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Abstract: In this paper, the allocation of charging station (CS) is optimized to alleviate the “range
anxiety” of electric vehicle (EV) drivers by reducing the time of medium-to-long distance travel,
which is raised due to the potential en-route charging. The problem is defined to explicitly consider
the spatial differences in urban land price. Although many works take spatial land price into
consideration, few of them notice what the gap of spatial land price bring to the charging system.
Our objective function is the expected traveling time under an optimized distribution of urban
EV flows, and models of spatial network and CSs allocation are then established. Based on Tabu
Search algorithm (TSA), a fixed budget charging resources planning algorithm (FBCRPA) is proposed.
The proposed method is compared with methods based on betweeness centrality, and results show
that our method can find more effective allocation strategy. It is found that users’ traveling time
would decrease with increase in difference in land price. Meanwhile, budget would transfer from
central region to other regions and carrying capacity of charging system would improve in the above
situation. This paper also finds that increase in budget is beneficial to a reduction in drivers’ time,
but the improvement is limited.

Keywords: allocation of CSs; electric vehicles; spatial land price; limited budget; charging resources
planning; carrying capacity

1. Introduction

With the serious environmental problems, EV has attracted wide attention from
countries as a renewable energy vehicle driven by electricity. The development of EV’s
technology and growth of people’s living standard make the quantity of EV increases
rapidly. The development and promotion of EV are limited by its own drawbacks, such
as limited battery capacity [1]; long charging time. Therefore, the planning of charging
infrastructure has a profound impact on the development of EVs. As the main infrastructure
for EV to charge, the numbers of CSs and EVs are expected to rise rapidly in the future
in line with the National Energy Agency’s goal of 1:1 vehicle-to-pile ratio. EVs have been
widely used to carry people or goods because of its popularity. Therefore, the planning of
CSs has become an urgent problem. This paper aims at the allocation of CSs and the impact
brought by the spatial land price of regions.

In academia, the problem of CS planning has been extensively studied [2–16]. In
Ref. [2], research has been conducted on CSs’ profit from the operator’s point of view.
A heuristic Removing and Merging Possible Locations (RMPL) will screen nodes in the
network and ignore the nodes with few profits to obtain: The multi-objective evolutionary
algorithm used in Ref. [3] aims to minimize the investment and operation costs of the
distribution system while maximizing the annually captured traffic flow. This research
mainly focuses on the location of CSs: Reference [4] gives a charging infrastructure planning
with the goal to minimize the fleet’s daily charging operation time. Compared with general
research, this work focuses on how to manage the fleet. Luo et al. [5] assume that charging
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services are provided by multiple competitors. Bayesian game is used in this situation so
that each of them could get an optimal placement policy. What is more, they found that the
CS placement is highly consistent with the heatmap of the traffic flow. Reference [6] focuses
on how to balance the charging demand and power network stability. A spatiotemporal
model of the charging demand is proposed and a heuristic algorithm involving the grid
constraints (HAG) is designed. The utilization of chargers and the carrying capacity of
the power network are all improved. Reference [7] presents a Mixed-Integer Non-Linear
(MINLP) optimization approach for the optimal placing and sizing of the fast CSs. What
is significant is that the robustness and efficacy of the proposed method is studied. Bi
et al. [8] study the reasonable layout of CSs by distributing chargers. The nodes, where
CSs are located, are selected by the betweenness centrality (BC) in a complex network;
In Ref. [9], four methods, i.e., the iterative MILP, greedy approach, effective MILP and
chemical reaction optimization, are proposed to minimize construction cost of CSs, and
they are evaluated from multiple perspectives. Reference [10] aims to minimize drivers’
charging cost. This work takes EV drivers’ strategic and competitive charging behaviors
into account and makes the problem closer to reality. Reference [11] takes the environmental
factors and service radius of the CSs into account to minimize total cost of CSs. They set the
distance between two CSs with EVs’ reaching distance and choose the location of charging
stations with the Voronoi diagram. In Ref. [12], the yearly cost of CSs considering the battery
capacity constraint instead of the service radius, which makes the modeling more rigorous
and realistic. In Ref. [13], CSs are divided into fast charging and slow charging. At the first
stage, we select the best CS locations to minimize EV transportation energy losses. Then,
the optimum numbers of slow and fast charging facilities are obtained to minimize the
cost and meet demand. In Ref. [14], the LCC criterion is used to assess the project and
a modified differential evolution algorithm is adopted to solve the problem. What is
creative is that the research object of this work is the battery-swap station rather than the
CS. Reference [15] uses regression equations to predict the parking demand variables. They
aim to minimize the EV users’ station access costs with considering the parking demand of
a vehicle. In Ref. [16], uncertainties existing in the development of future EV technology are
properly modeled to ensure the robustness of the planning scheme. It is worth mentioning
that this work not only focuses on the present, but also exhibits robustness for all the
considered scenarios in the future stage. Reference [17] presents CS Dimensioning and
Placement (CSDP) framework for provisioning fast charging infrastructure at minimum
cost to accommodate the charging demand of the incremental integration of EVs. The
solution can efficiently expand the CS network to accommodate future EV charging and
conventional load demands. Reference [18] finds the locations for fast and slow charging
stations by analyzing drivers’ daily schedules. A centralised charging station database
(CSDB) is employed to reduce the waiting times at charging stations. They find that
combining some centralized fast charging stations with many distributed slow charging
stations will reduce the charging time. Reference [19] proposes a two-stage CS planning
method for sharing EV: In the first stage, the charging stations are sited and sized based
on the SEV charging demand estimation. In the second stage, the unsatisfied charging
demands are assessed so as to update the charging station capacity accordingly. In Ref. [20],
a CS planning model is established to maximize the fuzzy quality of service (FQoS),
considering queueing behavior, blocking reliability, and multiple charging options. The
results demonstrate that the consideration of FQoS faciliates the finding of the more robust
capacity plan. The implementation of the proposed model will be useful for designing a
charging station without enough EV arrival and charging service data.

Although above studies have analyzed and optimized the allocation of CSs from various
aspects, it should be noted that difference of land price in regions (e.g., spatial land price) is an im-
portant factor, which will bring a lot of changes to the problem. References [3,4,6,8,9,12,15,18,20]
have not taken spatial land price into considering, this makes them ignore the great impact
of spatial land price. Therefore, these works lack some realism. Research such as [3,6,8] notice
the construction cost of CS, but they only associate it with the number of chargers. It is obvious
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that the location would affect the construction cost. References [2,5,7,10,11,13,14,16,17,19] con-
sider spatial land price. In these studies, the construction cost of CS is related to chargers’
number and location. But they just took the construction cost of CS as a parameter; the
specific impacts brought by spatial land price and its gap are still left out. The location of
CSs and allocation of charging resources are two crucial aspects for EVs’ transportation.
Reasonable location and charging resources allocation of CSs can maximize the effective-
ness of the limited budget. For example, setting CSs in places with large population and
traffic flow may be effective, but it will also bring high construction costs, mainly due to
land prices. On the other hand, relatively remote CSs cannot meet the charging demand of
EVs and cause unnecessary driving time. Spatial land price will make the value of nodes
different and the gap of spatial land price will bring great impacts on the whole system.

In view of the above, construction cost of CSs and importance of nodes are added to
the allocation of charging resources. An optimization algorithm is designed for charging
resources allocation. The influence brought by spatial land price is studied from multiple
aspects and the cause of changes is analyzed and discussed deeply. The major contributions
are as follows:

(1) In order to minimize the traveling time of EVs transporting goods among cities, the
model for the allocation of CSs is established with optimized distribution of EV flows.
The urban transportation network model is established with spatial network.

(2) FBCRPA is designed based on TSA to optimize the allocation of EV CSs, which takes
land price into account.

(3) Comprehensive experiments are performed, showing that:

(a) FBCRPA could give a high-quality budget scheme and it performs better than
baseline methods, e.g, nodal-centrality-based heuristic [21].

(b) Drivers’ traveling time would decrease with increase in difference in land price.
Under the budget scheme given by FBCRPA, the budget would transfer from
central region to other regions and the carrying capacity of the charging system
would improve.

(c) Increasing the budget (for purchasing chargers) can effectively decrease the
expected traveling time of passengers, yet there are limits to the benefits of
doing so. Moreover, the proposed model facilitate the identification of an “upper
bound”, safe-guarding the cost-effectiveness of the investment.

The paper is organized as follows. Section 2 introduces the models and the allocation
of CSs, which considers construction cost. Section 3 describes the structure and operation
of FBCRPA. In Section 4, the effect of land price difference is researched and discussed. A
conclusion is given in Section 5.

2. Models of System and Problem Formulation

The problem of CS planning considering spatial land price and limited budget is
studied based on a two-stage optimisation-based model. In the first stage, the allocation
of a limited amount of budget is optimised to install additional chargers to CSs, where
the land prices are different. In the second stage, the expected distribution of EV flows in
the transportation network are optimised to examine the performance of the CS planning
solution. The two-stage decisions jointly minimise the expected travel time of individual EV,
which consists of on-road driving time and waiting time at charging stations (i.e., queueing
and charging). In the following subsections, the modules of the considered two-stage
model are respectively introduced.

2.1. Urban Transportation Network Model

In this study, a reasonable urban transportation network model is needed for sim-
ulation. The random geometric graph [22] in the spatial network [23] could generate X
nodes with random coordinates in the specified space with a side length A, and each node
establishes connection with other nodes within connection radius NR. Obviously, nodes
located in the center of area usually have higher node importance and connection. Nodes in
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the urban traffic network usually establish connections with nearby nodes, and important
nodes usually located in central area of the city. These characteristics can be reflected in the
random geometric graph.

The directed weighted graph G can be used to represent the above network with
charging facilities: G = (V , E ,A). The set of nodes in the urban transportation network is
represented by V . The set of nodes located in CSs is Vc ∈ V . E = {(i, j)|i, j ∈ V , i 6= j}, repre-
sents the set of edges in the urban transportation network. A = {(dij, τ0

ij, qij, δij)|(i, j) ∈ E}
is the set of weights associated with the edges, where the attributes are defined as follows:

(1) dij is the path length of edge (i, j) in urban transportation network, in kilometers;
(2) τ0

ij is the free-flow driving time of the edge (i, j), in hour;

(3) qij is the traffic flow capacity of edge (i, j), in EVs/hour;
(4) δij is the part of qij reserved for vehicles without charging demand; it is the realization

of a random variable ∆ij, which follows a normal distribution, ∆ij ∼ (µij, σ2
ij).

The following assumptions are made regarding the CSs:

(1) The CSs allocated at the distribution network of power grids.
(2) The chargers installed in CSs have same specification and price;
(3) The queue of EVs at CSs operates on a first-in, first-out principle;
(4) The charging time of EVs in CSs follows a general distribution, e.g., teuncated normal

distribution with mean 1
µc

, variance σ2
c .

2.2. Allocation Model of CSs

The goal of planning will lead to its responding charging resources allocation. In this
paper, the problem will be dealt with from the perspective of government. The goal is
to minimize the traveling time of the EVs for traveling between locations that requires
en-route charging. The problem of CS allocation under land price and limited budget is
given by

T(c) = min
ca

E[H∗(c, δ)] (1)

s.t.
|Vc |

∑
k=1

ca
kFk ≤ B (2)

c = ca + c0 (3)

Fk = C + Lk (4)

where c is the set of chargers in the charging system. c0 =
{

c0
k ∈ Z|Vc |

}
, c0 is the set of

chargers initially installed in CS, c0
k ≥ 0. ca =

{
ca

k ∈ Z|Vc |
}

is the decision vector where ca
k

denotes the number of chargers to be installed at station k, ca
k ≥ 0. B represents the total

budget in this planning. H∗(c, δ) represents the optimal value of the second stage, which
will be detailed in the next section.

Equation (1) represents the charging resources and is allocated to minimize EVs’
traveling time between nodes. Equation (2) means that the budget is limited as B, which is
the sum of chargers’ construction cost. The allocation of chargers is composed of initial and
additional chargers ,which defined by Equation (3). The construction cost Fk of chargers in
kth CS is defined by Equation (4), which includes land price Lk and price of charger C.

In order to reflect the spatial land price among regions in the city, the space is divided
into R regions according to the distance from the space’s center, Ar = A/2R. The diagram
of the region is shown in Figure 1.

The land price of each region is different because of its centrality. Cr represents the
number of selected nodes in region r to install chargers, r ∈ [1, R]. In the context of network
science, the indicators of centrality are widely used to evaluate the importance of nodes.
Since the edges of the spatial network are associated with weights, weighted betweenness
centrality (BC) is adopted to determine the locations of CSs. BC reflects the dependence of
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other nodes on one node during information transmission. It is suitable to get the location
of charging stations for EVs before going to the destination. The weighted betweenness
centrality of a node is calculated by

BCk = ∑
i 6=j 6=k

ωk
ij

ωij
, (5)

where ωij is the number of all shortest (with respect to the length of) paths between
(i, j), and ωk

ij is the part of paths passing through node k. In summary, chargers located
in different regions will have different performance because of their construction cost
and location.

Figure 1. Diagram of region.

2.3. Model of EV Flow Distribution

In urban transportation network, let dr, d(m, n) be the maximum range of EV and
distance from node m to n, respectively. If dr < d(m, n), then EVs from m to n needs to
be charged halfway, and (m, n) is called an unreachable pair. In order to meet charging
demand of EVs, the EV flow between the unreachable pair will be allocated to the node
set Vc ⊆ V with CSs. Assuming that the EV flow between unreachable pairs follows a
Poisson process with an intensity of λ, a Poisson process will be divided into multiple
Poisson processes.

Let λ(m, n), λ
(mn)
ij be the EV flow between (m, n) and the flow on (i, j) in λ(m, n). The

qualified path P would be obtained from tree Tmn through ITCA [24]. Based on the above
settings, the problem of EV flow distribution could be formulated as

min
Λ

H(c, δ) =
1
N ∑

m,n∈V,m 6=n;
dr<d(m,n)

{
1

λ(m, n) ∑
P⊆Tmn

λ
(mn)
P τP

}
, (6)

τP = τL(P),n + ∑
(i,j)∈P

τij + ∑
sk∈P

E
[
WM/G/ck (sk)

]
, (7)

τij = τ0
ij

1 + α

(
δij +

λij

qij

)β
, (8)

E
[
WM/G/ck (sk)

]
=

CV2 + 1
2

E
[
WM/M/ck (sk)

]
, (9)

E
[
WM/M/ck (sk)

]
=

B[λ(sk)]

ckµc − λ(sk)
+

1
µc

. (10)
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Subject to:

∑
u=C(m)

λ
(mn)
mu = λ(m, n), (11)

λ
(mn)
ij = ∑

u=C(j)
λ
(mn)
ju , ∀j ∈ Tmn \ {m ∪ L(Tmn)}, (12)

λ
(mn)
ij ≥ 0, (13)

λij = ∑
m,n∈V,m 6=n;

dr<d(m,n)

λ
(mn)
ij , ∀(i, j) ∈ E , (14)

λ(sk) = ∑
(i,j)∈E ,j=sk

λij, ∀sk ∈ Vc, (15)

λ(sk)

ckµc
≤ 1− ε, ∀sk ∈ Vc, (16)

where λ is the set of λ
(mn)
ij , and λij refers to the EV flow with charging demand on (i, j), in

EVs/hour. α and β are parameters used to adjust the impact of traffic congestion. λ(sk)
is the EV flow converged at sk, B[λ(sk)] is Erlang C formula. N is the number of trees
generated in the whole network, that is, the number of unreachable pairs. CV is the
coefficient of variation. C(j) represents the set of children nodes of j. P ⊆ Tmn represents
a qualified path on tree Tmn, and the EV flow on it is λmn

P . L(P) is the leaf node of path P
(excluding the end point n, before n). τP represents the sum of driving time and waiting
time of EV on path P, which is given by Equation (7). Equation (8) is the Bureau of public
roads (BPR) function [25], relating the size of traffic flow to the actual driving time of
EVs; Equation (9) obtains the time spent by the EV in CSs through M/G/K model [26] in
queuing theory (including queuing and charging), and CS is sk, which equipped with ck
chargers, K = ck; Equation (10) is the average charging time of EV under the exponential
distribution charging time of the given parameter µc. Equations (11)–(16) are constraints
on the model. Equations (11)–(12) are the inflow and outflow rate constraint of tree Tmn;
Equation (13) indicates that the flow λ

(mn)
ij cannot be negative; Equation (14) indicates that

the total EV flow on (i, j) is the sum of all unreachable pairs passing through (i, j) in the
network; Equation (15) uses λ(sk) to represent EV flow gathered at CS sk; Equation (16)
defines the maximum service capacity of sk for EV; ε is the reserved resources to prevent
over reception.

3. Design of Algorithm

Local search methods can easily be stuck in suboptimal regions. In comparison,
TSA [27] enhances the performance by introducing the so-called Tabu list to discourage the
search from going back to solutions that have already been visited. In order to solve the
problem of CSs allocation defined by (1)–(4), FBCRPA is designed based on TSA.

3.1. The FBCRPA Building Blocks

(1) Coding: The candidate solution of additional charging resources allocation is rep-
resented by ca = {ca

k} ∈ Z|Vc |. ca
k is the number of chargers to be installed at CS

sk.
(2) Construct Neighborhood: TSA explores the solution space by iteratively moving from

one potential solution to an immediate and improved neighbor. The neighborhood
structure of FBCRPA is defined as follows:

(a) Match: Randomly select two CSs s1 and s2 (s1, s2 ∈ Vc, s1 6= s2) to match, and
then operate on their respective budgets (Bs1 and Bs2 );

(b) Shift: For selected budget pair Bs1 and Bs2 , if Bs1 /Fs2 ,Bs2 /Fs1 ≥ 1 (that is, the
budget of one node can at least build a charger at the other node), one of them
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chosen at random, say Bs1 , will move Br
s1

to Bs2 , Br
s1
∈ [Fs2 , Bs1 ]. If one of them,

such as Bs2 /Fs1 < 1, there is a 50 % chance for Bs1 that part of the budget will be
given to Bs2 according to the above steps. If Bs1 /Fs2 , Bs2 /Fs1 < 1, this budget pair
will not be operated.

3.2. The FBCRPA Procedures

The FBCRPA’s process is presented in Algorithm 1; L is a Tabu list, and the maximum
number of stored solutions is E; Only ca

s is stored in the initial L, which is the initial solution
randomly generated under Equation (2). It stores the optimal solution of the neighborhood
in following steps. In each iteration, a set of neighborhood solution of ca

s are generated by
matching and shifting, namely, C(ca

s ). If the solution in C(ca
s ) is not in Tabu list and it can

obtain smaller T(c) than ca
s , ca

s will be updated. Similarly, if the effect of ca
s is better than

that of ca
∗, ca
∗ will be updated. Then free this solution into Tabu list, such a searching cycle

loops until the maximum number of iterations is reached.

Algorithm 1 Fixed Budget Charging Resources Planning Algorithm (FBCRPA)

1: Initialize i←0,ca
∗ ← ca

s , and L ← ca
s

2: while i≤I do
3: Do mobile to generate candidate solution set C(ca

s )
4: for all ca ∈ C(ca

s ) do
5: if T(ca + c0) < T(ca

s + c0) and ca /∈ L then
6: ca

s ← ca

7: end if
8: end for
9: i← i + 1

10: if T(ca
s + c0) < T(ca

∗ + c0) then
11: ca

∗ ← ca
s

12: end if
13: L ← L∪ {ca

s}
14: if |L| > E then
15: L ← L \ {L(1)}
16: end if
17: end while
18:
19: return c∗ ← ca

∗ + c0 and ca
∗

4. Simulation Result
4.1. Settings for Simulation

In view of EV’s transportation between cities discussed here, a square space with a
side length of A = 150 km is selected as the allocation space of G (basically equivalent to
the scope of a prefecture level city). The space is divided into R = 3 regions, Ar = 25 km.
In the selected space, it is important to prevent most of selected nodes from being located
in central region and ignoring the role of the marginal region. Select C1 = 2, C2 = 3 and
C3 = 5 nodes with the largest BC as location of CSs in region 1, 2 and 3, i.e., |Vc| = 10. The
construction costs of chargers in region 1, 2 and 3 are F1, F2 and F3, respectively. For the
spatial network model described above, in order to avoid the randomness brought by a
single spatial network, the final simulation result is the average of S networks.

In order to locate CSs with a rich candidate solution space, X = 100 nodes are
generated with random coordinates in space. At the same time, set connection radius NR to
45 km. As transportation of goods is mainly completed by the expressway, this connection
radius is just close to the distance between expressway service areas. In view of EV for
delivery, e.g., electric vans, E-NV200, its maximum range is 150–200 km, and dr here is set
as 180 km.



Electronics 2023, 12, 190 8 of 16

Urban land prices are often positively correlated with the importance of region. At the
same time, in order to study effect of difference of land price in cities, multiple groups of
different land prices can be used for simulation. To simplify the calculation, the price of
charger C and average price of all regions are set to 1 and 0.5, respectively, according to the
ratio of charger price to land price in reality. Set the total budget of B to 360 and call the
case that land price benchmark (M) is 0.5, as shown in Table 1.

Table 1. Fk of charger in each region with M = 0.5.

Group F1 F2 F3

1 1.5 1.5 1.5

2 1.625 1.5 1.375

3 1.75 1.5 1.25

4 1.875 1.5 1.125

At the same time, the ratio of land price to charger price will also affect Fk of chargers
between regions. Therefore, M is set as 1 and C remains 1. To ensure fairness of comparison
between two case with M, the B is set as 480. The Fk of the following four groups of chargers
is designed as shown in Table 2.

Table 2. Fk of charger in each region with M = 1.

Group F1 F2 F3

1 2 2 2

2 2.25 2 1.75

3 2.5 2 1.5

4 2.75 2 1.25

In the simulation, the flow distribution process of EV is implemented by the “fmincon”
function in MATLAB toolbox [28]. The design of other parameters is shown in Table 3.

Table 3. Parameters of simulation

Parameter Setting

Number of spatial networks (S) 10

Distribution of charging time
(
N (µ, σ2)

)
N (0.5, 0.13)

truncation interval of charging time distribution [0.3,0.7]

Utilization of road flow capacity
(

∆ij

)
N (0.5, 0.1)

Percentage of reserved charging resources (ε) 10%

Number of iterations (I) 100

Length of Tabu list (E) 5

Size of neighborhood (|C(ca
s )|) 5

In order to make rational use of charging resources, three budget schemes are used
for comparison. Let T, Tdrive, Twait be the average shortest traveling time, the driving time
and the waiting time of EV, respectively. The three budget schemes: Equal, Proportion and
FBCRPA. Define the total budget as B, then

B =
|Vc |

∑
k=1

Bk, (17)
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where |Vc| is the number of CSs, here it is 10.
The budget scheme of Equal is

Bk =
B
|Vc|

. (18)

The budget allocated to each CS is same. The budget scheme of Proportion is

Bk =
B · BCk

∑
|Vc |
k=1 BCk

. (19)

For comparsion, the percentage of difference in land price is called difference range
(D). For example, when M is 0.5, land prices of group 2 are 0.625, 0.5, 0.375, then D of
group 2 is (0.625− 0.5)/0.5× 100% = 25%. The D of each group under different M is
shown in Table 4.

Table 4. The D of each group under different M.

Group Difference Range (D)

1 0%

2 25%

3 50%

4 75%

Here, the intensity of EV flow between each unreachable pair in G is set as λ = 6.

4.2. Performance of Algorithm

In Figure 2, under the same M, the performance of the budget scheme is measured
by T. The smaller the T is, the better the performance is. It can be seen from Figure 2
that the budget scheme of FBCRPA performs best, Proportion comes second, and Equal
comes third. FBCRPA could obtain a much less T than the other two methods. It can be
concluded that the increase in land price difference will lead to the decrease in T in the
above spatial network. The specific reasons will be explained in the following steps. At
the same time, different M also has an important impact on land price groups with the
same D. For example, given the same D, the cases with M = 1 have smaller T. Under the
same D, the actual difference of land price is larger when M=1. Under the same M, the gap
among the three schemes decreases with D increases. That means there is more room for
Proportion and Equal to improve, so these two methods decrease faster.

(a) (b)

Figure 2. Performance comparison of three schemes. (a) M = 0.5, B = 360. (b) M = 1, B = 480.
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4.3. Impact of Land Price Differences

This section will explain the impact of increase in land price difference on T. The
parameter setting is same as above.

Figure 3 shows the trend of EV’s waiting time Twait with the increase of land price
difference under three budget schemes.

(a) (b)

Figure 3. Twait of three schemes. (a) M = 0.5. (b) M = 1.

From the analysis of the relationship between Twait and size of D, it can be observed
that the trend of T is same as that of Twait. This shows that the decrease in T is mainly due
to the decrease in Twait. For Twait, the budget scheme and the number of CSs are two key
factors. For example, when land price group is 1 (that is, D is 0), the number of chargers of
three budget schemes is same. However, the budget scheme of FBCRPA performs best on
Twait, Proportion comes second and Equal comes third. This shows that the budget scheme
has a key impact on final Twait. It can be observed that the allocation of Proportion favors
the decrease in Twait more when spatial land price is not considered. FBCRPA is effective
in allocating CSs under limited budget. In addition, it can be found that under different
M, Twait of Proportion in same land price group is higher than Equal excluding group 1
of the land price. That shows that the decentralized allocation is more beneficial with the
spatial land price. However, in the overall performance of T, Proportion’s T is smaller.
This means that under Proportion, the budget scheme makes driving time Tdrive smaller
for EVs. In summary, Equal takes more time on driving but its waiting time is smaller with
the spatial land price. Proportion is just opposite. The reasons for the decrease in Twait and
corresponding impact will be analyzed below.

With a constant budget, the number of chargers that can be built in region 1 decreases,
while the number of chargers that can be built in region 3 increases. This is the effect
of the spatial land price. Therefore, under FBCRPA’s budget scheme, the budget will
be transferred from region 1 to region 2 and 3 for seeking a budget scheme with better
performance (the resources allocation of Equal and Proportion is fixed without transfer).

Figure 4 shows the changes in the proportion of regional budgets with the increase
in land price difference. It can be observed that in group 1 of the land prices (i.e., when
D = 0%), the budget proportion of region 1 reaches about 63 %. However, the budget
proportion of region 1 is getting lower with the increase in land price difference, while the
budget proportion of region 2 and 3 is increasing. Because the land in region 3 is cheaper,
the budget of region 2 is obviously lower than that in region 3. The above changes show
that with the increase in land price difference, the nodes in region 1 are no longer favored
by FBCRPA, and increase in land price difference has brought the transfer of budget. The
larger the gap of spatial land price is, the more the budget will transfer to region 2 and 3.
As mentioned above, the case M = 1 actually has a larger difference on land price, which
explains why the budget designated to region 1 is smaller when M = 1. The transfer of
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budget is the effect of spatial land price difference. At the same time, it also brings some
special effects to the charging system.

(a) (b)

Figure 4. Under FBCRPA scheme, the budget proportion of regions under different M. (a) M = 0.5.
(b) M = 1.

As mentioned above, the total number of chargers is a key factor. Combined with
above analysis, the transfer of budget to regions with low Fk plays a very important role
in increasing the number of chargers. This also brings changes in the EV flow carrying
capacity of system. According to the constraint formula Equation (16), the carrying capacity
of EV flow between unreachable pairs for the spactial network is

λmax =
∑
|Vc |
k=1 ckµc

|Vc|
(1− ε). (20)

It is easy to see from Figure 5 that with the increase in the land price difference, the
carrying capacity of EV flow also increases. This also means that the number of chargers in
the whole charging system increases gradually. This is due to the transfer of the budget
mentioned above to region 2 and 3. Since more chargers can be built in region 2 and 3 with
same budget, the number of chargers in the whole charging system increases.

(a) (b)

Figure 5. λmax of three schemes. (a) M = 0.5. (b) M = 1.
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According to Equation (20), it is clear that the trend of λmax should be same as that of
the total number of chargers in the charging system. The increase in land price difference
leads to the increase in the number of chargers, which is one of the key factors leading
to Twait’s decreasing (in particular, the budget schemes of Equal and Proportion do not
change, so the decrease in T is mainly due to the decrease in Twait caused by the increase
in the number of chargers). Equal’s chargers are more than Proportion, that could be an
important reason for Twait of Equal becoming less than Proportion with spatial land price.
Similarly, FBCRPA’s chargers is also larger than Proportion. It can be observed from most
land price groups under different M, although λmax of FBCRPA is smaller than the average
distribution most of time (this means fewer charge piles), FBCRPA’s budget scheme has a
smaller Twait. What is more, the budget allocated by FBCRPA in region 1 is more than Equal
in most cases, and the budget allocated in region 2 and 3 is less than Equal, that is why
λmax of FBCRPA is smaller. This shows that except the number of chargers, a reasonable
budget scheme is also a key factor. Blindly increasing the number of chargers without
selecting a reasonable budget scheme is not cost-effective. As mentioned above, FBCRPA
could obtain an effective allocation and relatively large number of chargers.

In summary, the following findings are found in this section:

(1) It is found that if the total budget remains unchanged, T will gradually decrease as
the gap in land price becomes larger. This paper obtains the conclusion that the large
difference amplifies the transfer of budgets between regions, leading to more chargers
in total. This is also why the decrease in T is primarily driven by the decrease in Twait.

(2) The effectiveness of FBCRPA is proved by comparing with three budget schemes. In
cotrast to centrality-based methods, FBCRPA does not blindly increase the number of
chargers. Instead, they spend the budget more wisely so that the charging resources
can be better utilized by EV flows.

4.4. Impact of Budget

In the research of charging resources allocation in reality, the size of the budget is also
a crucial point. Therefore, the relevant research on impact of budget on charging system
will be given in Figure 6. Because the trend of T under three budget schemes is similar in
each M, group 1 and 3 of land prices are selected from each M. (The comparison between
region 1 and region 2 or 4 is similar).

In the above four land price groups, it can be observed that T decreases with the
increase in budget. At the same time, the budget scheme of FBCRPA performs best,
Proportion comes second, and Equal comes third. In addition, it can be observed that
the decline of T slows down with the increase in the budget under three schemes. This
shows that the increase in budget does facilitate the decrease in T. However, the impact of
increasing the budget on T will be limited gradually. Blindly increasing the budget is also
not the most cost-effective choice.



Electronics 2023, 12, 190 13 of 16

(a) (b)

(c) (d)

Figure 6. Relationship between T and budget under different M. (a) D = 0%, M = 0.5. (b) D = 50%,
M = 0.5. (c) D = 0%, M = 1. (d) D = 50%, M = 1.

5. Conclusions

A two-stage optimisation-based model considering spatial land price and limited
budget is established, which makes results more practical. The model of transportion
network is established to reflect spatial land price; the budget is optimised to install
additional chargers to CSs. The expected distribution of EV flows in the transportation
network are optimised to examine the performance of the CS planning solution. The
two-stage decisions aim to minimise the drivers’ traveling time. FBCRPA is designed,
which can solve the problem of budget allocation more effectively than centrality-based
methods. FBCRPA not only focuses on the number of chargers, but also spends the budget
more wisely. It is found that T decreases with the increase in land price difference. Under
FBCRPA, the large difference in land prices amplifies the transfer of budgets between
regions, leading to the decrease in T and the improvement of carrying capacity. Finally, it is
found that the increase in budget is effective but limited to the decrease in T. The efficiency
is important for a method or system, the robustness is also critical factor. The robustness
of the transportation network refers to the variation of traveling time when there are EVs
disobeying the EV flow arrangement. In the future, this work will be conducted to research
the impact of spatiality brought to the robustness and how to improve the robustness.
Another future direction is to study how vehicle-to-grid (V2G) technology, which enables
the power transfer from EV to grid, impacts the CS planning with the presence of spatiality
factors such as land price. There have been some studies such as [29,30].
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Abbreviations
The following abbreviations are used in this manuscript:

A The set of weights associated with the edges.
A The side length of the specified space.
B The total budget in this planning.
Brsk The transfer budget of charging sk.
B[λ(sk)] Erlang C formula.
BCk The weighted betweenness centrality of node k.
C The price of charger.
C(ca

s ) The set of neighborhood solution of ca
s are generated by matching and shifting.

Cr The number of selected nodes in region r.
c The set of chargers in charging system.
c0 The set of chargers installed in CS.
ca The set of additional chargers.
D The percentage of difference in land price, e.g., difference range.
dij The path length of edge (i, j) in urban transportationnetwork, in kilometers.
d(m, n) The distance from node m to n.
dr The maximum range of EV.
E The maximum number of solutions stored in Tabu list.
E The set of edges in urban transportation network.
Fk The construction cost of chargers.
G The network with charging facilities.
i, j The nodes in the network.
L(P) The leaf node of path P (excluding the end point n, before n).
L Tabu list.
M The average price of all regions, e.g., land price benchmark.

N
The number of trees generated in the whole network, that is, the number of
unreachable pairs.

NR Connection radius.
P A qualified path on tree Tmn.
qij The traffic flow capacity of edge (i, j), in EVs/hour.
R The number of regions in the specified area.
S The number of networks.
sk The kth CS.
T The average shortest traveling time.
Tdrive The driving time of T.
Twait The waiting time of T.
V The set of nodes in urban transportation network.
τij The actual driving time of the edge (i, j), in hour.
Vc The candidate set of nodes located CSs.
|Vc| The number of CSs.
X The number of nodes in the specified area.
α, β Parameters used to adjust the impact of traffic congestion.
δij The part of qij reserved for vehicles without charging demand.
ε The reserved resources to prevent over reception.
λ The EV flow with charging demand on (i, j), in EVs/hour.
λ(m, n) The EV flow between (m, n).
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λ
(mn)
ij The flow on (i, j) in λ(m, n).

λ
(mn)
P The flow on P.

λmax The carrying capacity of EV flow between unreachable pairs for spactial network.
λ(sk) The EV flow converged at sk.
τ0

ij The free-flow driving time of the edge (i, j), in hour.
τP The sum of driving time and waiting time of EV on path P.
ωij The number of all shortest paths between (i, j).
ωk

ij The part of ωij passing through node k.
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