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Abstract: Traffic flow forecasting, as one of the important components of intelligent transport systems
(ITS), plays an indispensable role in a wide range of applications such as traffic management and
city planning. However, complex spatial dependencies and dynamic changes in temporal patterns
exist between different routes, and obtaining as many spatial-temporal features and dependencies as
possible from node data has been a challenging task in traffic flow prediction. Current approaches
typically use independent modules to treat temporal and spatial correlations separately without
synchronously capturing such spatial-temporal correlations, or focus only on local spatial-temporal
dependencies, thereby ignoring the implied long-term spatial-temporal periodicity. With this in mind,
this paper proposes a long-term spatial-temporal graph convolutional fusion network (LSTFGCN)
for traffic flow prediction modeling. First, we designed a synchronous spatial-temporal feature
capture module, which can fruitfully extract the complex local spatial-temporal dependence of nodes.
Second, we designed an ordinary differential equation graph convolution (ODEGCN) to capture more
long-term spatial-temporal dependence using the spatial-temporal graph convolution of ordinary
differential equation. At the same time, by integrating in parallel the ODEGCN, the spatial-temporal
graph convolution attention module (GCAM), and the gated convolution module, we can effectively
make the model learn more long short-term spatial-temporal dependencies in the processing of
spatial-temporal sequences.Our experimental results on multiple public traffic datasets show that
our method consistently obtained the optimal performance compared to the other baselines.

Keywords: long short-term spatial-temporal dependencies; spatial-temporal graph convolution;
traffic flow forecasting

1. Introduction

Because traffic flow forecasting has wide-ranging applications in people’s everyday
lives, the task of predicting traffic data has been studied extensively by researchers. The
ability to accurately predict traffic flow data has the potential to significantly improve the
efficiency and safety of people’s traffic journeys, particularly on high-traffic, high-speed
freeways, where congestion can severely affect their efficiency; accurate prediction of traffic
flow can provide the basis for accurate vehicle scheduling and bus system optimization,
which can help alleviate urban traffic congestion and improve urban traffic efficiency, and
is crucial to promoting the coordinated development of smart transportation and smart city.
Based on accurate traffic flow prediction results, traffic police departments can conduct
timely traffic dredging to alleviate the congestion caused by excessive traffic.

With the continued development of deep learning in recent years, the graph neural
network (GNN) is being widely used in traffic flow prediction. The GNN is applied to
obtain the spatial correlation of traffic networks, whereas the time-series module is used
to capture temporal correlation, and graph convolution and temporal convolution were
introduced into the model methods and were shown to be effective for spatial-temporal
feature extraction. While considerable progress has been made in the incorporation of
graph structures into spatial-temporal data prediction models, these models still suffer
from a number of shortcomings:
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• In earlier studies such as DCRNN [1], STGCN [2] and ASTGCN [3], two independent
components were used to capture the temporal and spatial dependencies seperately.
In these approaches, only spatial dependencies and temporal correlations are captured
directly, without considering both temporal and spatial interaction dependencies, and
these complex local spatial-temporal correlations can be captured simultaneously
and would be highly effective for spatial-temporal data prediction as adopted by
STSGCN [4], as this modeling approach reveals the fundamental way in which spatial-
temporal network data can be generated.

• Existing studies of spatial-temporal data prediction fail to capture dependencies
between local and global correlations simultaneously. RNN/LSTM-based models
such as DCRNN and STGCN are time-consuming because the models are relatively
complex and do not parallelize the processing task well, and may fade away or explode
when capturing remote sequences [5]. The CNN-based approach requires layers to
achieve global correlation of long sequences, and STGCN and GraphWaveNet [6] can
lose local information if the rate of expansion is increased. STSGCN proposes a new
localized spatio-temporal subgraph that synchronously captures local correlations
and is only designed locally, ignoring the global information. The situation of learning
only local noise is more severe in the presence of missing data.

• The traffic flow of a spatial node is not only correlated with the previous time step
of the current node, but with the entire history of traffic flow, and this correlation
does not become weaker with longer time intervals; in the long run each node’s traffic
flow has its own similar temporal “pattern”. As demonstrated in Figure 1a, in an
urban transport network, node 1 denotes the station, where the traffic flow during a
grand festival such as the Chinese New Year is very variable compared to the previous
days, node 3 denotes the school, where the traffic flow on the opening day is quite
dissimilar from the summer and winter holidays, and the other nodes often vary
greatly in this time “pattern” because of their different locations. Traffic flows in
public transport networks are constantly changing dynamically. For many areas of
the public transport network, traffic flow at one point in time is closely linked to its
historical traffic flow data, which makes long-term traffic flow prediction difficult. As
demonstrated in Figure 1b, the color shades of the solid lines between nodes represent
the spatial correlation between different roads, while the color shades of the dashed
lines represent the temporal influence of historical traffic flow data on the current time
point. By learning the short-term and long-term periodicity of historical time series of
spatial nodes, the algorithm can better improve the accuracy of traffic flow prediction.

To figure out these challenges, in this paper, we propose a novel deep learning model
called long short-term fusion spatial-temporal graph convolutional network (LSTFGCN).
The temporal correlation of the traffic in the temporal dimension is first extracted using
temporal convolution (TCN). Additionally, in the ordinary differential equations graph
convolution (ODEGCN), the wider acceptance domain allows it to capture more dependent
features in longer time steps, and the gated convolution is then used to improve the
extraction for long term features. The local spatial-temporal convolution attention module
is then established to synchronously obtain the local spatial-temporal correlations, and
local spatial-temporal features are strengthened using the Convolution Block Attention
Module (CBAM) [7]. In conclusion, merging features extracted from different spatial-
temporal convolution modules and the gated convolution module can capture more hidden
spatial-temporal dependencies in the traffic. LSTFGCN is also capable of using different
modules to extract long- and short-term characteristics of a node separately and merge
them appropriately to improve the performance of traffic flow forecasting.
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Figure 1. (a) Urban transport network, where the red points identified as 1 to 5 denote traffic sensors
with varying periodicity of sensor time patterns at different locations. (b) Traffic signal tensor map
from time t − 1 to t + l + 1, where the traffic flow at the current time step of a node is correlated not
only with the previous time step, but also with all historical traffic flows.

We have evaluated LSTFGCN on four public transportation network datasets. The
results demonstrate that LSTFGCN can obtain excellent performance. The key contributions
of this article are as follows:

• We propose a novel ordinary differential equation graph convolution, which uses the
global acceptance domain of a wider graph convolution to learn historical spatial-
temporal characteristics by entering historical traffic data of current time step and
current time step.

• We propose a novel spatial-temporal graph convolution attention module that can
serially generate attentional feature map information in both the channel and spatial
dimensions while simultaneously capturing local spatial-temporal correlations, which
may be multiplied with previous feature maps for adaptive correction of the features.

• We propose an efficient framework for capturing both local and global spatial-temporal
correlations, and further extract long-range spatial-temporal dependencies by combin-
ing a gated extended convolution module with GCAM and ODEGCN in parallel to
fuse the long short-term spatial-temporal features of nodes.

• We evaluated our proposed model on four datasets and processed extensive com-
parison experiments and compared the prediction results with recent model results,
demonstrating that the model in this paper achieved better results.

2. Related Work
2.1. Spatial-Temporal Forecasting

Spatial-temporal forecasting plays an important role in many fields of application.
In order to more effectively fuse spatial dependencies, recent studies have introduced
graph convolutional networks (GCNs) for learning traffic networks. DCRNN models
spatial information using bidirectional random wander on the traffic map and captures the
temporal dynamics via a gated traffic unit (GRU). Transformers such as those of Wang [8]
and Park et al. [9] make use of the spatial and temporal attention modules in the transformer
for spatial-temporal modeling. This outperforms LSTM for training, but predictions are still
incremental because of its autoregressive structure. STGCN and GraphWaveNet employ
graph convolution over the spatial domain as well as one-dimensional convolution along
the time axis. These relate to graph and time series information, respectively. STSGCN
attempts to fuse spatial-temporal blocks together using a local spatial-temporal convolution
graph module, ignoring global interactions.

2.2. Graph Convolutional Network

Graph convolutional networks are used extensively for many graph-based tasks such
as classification and clustering [10], of which there are two types. The first is spectral



Electronics 2023, 12, 238 4 of 18

methods, which consider graph convolution locality via spectral analysis, e.g., by finding
the corresponding Fourier basis for expanding the convolution in the spectral domain into
the graph [11], which was later optimized by Defferrard, Bresson and Vandergheynst [12]
using a Chebyshev polynomial approximation in order to implement the eigenvalue de-
composition. GCN [13] is representative of work that has built typical baselines in a large
number of tasks. A second approach is to use a typical convolution to promote spatial
neighborhoods. Spatial methods perform convolutional filtering directly on graph nodes
and their neighbors. The heart of this type of method is thus the selection of the neigh-
borhood of nodes. Li et al. [2] introduced graph convolution into the task of recognizing
human actions. A number of partitioning strategies have been proposed to partition the
neighborhood of each node into different subsets and to guarantee an equal number of
subsets for each node. Typical works include GAT [14], which introduces an attention
mechanism into the domain of graphs, and GraphSAGE [15], which generates embeddings
of nodes through local feature sampling and aggregation.

2.3. Attention Mechanism

Attention mechanisms have been used extensively in recent years in a variety of
tasks such as natural language processing, image captioning, and speech recognition. The
purpose of the attention mechanism is to select from among all of the inputs information
that is relatively critical for the task at hand. Xu et al. [16] proposed two attentional
mechanisms in a picture description task and used visualization methods to visualize
the effects of attentional mechanisms. In order to classify the nodes of the graph, the
self-attentive layer of GAT processes the graph structure data via neural networks and
achieves state-of-the-art results. Liang et al. [17] proposed a multi-layer attention network
for time series prediction that adaptively adjusts the correlation between the time series of
multiple geo sensors. However, it is time-consuming in practice because an independent
model needs to be trained for each time series [3]. CBAM is a simple and efficient attention
module for convolutional neural networks. It is capable of generating attention feature
maps in two dimensions of the channel and feature space, and making adaptive corrections
to the original features. Because CBAM is a general purpose end-to-end module, it can be
seamlessly integrated into a convolutional layer and can be trained end-to-end with the
base convolutional layer.

2.4. Neural Ordinary Differential Equations

The current work typically uses shallow graph convolutional networks and temporal
extraction modules to model spatial-temporal dependencies, respectively. Such models,
however, have limited representational capabilities: Shallow convolution is unable to
capture spatial correlations at a distance, while a larger number of layers can lead to
performance degradation in practice [18]. General GNNs have been shown to suffer from
problems of over-smoothing. On the basis of earlier work [19,20], Chen et al. [21] proposed
a new family of continuous time models, called neural ODEs, which can be interpreted as
continuous equivalents of residual networks [22]. The basic neural ODE formulation is
given below:

dh(t)
dt

= fθ(h(t), t), h(t0) = h0, (1)

where fθ denotes being parameterized as a neural network. The hidden state h(t) is defined
at any time and can be computed at any desired time using the ODE solver as follows:

h0, . . . , hT = ODESolve( fθ , h0, (t0, . . . , tT)), (2)

where T indicates the number of time steps. By using the adjoint method [21], the gradients
θ can be computed memory-efficiently during back propagation.
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Recent work [23–27] attempted to analyze this framework theoretically, so as to over-
come the instability problem and to improve memory efficiency. Researchers are applying
the neural ordinary differential equations to many other fields.

3. Preliminaries

Definition 1. Spatial network G. We use G = (V, E, A) to denote the spatial network, where
|V| = N is the set of vertexes, N denotes the number of vertices, E denotes the set of edges, and A
is the adjacency matrix of the network G. The spatial network G denotes the relationship of nodes in
spatial dimensions and the network structure does not change with time.

Definition 2. The graph signal matrix X(t)
G ∈ RN×C, where C is the number of attribute features

and t is the tth moment. This graph signal matrix denotes the observed values of the spatial network
G at time. The purpose of traffic prediction is to learn the function f from the previous T traffic
speed observation and to predict the traffic speed of the next T′ from the N-related sensors on the
road network.

[G, X(t−T+1)
G , · · · , X(t)

G ]
f−→ [X(t+1)

G , · · · , X(t+T′)
G ]

where T is the length of the historical spatial-temporal network sequence and T′ denotes the length
of the target spatial-temporal network sequence to be predicted.

4. Model

We show the framework of long short-term fusion spatial-temporal graph convolu-
tional networks in Figure 2. The model is composed of (1) an input layer, (2) a stacked
long short-term fusion spatial-temporal graph convolutional network layer (LSTFGCNL),
and (3) a layer of output data. The input layer is one fully-connected layer and the output
layer is two fully-connected layers, followed by one activation layer such as ReLU [28].
Each LSTFGCNL consists of multiple spatial-temporally parallel graph convolution at-
tention modules, a graph convolution module for ordinary differential equations, and a
gated extended convolution module (gated CNN), which contains two parallel extended
convolution blocks in two dimensions.

Figure 2. General framework of LSTFGCN.
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4.1. Localized Spatial-Temporal Graph Construction

As in STSGCN, we constructed a similar model to directly capture each node’s influ-
ence on its spatial-temporally adjacent nodes, which are the local node spatial connectivity
and temporal correlation between adjacent time steps. In order to achieve synchronous
capture of the local time and spatial correlation of the nodes, all nodes must be connected
to themselves at adjacent time steps. With each node self-connected at the previous time
and at the following time, the result is a local spatial-temporal plot, which directly captures
the correlation between each node and its spatial-temporal neighbors.

A ∈ RN×N denotes the adjacency matrix of the spatial graph, and N denotes the
number of nodes. A′ ∈ R3N×3N denotes the adjacency matrix of the local spatial-temporal
graph built on three continuous time steps. For the node i of Ai in the spatial graph, its
new index in the local spatial-temporal graph is calculated by (t− 1)N + i, where t refers
to the number of time steps in the local spatial-temporal graph. If two nodes are connected
to each other in this localized spatial-temporal graph, in this case, the corresponding value
in the adjacency matrix is set to 1, and in the absence of connectivity, the value is set to 0.
The adjacency matrix of the local space-time graph can be expressed as follows:

A′i,j =
{

1, i f vi and vj are connected
0, otherwise

, (3)

where vi is node i in the local spatial-temporal graph. The adjacency matrix A′ contains 3N
nodes. Figure 3 shows the adjacency matrix of the localized spatial-temporal graph. The
adjacency matrix A′ is composed of nine small matrices. The three matrices on the diagonal
respectively denote the adjacency matrix At−1 at t− 1 time and the adjacency matrix At

and At+1 at t time and t + 1 time. The ASC matrix on both sides of the diagonal denotes
the connectivity between each node and itself in adjacent time slices (unit matrix, namely
connectivity is 1). The ASC matrix circled in red in the first row and second column of A′ in
Figure 3 denotes the connectivity of the current node between time step 1 and time step 2
as 1, and the remaining two matrices in the lower left corner and upper right corner are set
as 0.

Figure 3. Constructed local spatial-temporal graph.

4.2. Spatial-Temporal Graph Convolution Attention Module

The spatial-temporal graph convolution attention module (GCAM) consists of a set of
graph convolution and convolutional block attention modules (CBAMs). The graph convo-
lution operation aggregates the features of each node with its neighboring nodes, while the
CBAM can make adaptive corrections to the obtained node features. The constructed local
spatial-temporal graph is used as the input of GCAM, so that each node can aggregate its
own features and those of neighboring nodes at adjacent time steps to achieve the effect of
simultaneous extraction of short-term local spatial-temporal features of each node. We also
added self-connection at each node of the local spatial-temporal graph, which allows the
graph convolution operation to take into account its own characteristics when aggregating
features from neighbor nodes. The stacking of multiple graph convolution operations
to expand the aggregation region and the increase in the domain of acceptance of graph
convolution operations helps to capture local spatial-temporal correlations. A clustering
function is a linear combination with weights equal to node weights and edges between



Electronics 2023, 12, 238 7 of 18

adjacent nodes. We then use a fully-connected layer with a chosen GLU [29] activation
function, and this graph convolution operation can be formulated as follows:

h(l) = (A′h(l−1)W1 + b1)⊗ σ(A′h(l−1)W2 + b2), (4)

where A′ ∈ R3N×3N denotes the adjacency matrix of the local spatio-temporal graph.
h(l−1) ∈ R3N×C denotes the input to the convolution of the graph of the l layer; when l = 0,
it denotes the initial input. W1 ∈ RC×C′ , W2 ∈ RC×C′ , b1 ∈ RC′ , b2 ∈ RC′ are learnable
parameters, C denotes the number of attribute features, and C′ denotes the number of
features output from the first fully connected layer. ⊗ denotes an element-wise product,
and σ(·) denotes a sigmoid function.

Then, a new aggregation layer (AGG) was designed to filter the useless information.
For GCAM with l layers of graph convolution operations, the output of each graph convo-
lution operation will be fed to the aggregation layer. The aggregation layer will compress
all of the outputs in the graph convolution layer. The aggregation operation has two steps:
aggregating and cropping.

• Aggregating operation: We chose maximum pooling as the aggregation operation.
This algorithm applies a maximum element-wise operation to the output of all graph
convolutions in GCAM. The maximal aggregation operation may be expressed as :

hagg = max(h(1), h(2), · · · , h(l)) ∈ R3N×C, (5)

where h(l) denotes the output of the l layer graph convolution, and hagg denotes the
output of the aggregating operation.

• Cropping operation: The cropping operation consists of removing redundant features
from the previous and next time slices from the aggregate results and retaining only
features from nodes in the intermediate moments. The reason for this is that the graph
convolution operation has already aggregated the information from the previous and
next time steps, and cropping two time steps will not result in the loss of important
information and each node contains a local spatial-temporal correlation. By stacking
multiple GCAMs and retaining the characteristics of all adjacent time-steps, a large
amount of redundant information will reside in the model, thereby affecting the
prediction effect. The cropping operation is demonstrated in Figure 4, showing
cropping of the features of the previous time step t− 1 and the next time step t + 1
and keeping the features of the intermediate time step t.

After cropping, the features obtained are input to the CBAM, which can serially
generate two sets of attentional feature map information in the two dimensions of channel
and space, and then the two sets of feature map information are multiplied with the
previous input features for adaptive correction of the features in order to produce the final
feature map.

Figure 4. Cropping operation of hagg.



Electronics 2023, 12, 238 8 of 18

In the first stage, the attention feature map of the channel is generated. This operation
can be expressed as follows:

hc = σ(W1(W0(AvgPool(hagg))) + W1(W0(MaxPool(hagg)) ∈ RC×1×1, (6)

where W0 ∈ RC/r×C, W1 ∈ RC/r×C are learnable parameters, and r is the shrinkage rate.
AvgPool(·) denotes average pooling, and MaxPool(·) denotes maximum pooling.

Then, a spatial attention feature map is generated. The input graph is stitched together
along the channel with features that are pooled equally and features that are pooled
maximally, and convolved by a standard circle base layer to generate a two-dimensional
spatial attention graph. This operation can be expressed as follows:

hs = σ( f 7×7([AvgPool(hagg); MaxPool(hagg)])) ∈ RN×T , (7)

where f 7×7(·) denotes a convolution operation with a convolution kernel size of 7× 7.
Finally, the computed spatial feature maps and channel attention maps are used to

correct the original input feature maps, and the computation is expressed as follows:

Ygcam = hagg ⊗ hc ⊗ hs, (8)

where ⊗ denotes multiplication by bit, when multiplying by bit.

4.3. ODE Spatial-Temporal Graph Convolution Module

We use the ordinary differential equation graph convolution module to extract the long-
term spatial-temporal features. Spatial features are first extracted by temporal convolution
network (TCN) and spatial features are extracted by graph convolution of ODEs, then by
a mix hop layer to prevent the appearance of model over-smoothing [18], and finally by
normalization using an activation sigmoid function.

To improve the ability to extract long-term time features, the ODEGCN module uses
one-dimensional extended time convolution to extract long-term time features. We first
extract temporal features by temporal convolution, and then extract local spatial features
by ODESolver. The TCN operation is formulated as follows:

ht
tcn = σ(Θ ∗ ht−1

tcn ), (9)

where Θ is the learnable parameter of the convolution filter, and ht−1
tcn denotes the input to

the TCN of the t time step; when t = 0, it denotes the initial input.
Based on previous work, we use the method of convolution of ordinary differential

equation maps derived from ST-ODE [18] to extract spatial features:

hode(t) = ODESolve(
dh(t)

dt
, hl

tcn, t), (10)

After ODESolver processing, we chose to use a mix hop layer [30] to select a portion
of the input information to be fused with the processed features in order to prevent over-
smoothing. There are two stages in the mix hop layer: propagation of information and
selection of information, and the structure is shown in Figure 5. The propagation of
information is formulated as:

ht
prop = αhode(t) + (1− α)Ãht−1

prop, (11)

where α is a hyperparameter that controls the ratio of the root node’s initial states retained.
ht−1

prop denotes the input to the mix hop layer, when t = 0, h0
prop = hode(0). Ã = D̃−1(A+ E),

D̃ii=1+∑j Aij, A denotes an adjacency matrix.
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The information selection operation can be expressed as follows:

hmh =
T

∑
t=0

ht
propWt, (12)

where the parameter matrix Wt acts as a feature selector that controls the information
flowing from each node to the next node, and Wt is the learnable parameter matrix.

Figure 5. Mix hop layer.

The sigmoid activation function is used to normalize the output of the mix hop layer
to give the final output, which is expressed computationally as:

Yodegcn = σ(hmh), (13)

4.4. Gated Convolution Model

It is very important to account for the remote temporal correlation of the nodes
themselves, and, in order to strengthen the ODEGCN’s ability to extract long spatial-
temporal features from the nodes, we parallelize the gated convolution with ODEGCN
in order to improve the ability of ODEGCN to extract the long-term spatial and temporal
dependence of nodes. In contrast to previous work by GraphWaveNet and STGCN, we
introduce the inflation convolution with a large expansion velocity. In view of the total
amount of input data X ∈ RT×N×C×C′ , its form is:

Ygated = φ(Θ1 ∗ X + a)� σ(Θ2 ∗ X + b), (14)

where φ(·) denotes a tanh function and � denotes a Hadamar product. Θ1 and Θ2 are two
independent two-dimensional convolution operations with an expansion rate of 2. It can
enlarge the acceptance domain along the time axis and enhance the performance of the
model to extract sequence correlation.

4.5. Loss Function

Since Huber loss is less sensitive to outliers and has better robustness, we chose Huber
loss as a loss function.

L(Y, Ŷ) =

{
1
2 (Y− Ŷ)2,

∣∣Y− Ŷ
∣∣ ≤ δ

δ
∣∣Y− Ŷ

∣∣− 1
2 δ2, otherwise

, (15)
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where Y denotes the real value, Ŷ denotes the predicted value of the model, and δ is the
threshold parameter that controls the loss range of square error.

5. Experiments

In this study, we validated the performance of LSTFGCN on four datasets of public
transport networks, namely PEMS03, PEMS04, PEMS07, and PEMS08, released by Caltrans
Performance Measurement System (pms) [31], California. The four datasets, from four
different collections of high speed roads, were aggregated into five-minute time steps, i.e.,
288 time steps within a day’s traffic flow. For each dataset, the spatial adjacency network
was constructed from the true distance-based road network. We used a Z-score to normalize
the data inputs. Details are given in Table 1.

Table 1. Datasets description.

Datasets Nodes Edges Time Steps Time Range

PEMS03 358 547 26,208 9/1/2018–11/30/2018
PEMS04 307 340 16,992 1/1/201–2/28/2018
PEMS07 883 866 28,224 5/1/2017–8/31/2017
PEMS08 170 295 17,856 7/1/2016–8/31/2016

5.1. Experiment Settings

For a fair comparison with previous baseline experiments, we divided all datasets
into training sets, verification sets and test sets, with a ratio of 6:2:2, respectively. To
predict the next hour of data, we used an hour of historical data, which involves the use of
12 consecutive time steps in the past in order to predict 12 consecutive time steps in the
future. We computed LSTFGCN over ten times in each publicly available dataset.

Our implementation of the LSTFGCN model made use of pytorch. Hyperparameters
are driven by model performance on the validation dataset. On these four datasets, the
best model consists of four LSTFGCNLs, each of which contains three graph convolution
operations with 64 filters. The retention rate of the original information in the mix hop
layer in ODEGCN is 5%.

5.2. Evaluation Functions

To assess the predictive effect of the model, we used three evaluation indicators
that are commonly used in reference articles, including mean absolute error (MAE), root
mean square error (RMSE), and mean absolute percentage error (MAPE). The formula is
given below:

• Mean Absolute Error (MAE):

MAE =
1
T

T

∑
i=0

∣∣Yi − Ŷi
∣∣ (16)

where Yi denotes the real value at the i-th time step, and Ŷi denotes the predicted
value of the model at the i-th time step.

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
T

T

∑
i=0

(
Yi − Ŷi

)2 (17)

• Mean Absolute Percentage Error (MAPE):

MAPE =
1
T

T

∑
i=0

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (18)
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5.3. Study of the Layers of LSTFGCNL

In order to further examine the effect of the number of LSTFGCNL layers on the
experimental results, and achieve the best prediction accuracy of the model, we tested
1~5 layers of LSTFGCNL on the PEMS04 and PEMS08 datasets, by selecting the best value
of layer depth, and the experimental results are plotted in Figure 6a,b on the two datasets.

As can be seen in Figure 6, all three evaluation metrics on both datasets were optimal
when the number of LSTFGCNL layers was four. When the number of LSTFGCNL layers
was less than four, the fewer the layers, the worse the model effect, probably because the
model failed to fully learn the long short-term spatial-temporal dependencies of nodes due
to the small number of layers, which affected the final prediction results. When the number
of LSTFGCNL layers was greater than five, the model was overfitted because the deep
learning network was too deep, which led to poor final results.
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Figure 6. Loss variation rates for different LSTFGCNL layers on two datasets: (a) experiment loss
change rate of different LSTFGCNL layers on PEMS04 dataset; (b) experimental loss change rate
corresponding to different LSTFGCNL layers on PEMS08 dataset.

5.4. Convergence Analysis

In order to explore the convergence process of LSTFGCN, we plotted Figure 7a,b
representing the training process on the PEMS04 and PEMS08 datasets, respectively. The
x-axis in the figure represents the number of training epochs and the y-axis represents the
loss value. The figure shows two curves of training loss and validation loss in the training
process of the model. It can be seen from the figure that LSTFGCN converged quickly at
the beginning and became stable after more than 20 epochs. In the subsequent training,
both training loss and validation loss only continued to decrease slightly until the final
convergence. In the process of convergence, the two curves were smooth and there were
almost no ups and downs, indicating that the model parameters were continuously and
stably optimized in the training process.
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Figure 7. Training and validation error convergence curves on two datasets: (a) training and valida-
tion error convergence curves on the PEMS04 dataset; (b) training and validation error convergence
curves on the PEMS08 dataset.

5.5. Performance Comparison

• FC-LSTM [32]: Long short term memory network (LSTM) is a type of circular neural
network that is completely connected to an LSTM hidden unit.

• DCRNN [1]: The cyclic diffusion convolution neural network, which embeds graph
convolution into cyclic encoder–decoder units.

• STGCN [2]: Spatial-temporal graph convolution network, integrating graph convolu-
tion into one-dimensional convolution units.

• ASTGCN(r) [3]: Attention-based spatial-temporal graph convolution network, which
introduces spatial and temporal attentional mechanisms into the model. In order
to maintain a fair comparison, only the most recent component of the modeling
periodicity is used.

• GraphWaveNet [6]: GraphWaveNet is a framework that combines adaptive adjacency
matrices with one-dimensional extended convolution.

• STSGCN [4]: Spatial-temporal synchronous graph convolutional network, which
utilizes a local spatial-temporal subgraph module to synchronously capture local
spatial-temporal correlativity of node.

• STFGNN [5]: Spatial-temporal fusion graph neural network, which uses the DTW
algorithm to construct data-driven graphs to effectively capture hidden spatial depen-
dencies.

The comparison between the various models is shown in Table 2. We can see that our
LSTFGCN outperformed the base model on every dataset. Followed by metrics from the
previous baseline (STSGCN) takes, Table 2 compares the performance of the LSTFGCN
model and the other predicted models 60 min ahead on the PEMS03, PEMS04, PEMS07
and PEMS08 datasets.

LSTM only considers temporal dependence and cannot exploit the spatial dependence
of spatial-temporal networks. DCRNN, STGCN, ASTGCN(r) and our LSTFGCN all use
spatial information effectively, and have better performance than time series prediction
methods. Other methods extract long-term spatial-temporal correlations by sharing a
module at different time periods, thus ignoring the heterogeneity of spatial-temporal
network data. GraphWaveNet has poor performance because it cannot superimpose its
spatial-temporal layers, resulting in a relatively small acceptance domain. Our method
constructs a local spatial-temporal subgraph for each node, fully considers the local spatial-
temporal correlation using the superimposed spatial-temporal convolution module, and
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captures more long-term dependencies in the long receptive field of the graph convolution
using the combination of ODEGCN and a gated convolution module, whereas STSGCN
only extracts local spatial-temporal dependencies, so the experimental results of our method
outperformed STSGCN, which is more obvious in datasets with more spatial nodes and
time steps.

Table 2. Performance comparison of LSTFGCN and baseline models on PEMS03, PEMS04, PEMS07
and PEMS08 datasets.

Datasets Metric FC-LSTM DCRNN STGCN ASTGCN(r) Graph
WaveNet STSGCN STFGNN LSTFGCN

PEMS03
MAE 21.33± 0.24 18.18± 0.15 17.49± 0.46 17.69± 1.43 19.85± 0.03 17.48± 0.15 16.77± 0.09 16.47± 0.05

MAPE (%) 23.33± 4.23 18.91± 0.82 17.15± 0.45 19.40± 2.24 19.31± 0.49 16.78± 0.20 16.30± 0.09 15.51± 0.10
RMSE 35.11± 0.50 30.31± 0.25 30.12± 0.70 29.66± 1.68 32.94± 0.18 29.21± 0.56 28.34± 0.46 27.83± 0.34

PEMS04
MAE 27.14± 0.20 24.70± 0.22 22.70± 0.64 22.93± 1.29 25.45± 0.03 21.19± 0.10 19.83± 0.06 19.71± 0.07

MAPE (%) 18.20± 0.40 17.12± 0.37 14.59± 0.21 16.56± 1.36 17.29± 0.24 13.90± 0.05 13.02± 0.05 13.01± 0.03
RMSE 41.59± 0.21 38.12± 0.26 35.55± 0.75 35.22± 1.90 39.70± 0.04 33.65± 0.20 31.88± 0.14 31.39± 0.20

PEMS07
MAE 29.98± 0.42 25.30± 0.52 25.38± 0.49 28.05± 2.34 26.85± 0.05 24.26± 0.14 22.07± 0.11 21.39± 0.18

MAPE (%) 13.20± 0.53 11.66± 0.33 11.08± 0.18 13.92± 1.65 12.12± 0.41 10.21± 1.65 9.21 ± 0.07 9.06 ± 0.09
RMSE 45.94± 0.57 8.58 ± 0.70 38.78± 0.58 42.57± 3.31 42.78±0.07 39.03± 0.27 35.80± 0.18 34.86± 0.15

PEMS08
MAE 22.20± 0.18 17.86± 0.03 18.02± 0.14 18.61± 0.40 19.13± 0.08 17.13± 0.09 16.64± 0.09 16.03± 0.02

MAPE (%) 14.20± 0.59 11.45± 0.03 11.40± 0.10 13.08± 1.00 12.68± 0.57 10.96± 0.07 10.60± 0.06 10.15± 0.01
RMSE 34.06± 0.32 27.83± 0.05 27.83± 0.20 28.16± 0.48 1.05 ± 0.07 26.80± 0.18 26.22± 0.15 25.18± 0.05

According to Table 3, compared with STSGCN, our LSTFGCN performed well on both
PEMS04 and PEMS08. On the PEMS04 dataset, the MAE and RMSE of LSTFGCN increased
by 5.48% and 5.65%, respectively, on Horizon 3, and 8.45% and 7.94%, respectively, on
Horizon 6 compared to STSGCN; they increased 14.50% and 13.55%, respectively, on
Horizon 12. On the PEMS08 dataset, the MAE and RMSE of LSTFGCN increased by 9.64%
and 7.59%, respectively, on Horizon 3 and 11.08% and 8.47%, respectively, on Horizon
6, compared with STSGCN. There was an increase 14.65% and 10.97%, respectively, on
Horizon 12. It can be seen from the experimental results that LSTFGCN improved more
significantly compared to STSGCN with the longer time step of prediction. Our model has
obtained satisfactory results in extracting the long-term spatial-temporal dependence of
nodes in both datasets, which proves the competitive advantage of LSTFGCN in long-term
prediction.

Table 3. Comparison of prediction results of LSTFGCN and STSGCN on Horizon 3, Horizon 6 and
Horizon 12.

Method
PEMS04

Horizon 3 Horizon 6 Horizon 12

MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE

STSGCN 19.8 13.41 31.58 21.3 14.27 33.83 24.47 16.27 38.46
LSTFGCN 18.77 12.45 29.89 19.64 13.05 31.34 21.37 14.23 33.87

Method
PEMS08

Horizon 3 Horizon 6 Horizon 12

MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE

STSGCN 16.59 10.98 25.37 17.74 11.56 27.27 20.11 13.04 30.64
LSTFGCN 15.13 9.65 23.58 15.97 10.15 25.14 17.54 11.69 27.61

5.6. Ablation Experiments

To verify the effectiveness of different parts of LSTFGCN, we performed ablation ex-
periments on the PEMS04 and PEMS08 datasets. NCBAM, NODE and NGATED denote the
CBAM, ODEGCN and gated convolution modules that remove LTSTFGCN, respectively.



Electronics 2023, 12, 238 14 of 18

Figure 8 shows the measurements of MAE, RMSE and MAPE on three different variant
models. After comparison and evaluation with the experimental results of the original
model, the following conclusions can be drawn:

• CBAM can carry out adaptive correction to the local spatial-temporal feature map,
assign a higher weight to important node information through effective learning, and
extract more complex hidden local spatial-temporal dependences.

• The ODEGCN module significantly improves the extraction of long-term spatial-
temporal dependence of the model, and obtains more hidden information from longer
time series, thus making the model achieve the optimal average prediction results in
the end.

• The gated convolution module effectively enhances the ability of ODEGCN to learn
the long-term spatial-temporal dependence of nodes, thereby improving the overall
performance of the model.

(a) (b)

Figure 8. The experimental results of different variant models: (a) all three evaluation metrics of the
variant model on PEMS04; (b) all three evaluation metrics of the variant model on PEMS08.

6. Case Study

We compared the Horizon 12 prediction results of STSGCN and LSTFGCN with the
actual values of the two datasets, and the end results are demonstrated in Figures 9 and 10.
We randomly selected four time step segments from the full time step prediction data of
both datasets to compare with the STSGCN prediction results. It can clearly be seen that
our model prediction curves fit the true values better and are closer to the true values. In
some areas with large fluctuations in traffic flow (e.g., the part framed by the dashed red
rectangle), the prediction curves of STSGCN also have large fluctuations and deviate from
the true values, while the prediction curves of our model are basically stable at the middle
of the fluctuations of the true values, with relatively smooth changes, which match the
fluctuation trend of the true values and thus achieve better prediction results.

In Table 2, we compare the average of the three evaluation functions of LSTFGCN
with the other baseline models, and demonstrate from the data that the overall prediction
of our model is better than the other baseline models. In Table 3, we further perform a
comparison of the prediction results of LSTFGCN and STSGCN on Horizon 3, Horizon 6
and Horizon 12, and from the data in the table, we can see that our model outperformed
STSGCN in each time step comparison, and the longer the prediction time step, the larger
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the improvement compared to STSGCN, and the more significant the improvement is,
which may be due to the fact that ODEGCN and gated convolution effectively improve the
long-term prediction ability of the model. Therefore, it can be concluded that LSTFGCN is
closer to the true value compared to STSGCN.
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Figure 9. Comparison of prediction results of LSTFGCN and STSGCN in four random test cases
ahead of Horizon 12 on PEMS04 dataset.
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Figure 10. Comparison of prediction results of LSTFGCN and STSGCN in four random test cases
ahead of Horizon 12 on PEMS08 dataset.

7. Conclusions

In this paper, we propose a new convolutional model of long short-term fusion spatial-
temporal graphs for traffic flow forecasting. Our model constructs a local spatial-temporal
graph convolution attention module, which effectively synchronously captures the local
spatial-temporal dependence of nodes, and the combination of ODEGCN and gated con-
volution captures more long-term spatial-temporal dependent hidden features of nodes.
Then, the fusion module is used to fuse these layers, which can simultaneously learn the
long and short-term spatial-temporal dependence features of nodes. Extensive experiments
on four real datasets showed that the proposed model outperforms existing models. In
addition, an ablation experiment verified the effectiveness of the combination of ODEGCN
and gated convolution for the long-term spatial-temporal dependent capture of nodes.
However, LSTFGCN designs complex components and superimposes more layers to obtain
richer traffic flow features, which incurs additional computational cost and operation time.
We plan to redesign a graph convolution construction method for synchronous acquisi-
tion of spatial-temporal features, streamline components of different modules to reduce
computational overhead, and improve the prediction performance of the model through
innovative design integration of the obtained features.



Electronics 2023, 12, 238 17 of 18

Author Contributions: Conceptualization, H.Z., C.J. and Y.L.; methodology, H.Z., C.J. and Y.L.;
software, J.W. and C.J.; validation, H.Z., C.J. and X.H.; formal analysis, X.Y. and Y.L.; investigation,
X.H.; resources, X.H. and J.W.; data curation, C.J. and Y.L.; writing—original draft preparation,
H.Z. and C.J.; writing—review and editing, H.Z., C.J. and X.Y.; visualization, C.J., J.W. and X.Y.;
supervision, H.Z. and X.H.; project administration, H.Z. and X.H.; funding acquisition, H.Z. and X.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Project of Education Department
of Jiangxi Province (No. GJJ200604), and the National Natural Science Foundation of China under
Grant (No. 62062033).

Data Availability Statement: PEMS03, PEMS04, PEMS07 and PEMS08 dataset can be obtained at
https://github.com/sttCharon/PeMS_Data (accessed on 14 December 2022).

Acknowledgments: This research was supported by the Science and Technology Project of Education
Department of Jiangxi Province (No. GJJ200604), and the National Natural Science Foundation of
China under Grant (No. 62062033).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In

Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
2. Yan, S.; Xiong, Y.; Lin, D. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. In Proceedings

of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–3 February 2018; Volume 32.
3. Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention based spatial-temporal graph convolutional networks for traffic flow

forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January 2019; Volume 33,
pp. 922–929.

4. Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-
temporal network data forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA,
7–12 February 2020; Volume 34, pp. 914–921.

5. Li, M.; Zhu, Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting. In Proceedings of the AAAI Conference
on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 4189–4196.

6. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph WaveNet for deep spatial-temporal graph modeling. In Proceedings of the
International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 1907–1913.

7. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European conference
on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

8. Wang, X.; Ma, Y.; Wang, Y.; Jin, W.; Wang, X.; Tang, J.; Jia, C.; Yu, J. Traffic flow prediction via spatial temporal graph neural
network. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 1082–1092.

9. Park, C.; Lee, C.; Bahng, H.; Tae, Y.; Jin, S.; Kim, K.; Ko, S.; Choo, J. ST-GRAT: A novel spatio-temporal graph attention networks
for accurately forecasting dynamically changing road speed. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, Virtual, 19–23 October 2020; pp. 1215–1224.

10. Chiang, W.L.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; Hsieh, C.J. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 257–266.

11. Bruna, J.; Zaremba, W.; Szlam, A.; Lecun, Y. Spectral Networks and Locally Connected Networks on Graphs. In Proceedings of
the 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014; Conference
Track Proceedings.

12. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering.
Adv. Neural Inf. Process. Syst. 2016, 29, 3837–3845.

13. Welling, M.; Kipf, T.N. Semi-supervised classification with graph convolutional networks. In Proceedings of the International
Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

14. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph Attention Networks. Stat 2018, 1050, 4.
15. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30,

1024–1034.
16. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption

generation with visual attention. In Proceedings of the International Conference on Machine Learning. PMLR, Lille, France,
6–11 July 2015; pp. 2048–2057.

17. Liang, Y.; Ke, S.; Zhang, J.; Yi, X.; Zheng, Y. Geoman: Multi-level attention networks for geo-sensory time series prediction. Proc.
IJCAI 2018, 2018, 3428–3434.

https://github.com/sttCharon/PeMS_Data


Electronics 2023, 12, 238 18 of 18

18. Fang, Z.; Long, Q.; Song, G.; Xie, K. Spatial-temporal graph ode networks for traffic flow forecasting. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 364–373.

19. Lu, Y.; Zhong, A.; Li, Q.; Dong, B. Beyond finite layer neural networks: Bridging deep architectures and numerical differential
equations. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018;
pp. 3276–3285.

20. Weinan, E. A proposal on machine learning via dynamical systems. Commun. Math. Stat. 2017, 1, 1–11.
21. Chen, R.T.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D.K. Neural ordinary differential equations. Adv. Neural Inf. Process. Syst.

2018, 31, 6572–6583.
22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
23. Davis, J.Q.; Choromanski, K.; Sindhwani, V.; Varley, J.; Lee, H.; Slotine, J.J.; Likhosterov, V.; Weller, A.; Makadia, A. Time

Dependence in Non-Autonomous Neural ODEs. In Proceedings of the ICLR 2020 Workshop on Integration of Deep Neural
Models and Differential Equations, online, 26 April–1 May 2020 .

24. Dupont, E.; Doucet, A.; Teh, Y.W. Augmented neural odes. Adv. Neural Inf. Process. Syst. 2019, 32, 3134–3144.
25. Ghosh, A.; Behl, H.; Dupont, E.; Torr, P.; Namboodiri, V. Steer: Simple temporal regularization for neural ode. Adv. Neural Inf.

Process. Syst. 2020, 33, 14831–14843.
26. Massaroli, S.; Poli, M.; Bin, M.; Park, J.; Yamashita, A.; Asama, H. Stable neural flows. arXiv 2020, arXiv:2003.08063.
27. Hanshu, Y.; Jiawei, D.; Vincent, T.; Jiashi, F. On Robustness of Neural Ordinary Differential Equations. In Proceedings of the

International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
28. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April
2011; pp. 315–323.

29. Dauphin, Y.N.; Fan, A.; Auli, M.; Grangier, D. Language modeling with gated convolutional networks. In Proceedings of the
International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 933–941.

30. Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; Zhang, C. Connecting the dots: Multivariate time series forecasting with graph
neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Virtual Event, CA, USA, 6–10 July 2020; pp. 753–763.

31. Chen, C.; Petty, K.; Skabardonis, A.; Varaiya, P.; Jia, Z. Freeway performance measurement system: Mining loop detector data.
Transp. Res. Rec. 2001, 1748, 96–102. [CrossRef]

32. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 27,
3104–3112.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3141/1748-12

	Introduction
	Related Work
	Spatial-Temporal Forecasting
	Graph Convolutional Network
	Attention Mechanism
	Neural Ordinary Differential Equations

	Preliminaries
	Model
	Localized Spatial-Temporal Graph Construction
	Spatial-Temporal Graph Convolution Attention Module
	ODE Spatial-Temporal Graph Convolution Module
	Gated Convolution Model
	Loss Function

	Experiments
	Experiment Settings
	Evaluation Functions
	Study of the Layers of LSTFGCNL
	Convergence Analysis
	Performance Comparison
	Ablation Experiments

	Case Study
	Conclusions
	References

