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Abstract: Passive wireless sensor network (PWSN) requires high positioning for network man-
agement. The harvested energy of the passive sensor is modulated as the ranging data and the
position is derived accordingly. Thus, the wireless power transfer (WPT) is a dominant factor for
such localization. With the help of intelligent reconfigurable surface (IRS), the WPT efficiency can
be significantly improved. In this paper, we propose the Fisher information matrix (FIM) and the
Cramér–Rao lower bound (CRLB) analyzing model of the PWSN localization. We prove the impacts
of phase modulation of IRS on the localization performance. Based on our analysis, we develop an
approximation algorithm and a genetic algorithm to control the IRS phases. Then, the localization
accuracy of PWSN can be further improved. The simulation results demonstrate that the phase
modulation based on GA can achieve high accurate localization for PWSN using IRS.

Keywords: wireless power transfer; localization; intelligent reconfigurable surface; passive sensor;
Fisher information matrix

1. Introduction

In passive wireless sensor network (PWSN), the sensor nodes are equipped with
no batteries and just harvest energy from the environment, e.g., radio-frequency energy
harvesting. Thus, the lifetime of the PSN is quite long and it is also energy efficient [1].
In recent years, PWSN has gained great attention in both academic and industry fields.
Meanwhile, PWSN is also known as one of the directions of IoT development and its sensor
distribution; beamforming and network optimization have been extensively researched.

Meanwhile, location information is an important aspect for IoT system management [2].
As a typical form of IoT system, PWSN also require high accurate positioning for all the
passive sensor nodes. If these nodes are randomly deployed in the places where the
GPS signals are seriously blocked, they will be lost. To improve the localization perfor-
mance, ranging information (which is low cost) can be used for distance measures among
nodes [3,4]. Such measurements apply the wireless signals as the key information to ex-
change between two different nodes in order to measure the distance. The main ranging
measurements with wireless technology are received signal strength (RSS), time-of-arrival
(TOA) and time-of-flight (TOF) [4].

Since the PWSN employs harvested energy to generate the ranging signal, researchers
mainly focus on how to use wireless energy transfer (WET) to determine the location of
each network node [5]. Chen Guihai et al. proposed a region division method to localize
each target node for PWSN [6]. Such method is to localize according to the response
feedback of each sensor node by adjusting the field angle. Rushi Vyas et al. [7] designed
a hybrid circuit based on ambient solar energy and radio frequency power, proposed
the corresponding communication method and localization mechanism, and applied it to
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long-distance localization in PWSN. Ahmad El Assaf et al. [8] proposed a non-ranging
localization algorithm for PWSN with energy harvesting. In this method, other nodes
in the network derive the expected hop progress from the received signal to accurately
localize the target node. In our previous work, we focused on the beamforming strategies
for localization performance [9].

Recently, the development of intelligent reflected surface (IRS) and related applications
is the key to future 6G technology breakthroughs [10]. IRS can improve the energy efficiency
of wireless communication systems while reducing hardware costs [11]. The real-time
changes in each passive reflective unit lead to changes in the amplitude and phase of
the spatial channel. Then, IRS can dynamically adjust the reflectivity based on phase
modulation using an intelligent controller, which further improves channel quality of
signal and energy transmission [12]. Therefore, IRS is promising for WET optimization. In
this case, with the help of IRS and WET, the nodes in PWSN can receive continuous and
high efficiency power supply. In [13], Mohjazi et al. provides the WPT battery charging
time model with the help of IRS. Tran et al. propose a two-phase beam scanning optimal
WPT strategy to control a multiple antenna transmitter and IRS [14]. Li et al. considered
using the WPT to active IRS and develop a typical architecture [15]. Tran et al. calculate
the received power levels of the nodes and proposed a weighted phase pattern of the IRS
element array method [16]. Yang et al. study the IRS aided multi-input-multi-output
(MIMO) WPT system model, and proposed the semi-definite relaxation (SDR) and the
successive convex approximation (SCA) methods for analog hybrid beamforming [17].

In this paper, we investigate the impact of IRS phase modulation for PWSN localiza-
tion. We employ the Fisher information matrix (FIM) as the analyzing tool and the related
squared position error bound (SPEB) as the localization performance metric [18,19]. To our
best knowledge, this work is the first theoretical analysis to employ the IRS for localization
improvement of PWSN compared with other works. The major contributions are summa-
rized as follows: First, we derive the FIM of PWSN with IRS for single target localization.
The extended versions of FIM for multiple localization and cooperative localization are
attained based on the FIM for single target localization. According to the FIM analysis,
the IRS phase modulation clearly presents that the phase modulation effectively improved
the WET efficiency and further improved the localization accuracy. Second, in order to
control the phase of IRS and achieve the optimal localization accuracy, we propose an
approximation algorithm (AP) and a genetic algorithm (GA) for phase modulation. The AP
algorithm employs the continuous convex optimization solution as the basic solution, and
apply the approximated discrete phase value to approach such continuous solutions. Since
the phase modulation for localization optimization is an integer programming problem,
which is non-convex and complicated to solve, the GA is an efficient solution. Third, the
proposed algorithms are evaluated via extensive simulations. The results demonstrate
that the phase modulation based on GA and AP can improve the localization accuracy in
both the line-of-sight (LoS) case, and the non-line-of-sight (NLoS) environment effectively.
In addition, GA outperforms AP in phase control and localization accuracy and energy
efficiency performance.

2. System Model
2.1. Passive Sensor Network with IRS

The PWSN contains several parts, which are an energy-access point (E-AP), IRS and
several passive battery-less sensor nodes, as illustrated in Figure 1. The E-AP is an energy
transmitter with single antenna, which broadcasts wireless power to all nodes. The nodes
harvest such energy to power themselves up, then they start to transmit data using such
energy. An IRS is deployed to reflect the wireless energy waves. The reflective coefficient
and direction are controlled by units of the IRS, which are called phase modulation. Then,
the IRS generates a wireless energy beam to the dedicated sensor nodes.

Here, we define NR = {1, 2, · · · , NR} as the set of IRS reflective units. Then, the num-
ber of IRS units is NR. We employ the diagonal matrix to indicate the reflection parameter,
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Figure 1. PWSN with IRS.

which is R = diag(
[
R1, R2, · · · , Rr, · · · , RNR

]
) for convenient calculation. Each element

Qr = ρrejψr represents the reflection parameter of the rth unit, where ρ is the reflectivity
coefficient and ψ is the phase shift. Consider a perfection reflection, in which ρr = 1; thus,
we can only control ψ for phase modulation. However, such control is not continuous but
discrete instead due to cost and hardware constraints. In this case, we can only select finite
discrete phase values, defined as ψr ∈ Nphase =

{
0,4θ, 24θ, · · · ,

(
2B − 1

)
4θ
}

. Here, we
employ4θ as the phase shift interval and B is the number of bits of IRS. Then, all the phase
shifts comes from Nphase.

For localization purpose, PWSN contains two kinds of nodes, which are anchors and
targets. Nodes with known position information are called anchors. The nodes without
position information are the targets. The set of anchors is NA = {1, 2, · · · , NA}, while
the set of targets is NT = {1, 2, · · · , NT}. Here, we define that the position of the ith

target point is Pi =
[
PX

i , PY
i
]T , and the position of the pth anchor is Ap =

[
AX

p , AY
p

]T
. The

distance between target i and target w is dG
i,w = |Pi − Pw|, where i 6= w. Similarly, the

distance between target i and anchor p is dA
i,p = |Pi −Ap| . The IRS uses phase modulation

to control the energy wave from the E-AP to active the targets and anchors. The anchor
broadcasts a signal to the target when it is powered up. Then, the targets locate themselves
based on the wireless information.

Note that the nodes of PWSN are equipped with small chips and the processing
capacities are quite low. In this case, such nodes can only process simple tasks, e.g., short
modulation, communication and localization algorithm. The processing capacity of E-AP
is much larger than the nodes. Thus, it can gather and maintain the location information
of the nodes, and also controls the Tx power and sends the control information for IRS.
For IRS, the processing resource is limited. According to the relationship among E-AP
and the nodes, IRS can received the command of E-AP and execute such a command for
phase modulation.

2.2. Wireless Propagation Model

The wireless propagation model contains two parts. The first one is the wireless
power transfer from the E-AP to the passive sensor nodes. Part of the wireless waves are
reflected by the IRS. On the node side, the nodes harvest energy from the wireless waves,
including the reflected waves and directly transmitted waves. Here, the E-AP transmit a
single-antenna signal x to the nodes, and the signal propagation is formulated as:

yn = gnx + vn = (Dn + QnRT)x + vn (1)

where yn is the received signal of the nth node from the E-AP; gn is the channel information
of the downlink signal from the E-AP to the nth node; and v ∼ N

(
0, σ2) is the noise, which

is a zero mean normal distribution with variance σ2. As presented in Figure 1, Dn is the
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directed channel from the E-AP directly to the nth node and QnRT is the indirected channel
from E-AP to the nodes, where T =

[
T1, T2, · · · , TNR

]T is the channel matrix from the E-AP

to the IRS; R is the phase modulation control matrix of the IRS; and Qn =
[

Zn
1 , Zn

2 , · · · , Zn
NR

]
is the channel matrix from the IRS to the nth node. The overall channel matrix from E-AP
to node n containing IRS is formulated as QnRT.

The second part is the propagation for localization. During this part, anchors start to
transmit signals to the target nodes after harvesting sufficient energy from E-AP. When the
nth anchor transmits signal yn to the ith target, the received signal of the ith target Si is

Si = hni(dni)yn + nni (2)

where hni(dni) indicates the channel from the nth anchor to the ith target, dni is the actual
distance from the nth anchor to the ith target, and nni ∼ N

(
0, σni

2) is the noise, which
follows a normal distribution with zero mean and variance of σ2. Considering a float fading
propagation channel, the channel function hni(dni) is written as:

hni(dni) =

(
f c

4πdni

)βni√
εnie−

j2π f c
nidni
c (3)

where f c is the carrying frequency, βni is the flat fading factor, εni indicates the channel
gain, and c is the light speed.

3. Localization Performance Analysis

The Cramér–Rao lower bound (CRLB), which is called the optimal estimation indicator
for any unbiased estimator, is widely used for the localization performance analysis. It is
the inverse form of the Fisher information matrix (FIM), and the covariance of the unbiased
estimator error should not be lower than the CRLB. For CRLB analysis, we first define the
estimated vector, which is the target location vector θ, and define the observations, which
are the wireless signals. Then, the likelihood function based on θ and observations are
constructed. The FIM is the partial derivative of the likelihood functions, and the form is
attained according to the chain rule:

Iθ = HMHH = ∑ ςiqiqT
i (4)

where H is the observation matrix, which is the partial derivative of the observation
functions, M is a diagonal matrix in which each element is ςi, and ςi is the range intensity,
which indicates the signal-to-noise ratio (SNR) on the receiver end. In addition, Iθ can be
also indicated as the sum of the geometric relationship between the target and anchors,
which is called anchor–target geometry. Thus, we employ qi to represent the arrival angle
from the anchor to target. Thus, we use FIM to analyze the localization performance for the
PWSN using IRS.

3.1. FIM for Single Target

According to the above definition of FIM, we first derive the FIM form of the PWSN
for a single target. Then, we extend the formulation to multiple targets and further to the
cooperative localization. For a single target scenario, there is only one target node with
unknown position and all the other passive nodes have known positions. Here, we define
this target vector θ = P0. Then, we set the observation vector SA

T , which are the received
signal vector from all anchors:

SA =
[
SA

10, · · · , SA
NA0

]T
(5)

where p ∈ NA, and SA
i0 is the target received signal from the ith anchor.
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The likelihood function f (SA|θ) of the observation vector SA conditioned on θ is
expressed as:

f (SA|θ) =
NA

∏
p=1

f
(

SA
p0|θ

)
(6)

where f (·) is the probability function for the observation noise. Thus, the covariance of θ
should satisfy the following inequality:

Eθ

{(
θ̃− θ

)(
θ̃− θ

)T
}
≥ I−1

θ (7)

where Iθ is the Fisher information matrix (FIM) of θ, and I−1
θ is defined as the CLRB. The

FIM Iθ is expressed as

Iθ =ESA ,θ

{
[∇θ ln f (SA|θ)][∇θ ln f (SA|θ)]T

}
=ESA ,θ

{
[∇θV(SA, θ)][∇θV(SA, θ)]T

} (8)

where∇θ is the partial derivative of θ, and V(SA, θ) = ln f (SA|θ) is the score function. We
set the partial derivative of the score function VA(SA, θ) with respect to the position P0
as φA

0 :

φA
0 =

∂VA(SA, θ)

∂P0
=

∂ ln f (SA|θ)
∂P0

=
NA

∑
p=1

∂ ln f
(

SAp0 |P0

)
∂P0

(9)

According to the chain rule, for each
∂ ln f

(
SA

p0|P0

)
∂P0

, p ∈ NA, we have:

∂ ln f
(

SA
p0|Pp0

)
∂P0

=
∂ ln f

(
SAp0 |P0

)
∂dp0

∂dp0

∂P0

=yp
np0

σn02

∂hp0
(
dpi
)

∂dp0
ψA

p0

=yp
np0

σn02

(
−

βp0

dp0
−

2π j f c
p0

c

)
hp0ψA

p0

(10)

where ψA
p0 =

∂dp0
∂P0

=
[
cos φA

p0, sin φA
p0

]T
is the direction vector and φA

p0 is the receiving angle
of the pth anchor connected to the target. Then, we have:

IA =Eθ

{
φA

i φA
i

T}
=Eθ


NA

∑
p=1

∂ ln f
(

SA
p0|P0

)
∂P0

∂ ln f
(

SA
p0|Pi

)
∂P0

T


=
NA

∑
p=1

(
gpx
)H(gpx

)
Γp0ψA

p0ψA
p0

T

(11)

where Γp0 =

[(
βp0
dp0

)2
+
(

2π f c

c

)2
]

hp0
H hp0

N0
p0

, and N0
p0 indicates the power level of noise np0.

For a single target scenario, the FIM consists of the SNR and the anchor–target geometry
is indicated in (27). Note that

(
gpx
)H(gpx

)
Γp0 represents the signal propagation from the

anchor to the target and the harvest power attained from E-AP via the combined channel
of free space and the modulated reflected channel by IRS. Note that the FIM indicates
the impacts of power level of the signal noise on the node sides, which results from the
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variance of the noise. Such formulation is also applicable for other noise distributions due
to the variance calculation nature of FIM.

3.2. Multiple Target

The multi-target localization is the extension of the single target scenario. Thus, we
employ the form of IA to attain the FIM of the multi-target. Considering the multiple
targets, we have NT targets and NA anchors. Then, we define:

θ =
[
P1

T , P2
T , · · · , PNT

T
]T

(12)

where Pi indicates the ith target. Then, we set the observation vector SA to indicate the
received signals of the targets. Accordingly, the FIM is extended from the single target
scenario, which is:

IA =


IA

11 IA
12 · · · IA

1NT

IA
21 IA

22 · · · IA
2NT

...
...

. . .
...

IA
NT1 IA

NT2 · · · IA
NT NT

 (13)

where we set IA
ik to be the ith row and kth column submatrix in IA. The matrix IA

ik is
denoted as:

IA
ik =Eθ

{
φA

i φA
k

T}
=Eθ

{
∂ ln f (SA|θ)

∂Pi

∂ ln f (SA|θ)
∂Pk

T
} (14)

Note that when i 6= k, SA is independent of the kth node position. Therefore, IA
ik = 0, i 6= k.

When i = k, IA
ii is formulated as:

IA
ii =Eθ

{
φA

i φA
i

T}
=Eθ

{
∂ ln f (SA|θ)

∂Pi

∂ ln f (SA|θ)
∂Pi

T
}

=Eθ


 NA

∑
p=1

∂ ln f
(

SApi |Pi

)
∂Pi

[NA

∑
l=1

∂ ln f
(
SAli |Pi

)
∂Pi

]T


(15)

Then, the FIM IA is simplified as:

IA =


IA

11

IA
22

. . .

IA
NT NT

 (16)

Thus, IA of the multi-target localization is a diagonal matrix, in which each element is
the FIM for single target localization.

3.3. Cooperative Localization

When the number of anchors are not enough for high-precision multiple target lo-
calization, the targets may transmit the wireless signals to each other. Then, they locate
themselves based on the ranging information from other targets and anchors, which is
called cooperative localization. In this case, the overall FIM should contain the form
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between the targets. First, we re-construct the observation vector, which includes the
observations of the anchors and also the observations among the targets:

S =
[
SA

T , SC
T
]T

(17)

where SA is the received signal vector of all targets from the anchors, SC is the vector of
signals received by all targets from other targets. The vectors SA and SC are expressed as

SA =
[
SA

11, · · · , SA
NA1, · · · , SA

pi, · · · , SA
1NT

, · · · , SA
NA NT

]T

SC =
[
SC

21, · · · , SC
NT1, · · · , SC

wi, · · · , SC
1NT

, · · · , SC
(NT−1)NT

]T (18)

where p ∈ NA, w ∈ NT , and i ∈ NT . Signal SA
pi is the ith target received signal from the

pth anchor. Signal SA
wi is the wth target received signal from the ith target. Since the ith

target does not propagate signals to itself, we define SA
wi = 0, w = i.

The likelihood function f (S|θ) of the observation vector S conditioned on θ is ex-
pressed as:

f (S|θ) =
NT

∏
i=1

[
NA

∏
p=1

f
(

SA
pi|θ
) NT

∏
w=1

f
(

SC
wi|θ

)]
(19)

where we define f
(
SC

wi|θ
)
= 1, w = i.

The FIM Iθ is expressed as

Iθ = ES,θ

{
[∇θ ln f (S|θ)][∇θ ln f (S|θ)]T

}
= ES,θ

{
[∇θV(S, θ)][∇θV(S, θ)]T

} (20)

where ∇θ is the partial derivative of θ and V(S, θ) = ln f (S|θ) is the score function.
According to Equation (19), the score function V(S, θ) can be expressed as

V(S, θ) = ln f (S|θ)

= ln f
(

SA|θ
)
+ ln f

(
SG|θ

)
=VA(S, θ) + VC(S, θ)

(21)

where VA(S, θ) = f
(
SA|θ

)
is the score function of the received signals from anchors and

VC(S, θ) = f
(
SC|θ

)
is the score function of the received signals from targets. We set the

partial derivative of the score function VA(S, θ) with respect to the position Pi as φA
i , where

i ∈ NT . We have

φA
i =

∂VA(S, θ)

∂Pi
=

∂ ln f
(
SA|θ

)
∂Pi

=
NA

∑
p=1

∂ ln f
(

SA
pi|Pi

)
∂Pi

(22)

According to the chain rule, for each
∂ ln f

(
SA

pi |Pi

)
∂Pi

, p ∈ NA, we have:

∂ ln f
(

SA
pi|Pi

)
∂Pi

=
∂ ln f

(
SA

pi|Pi

)
∂dpi

∂dpi

∂Pi

=yp
npi

σni
2

∂hpi
(
dpi
)

∂dpi
ϕA

pi

=yp
npi

σni
2

(
−

βpi

dpi
− 2π j f c

c

)
hpiϕ

A
pi

(23)
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where ϕA
pi =

∂dpi
∂Pi

=
[
cos φA

pi, sin φA
pi

]T
is the direction vector and φA

pi is the receiving angle
of the pth anchor connected to the ith target. According to Equation (20), we can obtain the
target node that receives the FIM IA from the anchor.

IA =


IA

11 IA
12 · · · IA

1NT

IA
21 IA

22 · · · IA
2NT

...
...

. . .
...

IA
NT1 IA

NT2 · · · IA
NT NT

 (24)

where we set IA
ik to be the ith row and kth column submatrix in IA. The matrix IA

ik is
denoted as:

IA
ik =Eθ

{
φA

i φA
k

T}
=Eθ

{
∂ ln f

(
SA|θ

)
∂Pi

∂ ln f
(
SA|θ

)
∂Pk

T} (25)

Note that when i 6= k, SA is independent of the position of the kth node. Therefore, IA
ik = 0.

When i = k, SA received by the ith target from the anchors is related to the ith target
position, and IA

ii is formulated as:

IA
ii =Eθ

{
φA

i φA
i

T}
=Eθ

{
∂ ln f

(
SA|θ

)
∂Pi

∂ ln f
(
SA|θ

)
∂Pi

T}

=Eθ


 NA

∑
p=1

∂ ln f
(

SA
pi|Pi

)
∂Pi

[NA

∑
l=1

∂ ln f
(
SA

li |Pi
)

∂Pi

]T


(26)

Since the received signals SA are independent of each other and E{VA(S, θ)} = 0,
Equation (26) is expressed as:

IA
ii =Eθ

{
φA

i φA
i

T}
=Eθ


NA

∑
p=1

∂ ln f
(

SA
pi|Pi

)
∂Pi

∂ ln f
(

SA
pi|Pi

)
∂Pi

T


=
NA

∑
p=1

(
gpx
)H(gpx

)
Γpiϕ

A
piϕ

A
pi

T

(27)

where Γpi =

[(
βpi
dpi

)2
+

(
2π f c

pi
c

)2
]

hpi
H hpi

N0
pi

and N0
pi indicates the power level of noise npi.

Therefore, FIM IA is shown as:

IA =


IA

11

IA
22

. . .

IA
NT NT

 (28)



Electronics 2023, 12, 202 9 of 16

Similarly, we assume that the partial derivative of the score function VC(S, θ) with
respect to position Pi is φC

i , where i ∈ NT . Then, we have:

φC
i =

∂VC(S, θ)

∂Pi

=
∂ ln f

(
SC|θ

)
∂Pi

=
NT

∑
q 6=i

∂ ln f
(

SC
qi|Pi

)
∂Pi

+
NT

∑
k 6=i

∂ ln f
(
SC

ik|Pi
)

∂Pi

(29)

where for any
∂ ln f

(
SC

qi |Pi

)
∂Pi

and
∂ ln f (SC

ik |Pi)
∂Pi

, we obtain it using the chain rule:

∂ ln f
(

SC
qi |Pi

)
∂Pi

= yq
nqi
σqi

2
∂hqi(dqi)

∂dqi
ϕC

qi

= yq
nqi
σqi

2

(
− βqi

dqi
− 2π j f c

c

)
hqiϕ

C
qi

∂ ln f (SC
ik |Pi)

∂Pi
= yi

nik
σik

2
∂hik(dik)

∂dik
ϕC

ik

= yi
nik
σik

2

(
− βik

dik
− 2π j f c

c

)
hikϕ

C
ik

(30)

where ϕC
qi =

∂dqi
∂Pi

=
[
cos φC

qi, sin φC
qi

]T
is the direction vector and φC

qi is the receiving angle
of the qth target connected to the ith target. According to the spatial geometric relationship
of the reception angle between nodes, φC

qi = φC
iq + π. Thus, the relationship between the

direction vector ϕC
qi and ϕC

iq is expressed as

ϕC
qi =

[
cos φC

qi, sin φC
qi

]T

=
[
cos
(

φC
iq + π

)
, sin

(
φC

iq + π
)]T

=
[
− cos φC

iq,− sin φC
iq

]T

=−ϕC
iq

(31)

According to Equation (20), we attain the FIM IC of the mutual transmission signals
among the targets:

IC =


IC

11 IC
12 · · · IC

1NT

IC
21 IC

22 · · · IC
2NT

...
...

. . .
...

IC
NT1 IC

NT2 · · · IC
NT NT

 (32)

where IC
iw is a block matrix in IC. In addition, IC

iw is formulated as:

IC
iw =Eθ

{
φC

i φC
w

T}
=Eθ

{
∂ ln f

(
SC|θ

)
∂Pi

∂ ln f
(
SC|θ

)
∂Pw

T} (33)
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When i 6= w, the received signals SC are independent of each other and E{VC(S, θ)} =
0, IC

iw is expressed as:

IC
iw =Eθ

{
φC

i φC
w

T}
=Eθ


NT

∑
q 6=i

∂ ln f
(

SC
qi|Pi

)
∂Pi

+
NT

∑
k 6=i

∂ ln f
(
SC

ik|Pi
)

∂Pi

 NT

∑
q 6=w

∂ ln f
(

SC
qw|Pw

)
∂Pw

+
NT

∑
k 6=w

∂ ln f
(
SC

wk|Pw
)

∂Pw

T
=Eθ

{
∂ ln f

(
SC

wi|Pi
)

∂Pi

∂ ln f
(
SC

wi|Pw
)

∂Pw

T

+
∂ ln f

(
SC

iw|Pi
)

∂Pi

∂ ln f
(
SC

iw|Pw
)

∂Pw

T}
=(gwx)H(gwx)Γwiϕ

C
wiϕ

C
iw

T
+ (gix)

H(gix)ΓiwϕC
iwϕC

wi
T

=−
[
(gwx)H(gwx)Γwi + (gix)

H(gix)Γiw

]
ϕC

wiϕ
C
wi

T

(34)

Since the Tx power of the target nodes are different, Γwi 6= Γiw. Meanwhile, when
i = w, the received signal of the ith target is correlated with the position of both ith targets.
Therefore, IC

ii is formulated:

IC
ii =Eθ

{
φC

i φC
i

T}
=Eθ


NT

∑
q 6=i

∂ ln f
(

SC
qi|Pi

)
∂Pi

+
NT

∑
k 6=i

∂ ln f
(
SC

ik|Pi
)

∂Pi

NT

∑
q 6=i

∂ ln f
(

SC
qi|Pi

)
∂Pi

+
NT

∑
k 6=i

∂ ln f
(
SC

ik|Pi
)

∂Pi

T
=Eθ


NT

∑
q 6=i

 ∂ ln f
(

SC
qi|Pi

)
∂Pi

∂ ln f
(

SC
qi|Pi

)
∂Pi

T+
NT

∑
k 6=i

[
∂ ln f

(
SC

ik|Pi
)

∂Pi

∂ ln f
(
SC

ik|Pi
)

∂Pi

T]
=

NT

∑
q 6=i

(
gqx
)H(gqx

)
Γqiϕ

C
qiϕ

C
qi

T
+

NT

∑
k 6=i

(gix)
H(gix)Γikϕ

C
ikϕ

C
ik

T

=
NT

∑
q 6=i

[(
gqx
)H(gqx

)
Γqi + (gix)

H(gix)Γiq

]
ϕC

qiϕ
C
qi

T

(35)

Thus, the FIM of the cooperative localization contains the FIM for multi-target localiza-
tion and the FIM among target cooperative localization. As observed above, the cooperative
localization among targets may not always benefit the the localization performance since
the localization error may propagate throughout the whole network. However, on the
other hand, more targets contribute more observations for localization. Then, the overall
performance is improved in general.

Note that although CLRB is used for denoting the estimation limits of the localization,
CRLB is still a matrix instead of a quantified metric such as mean squared error (MSE) or
root mean squared error (RMSE). Then, we employ the trace of CLRB tr

{
I−1

θ

}
, which is

also called spatial position error bound (SPEB) as the quantification metric of positioning
accuracy. Then, SPEB is expressed as:

B(θ) = tr
{

I−1
θ

}
(36)

where B(θ) is the SPEB. Then, the localization optimization problem, which is the phase
modulation problem in this paper, is to achieve the minimum B(θ).

4. Phase Modulation

As observed from B(θ), the localization accuracy of the PWSN highly relies on the
received power of the nodes, and the received power depends on the wireless signal beam
from the E-AP. The only parameter that can be adapted in the PWSN is the phase shifts
in IRS. Thus, the phase modulation, which controls the phase shifts, is the key strategy to
achieve the optimal localization performance. We can adapt the phase shift vector of the



Electronics 2023, 12, 202 11 of 16

RIS reflective unit Ψ =
[
ψ1, ψ2, · · · , ψr, · · · , ψNR

]T , where ψr is an rth reflective unit phase
shift. However, phase modulation is an integer programming problem, which is hard to
solve. Here, we employ two common effective solutions for integer programming as the
phase modulation strategies, which includes the approximation (AP) method and genetic
algorithm (GA). Note that due to the constrained processing capacity of IRS, the proposed
phase modulation strategies are implemented in the E-AP for iterative calculation. Then,
the E-AP sends the final solutions to the IRS as commands, and the IRS executes solutions
to achieve the optimal phase modulation.

4.1. Approximation

The approximation method first derives the optimal solution considering the param-
eters are continuous, and then discrete, to attain the final solution. Since the localization
accuracy highly relies on the received power of the PWSN nodes, AP approaches the
maximum received power and then the optimal localization is attained. Considering that
the Tx power of E-AP is constant xHx = 1, the received power of each node is simplified as
the channel gain:

NA+NT

∑
n=1

gn
H gn =

NA+NT

∑
n=1

[Dn
H Dn + Dn

HQnRT+

Dn(TRQn)
H + QnRT(TRQn)

H ]

(37)

In this case, the phase modulation matrix of IRS is the only variable that affects the
node’s received power. Here, the amplitude of the channel is negatively correlated with
the distance. Then, |QnRT| < |Dn|. Neglecting the QnRT with minimum amplitude and
Dn

H Dn, which is independent of R, Equation (37) can be expressed as:

NA+NT

∑
n=1

Dn
HQnRT + Dn(TRQn)

H

=
NA+NT

∑
n=1

2<
{

Dn
HQnRT

}
=

NA+NT

∑
n=1

2<
{

Dn
H

NR

∑
r=1

(
ejψr TrQn

r

)}

=
NR

∑
r=1

2<
{

ejψr Tr

NA+NT

∑
n=1

(
Dn

HQn
r

)}
(38)

Whentheadaptedsignalsmatchthechannel, inwhich=
{

ejψr
}
= −=

{
Tr ∑NA+NT

n=1

(
Dn

HQn
r

)}
in Equation (38), the node received power attains the maximum level, where ={·} indicates
the imaginary part of a complex value. Such a continuous solution is converted into the

nearest discrete approximation Ψ∗ =
[
ψ∗1 , · · · , ψ∗NR

]T
as:

ψ∗r =


arctan

(
=
{

Tr ∑
NA+NT
n=1 (Dn

H Qn
r )
}

<
{

Tr ∑
NA+NT
n=1 (Dn

H Qn
r )
}
)

4θ
+

1
2

 · 4θ (39)

where r ∈ NR. Then, the final solution is attained.

4.2. Genetic Algorithm

Note that AP may not achieve the actual optimal solution since several relaxations
are involved. Genetic algorithm (GA) is an efficient tool for integer programming and it
can achieve optimal results with sufficient searching space and iterations. In addition, the
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formulation of the minimum B(θ) is too complicated, while GA is good at solving such
complicated problems.

Here, we employ B(θ) as the fitness function and generate initial chromosomes{
Ψ

$
α=1

}NS

$=1
for the first generation. Each chromosome Ψ

$
α=1 is one of the phase shift

combinations of the IRS. Then, we put these chromosomes into B(θ) to evaluate the fitness
and choose the best suits. For the real implementations, we choose 20% of the best suit
chromosomes for further reproduction, crossover, and mutation processes. Then, we use
the 20% of chromosomes to reproduce the children. During the reproduction, 60% of phase
shifts are exchanged between chromosomes. Then, we randomly choose 10% of the phase
shifts for mutation, in which the phase shifts are randomly changed to other values. In this
case, we generate the other 80% of new chromosomes for the next iterations. Then, the GA
is executed iteratively, while evaluating the fitness of the new chromosome set. After fixed
iterations, we choose the best fit chromosome as the optimal solution.

5. Simulation

In this section, we set up several simulations to evaluate the performance of coopera-
tive localization performance for PWSN with IRS. The playing area is a square region of
100× 100 m2. The E-AP, anchors, targets and IRS are deployed. The E-AP is located at the
origin, and the center coordinates of the two IRSs are set to (50, 0) and (50,50). Here, all
nodes are randomly deployed. The background noise is -150 dBm. The single antenna of
E-AP emits 2.4 GHz electromagnetic waves with a Tx power of 30 dBm. The reflectivity
coefficient of IRS is 1 and each unit has uniformly distributed phase shift 4θ = 21−Bπ.

Then, each phase modulation unit has 2B different phase modulations {k4θ}2B−1

k=0 . The
element spacing of IRS is c

5×2.4 GHz . Considering all the channel information is known, and
we implement the AP and GA to control the IRS, the simulation uses 400 Monte-Carlo runs
in each simulation and averages the SPEB results for comparison. Note that since the single
target and multiple target localization performances are quite similar to the cooperative
localization mode, and the FIM of cooperative localization contains the forms of single and
multiple target localizations, we evaluate the cooperative localization performance.

5.1. IRS Element Evaluation

Firstly, we evaluate the impacts of the IRS units for localization accuracy. The IRS
units determine the harvested energy from E-AP and further influence the localization
accuracy. Since the number of IRS units is adaptable, we evaluate the impacts on the
localization accuracy. The IRS unit number is set from 100 to 1000. First, we formulate
the SPEB optimized by phase modulation and SPEB without IRS in Figure 2. There are 5
anchors and 15 targets. We set a sample size of each algorithm NS = 50 and the number of
iterations Ni = 200 for GA.

We observe that the SPEBs in Figure 2 decrease as the number of IRS units grows.
On one hand, a large number of IRS units mean that more wireless energy waves can be
reflected. With more attained power for each node, the SPEBs are increased accordingly. In
addition, the channel adaptation capability is increased accordingly with more IRS units.
Then, the proposed phase modulation strategies are applied. The SPEB of applying the
AP algorithm is higher than GA but smaller than PWSN without RIS. The GA attains the
smallest SPEB.
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Figure 2. SPEB with different numbers of RIS.

5.2. IRS Phase Value Evaluation

The phase modulation performance also depends on the number of phase shift values
for each unit. If the number of phase shifts are sufficiently large, it is quite possible to
achieve continuous optimal performance. Here, we apply the bit value to indicate the
number of phase shifts, e.g., controlling for phase shifts is 2 bit. Then, we evaluate the
bit impact for localization performance. We adapt the bit value from 1 to 4. The results
are presented in Figure 3. The SPEB of GA is much smaller than AP and the PWSN
without IRS. Meanwhile, when the bit number exceeded 3, the positioning accuracy was
almost stable, which indicates that it is not necessary to control more bits of IRS, since
the SPEBs remain the same and the complexities are increased dramatically. The main
reason is that controlling 2 bits can approaching the optimal value. Controlling more bits
may only lead to fine adaptation of the channel, which is not significant for localization
performance improvement.
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Figure 3. SPEB with different bit numbers of IRS.
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5.3. Node Number Evaluation

Then, the number of target nodes are also evaluated. We set the number of IRS units
NR = 500 and the number of chromosomes for each algorithm to NS = 50. Then, we set
the number of iterations for GA as Ni = 200. The results are depicted in Figure 4.
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3.5

4

4.5

5
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6.5

S
P

E
B

 (
m

)
AP

GA

None-RIS

Figure 4. SPEB with different number of nodes.

As shown in Figure 4, we observe that the SPEB of PWSN decreases when the number
of targets is increased from 5 to 20. The SPEB of applying GA is much smaller than AP
and the SPEB without IRS. This indicates that the SPEB decreases as the number of target
increase, which means that the number of targets plays a dominant role in cooperative
localization. This is because more targets contribute more observations. Then, the FIM
attains more sub-matrixes for each target, and the SPEB is improved significantly. Note
that such results are similar to the non-cooperative multiple target localizations, in which
more anchors provide more observations to improve the SPEBs. In addition, compared
with Figures 2 and 3, the improvement of Figure 4 is more significant, which indicates that
the localization performance highly relies on the number of observations instead of the
signal power of the nodes.

5.4. NLoS Evaluation

IRS can improve the channel and avoid the NLoS propagation. Here, we compare the
SPEB improvement rate using IRS for PWSN. The SPEB improvement rate is the ratio of the
SPEB using IRS and without IRS. We also compare AP and GA. This simulation contains 5
anchors and 15 targets, and the number of iterations is Ni = 200. During the simulation,
there is an obstacle between E-AP and the nodes, but there is no obstacle between E-AP and
IRS, or between IRS and the nodes. Therefore, channel D is NLoS with fading coefficient
βNLoS = 1.2, while H is LOS with fading coefficient βLoS = 1.

The SPEB improvement rates are illustrated in Figure 5. With the same number of
IRS, the SPEB improvement rate is larger in the NLoS case than in the LOS case. Note
that these results do not indicate that more power is obtained in the NLoS case than
in the LoS case, but rather indicates a significant improvement in the NLoS case. The
SPEB improvement rate of the GA algorithm is much larger than AP. In addition, as
presented in Figures 2 and 3, the SPEB absolute improvements are not significant in the
LoS case. However, the results in Figure 5 demonstrate that the phase shifts mainly
improve the NLoS localization performance, which is the main difficult problem for wireless
localization systems.



Electronics 2023, 12, 202 15 of 16

100 200 300 400 500 600 700 800 900 1000

Number of RIS

0

1

2

3

4

5

6

7

8

S
P

E
B

 I
m

p
ro

v
e
m

e
n

t 
R

a
te

 (
%

) GA-LoS

GA-NLoS

AP-LoS

AP-NLoS

Figure 5. SPEB with different numbers of RIS in NLOS.

5.5. Energy Efficiency Evaluation

Here, we also adapt the Tx power of E-AP and evaluate the impacts on SPEBs. Since the
Tx power determines the harvest energy of each node in PWSN, the localization accuracy
highly relies on such harvested energy. We adapt the power level from 0.8 W to 1.5 W,
and the SPEB changes are depicted in Figure 6. We compare the performance of AP and
GA. The results indicate that with the same Tx power level, GA attains a lower SPEB. On
the other hand, GA is more energy efficiency than AP if the system attempts to achieve a
certain localization accuracy.
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Figure 6. SPEB with different Tx power level of E-AP.

6. Conclusions

In this paper, we provides the FIM formulation for PWSN with IRS. To attain the
cooperative localization analyzing model, we firstly attain the single target and multiple
target localization models. The FIM clearly indicates the relationship between the phase
modulation and localization accuracy. Thus, we propose AP and GA solutions for optimal
phase modulation. The proposed algorithms are evaluated via extensive simulations. The
results indicate that with IRS, the localization accuracy can be significantly improved,
especially in the NLoS propagations. In addition, the localization performance using GA
is much better than AP. In this state, our work mainly focus on the theoretical analysis
and simulations. In future work, we will implement our proposed strategies on the real
IRS-based PWSN system to evaluate the localization performance.
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