be mapped thus on only three linear systolic arrays with a
significant reduction of the hardware complexity.

5.2. Comparison with Similar Solutions for the VLSI Implementation of DCT IV

As can be seen from Table 2, in [34] the throughput is two times lower as compared
with our solution where we have six systolic arrays working in parallel as compared
with two systolic arrays used in [34]. Moreover, the solution proposed in [28,34] does not
incorporate the obfuscation technique.
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Table 2. Comparison of the hardware complexity and speed performances of various DCT IV designs.

Architectures Multipliers Adders Throughput Critical Path

[34] (N + 3)/2 3(N + 1)/2 + 1 2/(N − 1) Max (Tmem,Ta)

[28] (N + 1)/2 N 4/(N − 1) Tmul

[31] (N + 1)/2 N 4/(N − 1) Tmul + Ta

[32] (N − 1)/2 N 4/(N − 1) Tmul + Ta

Proposed 3(N − 1)/4 3(N − 1)/4 4/(N − 1) Ta

As can be seen from Table 2 comparing with [32] (the best reported in the literature),
we have significantly reduced the number of multipliers and adders due to the fact that we
have three systolic arrays with three processing elements instead of four systolic arrays
with three processing elements as in [32]. The complexity of a processing element in the
two solutions is similar. Moreover, due to the fact that we are using only multipliers with
a constant operand, we can implement these multipliers at a low cost using at most four
adders/subtractors to implement a such multiplier instead having a general multiplier as
in [32] with a complexity that is significantly greater. Moreover, the general multiplier is
significantly slower.

Thus, we have nine (3(N − 1)/4 in general case) multipliers with a constant that can
be implemented using only 28 adders/subtracters with a critical path of of Ta, where Ta
is the latency of an adder instead of 12 ((N − 1)) general multipliers with the critical path
of Ta + Tm where Tm is the latency of a general multiplier on 12 bits that is significantly
greater than that of an adder Ta.

In [28] we have the same number of multipliers for the hardware core as in [32] and
the critical path is also Ta + Tm.

Thus, we can obtain better speed performances as in [28,31,32] due to the fact that
the clock frequency is given by the critical path that is significantly better in our design
As compared with [34] the throughput is doubled. Thus, we have high speed processing,
using a parallel decomposition of the VLSI algorithm and greater than in [32], taking into
consideration the reduction of the critical path, and obtaining in the same time a significant
reduction of the hardware complexity as have been shown above. The proposed solution
has also all the advantages of a VLSI implementation of cycle convolution or circular
correlation as a good topology that allows an efficient VLSI implementation and a low I/O
cost.

6. Conclusions

In this paper, a new solution to obtain an efficient VLSI implementation for DCT
IV with a significant reduction of the hardware complexity has been proposed. In the
same time, an efficient hardware security technique with very low overheads, that is very
important for resource-constrained common goods, has been incorporated. The proposed
solution is based on a new efficient VLSI algorithm for DCT IV that decomposes the com-
putation of DCT IV into six quasi-cycle convolutions instead of eight such computational
structures as reported into literature. The proposed VLSI architecture is inspired by the
architectural paradigm of systolic arrays, thus obtaining the advantages introduced by the
VLSI implementation of such regular and modular structures using systolic arrays as high
speed and an efficient utilization of the hardware structure with low I/O costs. Moreover,
the proposed solution has the added benefit of efficiently attaining hardware security. Thus,
we have obtained the benefit of attaining hardware security using very low overheads
and obtaining at the same time a very efficient VLSI implementation with a significant
reduction of the hardware complexity and high-speed performances.
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