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Abstract: It is difficult for traditional circuit‑fault feature‑extraction methods to accurately distin‑
guish between nonlinear analog‑circuit faults and analog‑circuit faults with high fault rates and high
diagnostic costs. To solve this problem, this paper proposes a method of mathematical morphology
fractal dimension (VMD‑MMFD) based on variational mode decomposition for soft‑fault feature ex‑
traction in analog circuits. First, the signal is decomposed into variational modes to suppress the in‑
fluence of environmental noise, and multiple high‑dimensional eigenmode functions with different
center frequencies are obtained. The fractal dimension of the signal feature information component
IMF is calculated, and then, KPCA (Kernel Principal Component Analysis) is used to remove the
overlapping and redundant parts of the data. The fault set obtained is used as the basis for judging
the working state and the fault type of the circuit. The experimental results of the simulation circuits
show that this method can be effectively used for circuit‑fault diagnosis.

Keywords: mathematical morphology fractal dimension; kernel principal component analysis;
variational modal decomposition; feature extraction

1. Introduction
In daily life and production, circuits can be divided into two types: analog and digital.

Although analog circuits generally account for less than 20% of circuit components, 80% of
faults are caused by analog circuits [1]. The fault types of analog circuits can be divided into
soft faults and hard faults. A hard fault refers to catastrophic faults such as open circuits
and short circuits in electronic circuits, which are easy to identify. A soft fault indicates that
the value of the components has changed, and the deviation in value exceeds the allowable
range [2]. When a soft fault problem occurs, the circuit can still work normally, but if the
component is not replaced in time, the soft fault will be upgraded to a hard fault, which
will cause significant damage to the entire circuit [3] and even endanger people’s lives
and safety.

Many scholars have proposed many feature extraction methods for analog‑circuit
recognition. Common fault feature extraction methods of analog circuits include principal
component analysis [4], factor analysis [5,6], and other linear extraction methods. These
methods are relatively effective for linear circuits, but most circuits in daily life have non‑
linear features. The above methods cannot reflect the non‑stationary characteristics of the
signal, resulting in the low separability of the extracted fault features, so there is a large
classification error in fault‑pattern recognition. Therefore, early soft fault research mainly
introduced fuzzy algorithms, wavelet theory, and other means to determine the actual
working conditions [7]. Although this algorithm improves the effect of fault diagnosis,
some algorithms are seriously affected by the circuit state when analyzing fault character‑
istics, which makes the performance unstable. In order to solve this problem, in recent
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years, some scholars have combined mathematical morphology with wavelets and pro‑
posed a new nonlinear wavelet morphological wavelet. Reference [8] applied morpholog‑
ical wavelets to detect power disturbance and successfully identified bad conditions in the
power transmission process. For example, Zhuang Ning [9] and others combined fractal
dimensionwith EMD (empiricalmode decomposition) to extract features of ECG signals to
identify different emotional performances. Zheng Zhi [10] and others combined the LMD
(local mean decomposition) decompositionmethodwith generalized fractal dimensions to
identify gear faults. However, actual measured signals are often accompanied by abnor‑
mal events, such as the noise impact and intermittent signals, which lead to modal aliasing
and greatly affect the subsequent fault‑diagnosis rate. At the same time, a commonmethod
to calculate the fractal dimension is the covering method (the box‑counting method). This
method has inevitable shortcomings. The method itself uses the regular grid division
method, so the estimation of the fractal dimension is very unstable in some cases [11].

In view of the above problems, this paper proposes amethod to calculate the fractal di‑
mensions (VMD‑MMFD‑KPCA) of mathematical morphology based on variational mode
decomposition (VMD). Using the variationalmode decomposition (VMD) of the signal, the
interference information in the signal is eliminated to themaximumextent possible to solve
the problem of mode aliasing of traditional EMD decomposition. When using morpholog‑
ical fractal dimensions to calculate the dimensions of signals, the instability of traditional
box‑dimension estimation is avoided, including effectively distinguishing different fault
types. On this basis, the KPCA dimension‑reduction method is introduced to reduce the
dimensions of high‑dimensional data calculated by dimensions, eliminate the redundancy
and duplication in the sample, and provide a data basis for subsequent fault diagnosis.
Compared with traditional fault‑diagnosis methods, it shows better performance of fea‑
ture extraction and diagnosis. Finally, the effectiveness of this method is demonstrated by
a simulation circuit.

2. Variational Modal Decomposition
VMD decomposition is a nonrecursive signal‑decomposition algorithm. The intrinsic

mode function (IMF) in different frequency bands is obtained by adaptively decompos‑
ing signals. In the process of solving the mode function, image continuation is used to
avoid the endpoint effect in EMD (empirical mode decomposition) and other decompo‑
sition methods. VMD’s processing of nonlinear fault signals is helpful for extracting the
characteristics of subsequent fault signals. The decomposed IMF has an independent cen‑
ter frequency and sparsity and can effectively avoid mode aliasing when the parameters
are appropriate.

(1) In order to obtain a unidirectional spectrum, Hilbert transform is used to analyze
and calculate each modal signal, and then the frequency shifting method is used to move
the modal spectrum to the baseband:[(

δ(t) +
j

πt

)
∗ vk(t)

]
ejωkt (1)

δ(t) is the Dirac function; vk and ωk are the first IMF component and its center fre‑
quency decomposed, respectively.

(2) The bandwidth is estimated by the square norm of the gradient, and the constraint
expression is: 

min
{vk},{ωk}

{
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ vk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
vk(t) = f (t)

(2)

∂t is the gradient calculation, and * is the convolution calculation symbol.
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(3) In order to obtain the optimal solution more efficiently, the constrained problem
is transformed into an unconstrained problem by using a Lagrangian operator τ(t) and
penalty factor α. The expanded Lagrangian function expression is:

L({vk}, {ωk}, τ) = α
K
∑

k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ vk(t)

]
e−jωkt

∥∥∥2

2

+

∥∥∥∥ f (t)−
K
∑

k=1
vk(t)

∥∥∥∥2

2
+

[
τ(t), f (t)−

K
∑

k=1
vk(t)

] (3)

(4) The alternating direction multiplier method is used to iteratively update each
modal component and the center frequency, and the saddle point of the unconstrained
function is obtained, which is the best solution to the problem. The iterative update ex‑
pression of vk, ωk, τ is as follows:

v̂n+1
k (ω) =

f̂ (ω)− ∑
i ̸=k

v̂i(ω) + τ̂(ω)
2

1 + 2α(ω − ωk)
2 (4)

ωn+1
k =

∫ ∞
0 ω|v̂k(ω)|2dω∫ ∞

0 |v̂k(ω)|2dω
(5)

τ̂n+1(ω) = τ̂n(ω) + γ

[
f̂ (ω)−

K

∑
k=1

ûn+1
k (ω)

]
(6)

In Equation (6) n is the number of iterations and γ is the noise tolerance parameter.
(5) Judgment of the iteration termination condition.

K
∑

k=1

∥∥∥v̂n+1
k − v̂n

k

∥∥∥2

2
K
∑

k=1

∥∥v̂n
k

∥∥2

2

< ε (7)

where ε is the judgment accuracy. When ε > 0, the iteration stops and the cycle ends. The
step flow chart is shown in Figure 1:
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Figure 1. Variational Modal Decomposition Process. 
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which can be realized using multi-scale morphology [12]. In the process of gathering and 
covering the signal, the supremum function, i.e., the structural element g (n), is used for 
equivalent transformation, and the scale range max1, 2, ,ε ε=   is analyzed. The algo-
rithm includes two basic operators: expansion and corrosion. For a one-dimensional dis-
crete time signal ( )( 0,1,2, )f n n =  , the expansion and corrosion results of each scale 
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Figure 1. Variational Modal Decomposition Process.

3. Fractal Dimension Calculation Method Based on Mathematical Morphology
The key to estimating the fractal dimension is to measure the signal at different scales,

which can be realized using multi‑scale morphology [12]. In the process of gathering and
covering the signal, the supremum function, i.e., the structural element g (n), is used for
equivalent transformation, and the scale range ε = 1, 2, · · · , εmax is analyzed. The algo‑
rithm includes two basic operators: expansion and corrosion. For a one‑dimensional dis‑
crete time signal f (n)(n = 0, 1, 2, · · · ), the expansion and corrosion results of each scale
are, respectively,

f Θg⊕ε(n) = (( f Θg)Θg · · · )Θg︸ ︷︷ ︸
εTimes

(8)

f ⊕ g⊕ε(n) = (( f ⊕ g)⊕ g · · · )⊕ g︸ ︷︷ ︸
εTimes

(9)

where Θ represents corrosion operation; ⊕ represents expansion operation; g⊕ε(n) repre‑
sents the structural elements used in the scale ε; f represents signal; g represents a struc‑
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tural element; and εTimes is the number of expansion and corrosion. The coverage area of
discrete signals at different scales is defined as

Ag(ε) =
N

∑
n=1

( f ⊕ εg(n)− f Θεg(n)) (10)

When ε approaches zero, Ag(ε) satisfies:

lg
Ag(ε)

ε2 ≈ DM · lg
(

1
ε

)
+ c (11)

where DM is the Minkowski–Bouligand dimension of the signal, and c is a constant. The
slope of the straight line obtained by a least‑square fitting of the above equations lg Ag(ε)

ε2

and lg
(

1
ε

)
is DM, which is the final required f (n) fractal dimension.

Generally, the unit structure element g(n) is chosen to be {0, 0, 0}, because this struc‑
ture not only ensures that the dimension estimation is not affected by the signal ampli‑
tude range but also reduces the computational complexity of the algorithm. In principle,
the maximum analysis scale εmax is a positive integer less than N/2 (N is the number of
discrete signal sampling points). When the data length is relatively large, appropriately
reducing εmax can reduce the amount of calculation [13]. In this paper, the length is 256.

4. Kernel Principal Component Analysis
The KPCA method is used to represent the nonlinear relationship between modeling

data. It can effectively project linearly indivisible input data into a high‑dimensional space
that can be linearly separated, and then execute linear PCA in feature space H. Assume
that the sample set is x1, x2, · · · , xN ∈ Rm, where: N is the number of samples and m is
the number of variables. These samples are projected into the feature space H through a
nonlinear mapping ϕ, which can be expressed as:

ϕ : xi ∈ Rm → ϕ(xi) ∈ Rh (12)

where h is the dimension of the feature space.
The dot product of vector ϕ(xi) and ϕ(xj) (i , j = 1 , 2 , · · · , N) in feature space

H is:
ϕ(xi)

Tϕ(xj) =
〈
ϕ(xi), ϕ(xj)

〉
= k(xi, xj) (13)

where: k is the kernel function.
The covariance matrix of samples in the high‑dimensional feature space H is:

Q =
1

N − 1

N

∑
j=1

ϕ(xj)ϕ(xj)
T (14)

Similar to linear PCA, KPCA in the feature space is equivalent to solving the eigen‑
value problem. Let the eigenvector be Vk, the eigenvalue be µk, and its characteristic
equation be:

µkVk = QVk =
1

N−1

N
∑

j=1
ϕ(xj)ϕ(xj)

TVk =

1
N−1

N
∑

j=1

〈
ϕ(xj), Vk

〉
ϕ(xj)

(15)

In Equation (15), each eigenvector Vk in the covariance matrix Q can be regarded as a
linear combination of ϕ(x1), ϕ(x2), · · · , ϕ(xN) [14], that is:

Vk =
N

∑
i=1

vk,iϕ(xi), k = 1, 2, · · · , N (16)
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where vk and i are linear correlation coefficients.
Combining Equations (13) and (15), we can obtain

µk

N

∑
i=1

vk,iKk,i =
1

N − 1

N

∑
i=1

vk,i

N

∑
j=1

Kk,iKji (17)

Further simplification results in:

λkvk = Kvk (18)

where λk = (N − 1)µk; K ∈ RN×N is a kernel matrix, whose eigenvalues are λ1 ≥
λ2 ≥ · · · ≥ λN , and the corresponding eigenvectors are v1, v2, · · · , vN . In the feature
space H, the eigenvector Vk of the covariance matrix Q in Equation (15) forms a matrix
Vf = [V1 V2 · · · Vl Vl+1 · · · VN ]. One principal element (PC) is selected, and we ob‑
tain V̂f = [V1 V2 · · · Vl ] ∈ RN×l in the principal element space, since the eigenvector Vk
should meet the normal constraint in the feature space H, that is, ⟨Vk, Vk⟩ = 1. Thus, the
eigenvectors v1, v2, · · · , vN of the kernel matrix K can be expressed as:

⟨vk, vk⟩ =
⟨Vk, Vk⟩

λk
(19)

The norm of 1√
λk

is taken as the eigenvector, so we have

vk =
1√
λk

vk (20)

V̂f in feature space H is expressed as

V̂f =

[
1√
λ1

XTvl
]
= XTV̂Λ−1/2 (21)

where Λ = diag(λ1, λ2, · · · , λl);V̂ = [v1 v2 · · · vl ];X = [ϕ(x1) ϕ(x2) ϕ(xN)]
T .

5. Basic Theory of SVM
SVM can provide good generalization performance, and it has been widely used in

small‑sample classification [15]. As a classical nonlinear problem in the area of fault‑location
problems, SVM cannot find the classification hyperplane in the original sample space, so
it is necessary to introduce a kernel function K(xi, xj) to map to a linearly separable high‑
dimensional space. In this paper, a Gaussian kernel function mapping transformation is
used, and the expression is as follows:

K(xi, xj) = exp
(
−γ

∥∥xi − xj
∥∥2

)
(22)

where,
∥∥xi − xj

∥∥2 is the square of the distance between xi and xj, and r is the super param‑
eter of the kernel function itself:

min
ω,b,ζ

1
2 ωTω + c

N
∑

i=1
ζi

s.t. yi(ω
Tϕ(xi)) ≥ 1 − ζi, i = 1, 2, · · · N

ζi ≥ 0, i = 1, 2, · · · , N

(23)

where ζi is the relaxation variable, c is the penalty factor, xi is the input i sample, and yi is
the sample type.



Electronics 2023, 12, 184 7 of 21

The Lagrangian penalty factor α is introduced, and finally the dual type of soft interval
Gaussian kernel SVM is obtained as follows:

min
α

1
2

N
∑

i=1

N
∑

j=1
αiαjyiyj exp

(
−γ

∥∥xi − xj
∥∥2

)
−

N
∑

i=1
αi

s.t. 0 ≤ αi ≤ c, i = 1, 2, · · · N,
N
∑

i=1
αiyi = 0

(24)

6. Experiment and Simulation
The method based on VMD‑MMFD is used for feature extraction and the fault diag‑

nosis of fault circuits. The specific process is shown in Figure 2.

Figure 2. VMD‑MMFDMethod Flow Chart.

To verify the effectiveness of this method, simulation experiments and calculations
were carried out through the software Multisim, Matlab, and Python. The Sallen–Key
band‑pass filter circuit was taken as an example to verify the analysis method of soft‑fault
diagnosis based on variational‑mode decomposition and mathematical morphology frac‑
tal dimensions. The circuit diagram is shown in Figure 3.

Figure 3. Sallen−Key band‑pass filter circuit.
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The excitation signal f = 3sin (30) + 3sin (20) + noise is used as the input source for the
fault diagnosis, the tolerance of resistance and capacitance of the circuit is 10%, and the
value of components within this range is considered normal. In this experiment, the soft
fault state is set when the nominal value fluctuates by 30%. In this experiment,
15‑parameter fault combinations are configured. The fault of the amplifier is affected by
many factors, so it is not discussed here. The fault mode setting is shown in Table 1, the
original signal is shown in Figure 4, the noise signal is shown in Figure 5, and the mixed
noise input signal is shown in Figure 6.

Table 1. Fault Type Description.

Type Number Type Nominal Value Fault Zone

1 Normal ‑ ‑
2 R1 ↑ 30% 4 kΩ [4.4 kΩ, 5.2 kΩ]
3 R1 ↓ 30% 4 kΩ [2.8 kΩ, 3.6 kΩ]
4 R2 ↑ 30% 3 kΩ [3.3 kΩ, 3.9 kΩ]
5 R2 ↓ 30% 3 kΩ [2.1 kΩ, 2.7 kΩ]
6 R3 ↑ 30% 2 kΩ [2.2 kΩ, 2.6 kΩ]
7 R3 ↓ 30% 2 kΩ [1.4 kΩ, 1.8 kΩ]
8 R4 ↑ 30% 4 kΩ [4.4 kΩ, 5.2 kΩ]
9 R4 ↓ 30% 4 kΩ [2.8 kΩ, 3.6 kΩ]
10 R5 ↑ 30% 4 kΩ [4.4 kΩ, 5.2 kΩ]
11 R5 ↓ 30% 4 kΩ [2.8 kΩ, 3.6 kΩ]
12 C1 ↑ 30% 5 nF [5.5 nF, 6.5 nF]
13 C1 ↓ 30% 5 nF [3.5 nF, 4.5 nF]
14 C2 ↑ 30% 5 nF [5.5 nF, 6.5 nF]
15 C2 ↓ 30% 5 nF [3.5 nF, 4.5 nF]

Figure 4. Original Signal.

Figure 5. Noise Signal.

Figure 6. Input signal of mixed noise.
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When VMD is used to decompose signals, the preset scale parameters and the second
penalty factor are the main parameters that affect the decomposition accuracy. Therefore,
for the VMD decomposition of measured signals, the reasonable selection of its parame‑
ters is the difficulty and key of this method. The center frequency of each order of IMF
component obtained from the VMD decomposition of the signal is distributed from a low
frequency to a high frequency. If the optimal preset scale parameter K is obtained, the
center frequency of the last‑order IMF component should be the maximum value, and the
maximum center frequency value should remain stable. Based on the test and analysis of
the VMD decomposition results of a large number of measured signals and reference [16],
the second penalty factor α = 2000 is selected in this paper. Take fault type 3 and fault type
5 signals as examples of VMD decomposition, as shown in Figures 7 and 8, the center fre‑
quency of the IMF component is obtained by decomposition, as shown in Figures 9 and 10.
It can be seen from the figures that when K = 4, the central frequency of the IMF compo‑
nent reaches the maximum and tends to be stable, the frequencies between modes do not
overlap, and the impact of noise andmode aliasing is effectively suppressed. With the pre‑
set scale parameter K > 4, the center frequencies of IMF 5 and IMF 6 components become
unstable and mode aliasing occurs. Therefore, the VMD decomposition of the signal is the
best when k = 4.

Figure 7. VMD Decomposition Sequence Diagram of Fault 3 Signal.

In recent years, in the field of circuit fault diagnosis, the method of combining em‑
pirical mode decomposition with box‑dimension estimation has been commonly used to
extract features [17]. The experiment compares this traditional method with the model of
feature extraction based on variational mode decomposition and mathematical morphol‑
ogy. Take four states of types 2–5 as examples, where q is the scale and the value range
is [0, 10]. Each state corresponds to 10 fractal dimensions. With the increase in the scale
q, fault states are depicted from different dimensions, Dq is the fractal dimension value
under different scales q, and the spectrum analysis is carried out.

In Figure 11, the IMF1 component of Fault03 does not overlapwith other components,
and the IMF1 components of Fault02, Fault04, and Fault05 have aliasing and different de‑
grees of crossing. With the increase in q, the aliasing and crossing become more and more
serious, making themdifficult to distinguish. In Figure 12, the IMF1 components of Fault02
and Fault04 have serious crossing phenomena, and it is difficult to distinguish the fault
types. When the q value is small, the IMF1 of Fault03 and Fault05 have no aliasing phe‑
nomena. With the increase in q, the IMF1 of Fault04 has serious cross phenomena with the
IMF1 of Fault03 and Fault05. In Figure 13, the IMF1 of Fault04 and Fault05 has seriously
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crossed, and it is impossible to distinguish the fault type. With the increase in the q value,
the IMF1 of Fault03 and Fault04 has also mixed or even crossed phenomena. In Figure 14,
when the q value is low, each fault type can be distinguished. With the increase in the q
value, the IMF1 of Fault04 and Fault05 has aliasing and crossing phenomena, which affect
the discrimination of the fault types. Later, with the increase in the scale of q, the IMF1 of
Fault04 and Fault03‑IMF1 has a certain degree of aliasing. The characteristic sample set of
the IMF1 component dimension of the fault signal is shown in Table 2.

Figure 8. VMD Decomposition Sequence Diagram of Fault 5 Signal.

Figure 9. IMF Component Corresponding Spectrum of Fault 3.
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Figure 10. IMF Component Corresponding Spectrum of Fault 5.

Figure 11. IMF1‑EMD box fractal dimension map.

Figure 12. IMF1‑EMD mathematical morphology fractal dimension map.
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Figure 13. IMF1‑VMD box fractal dimension map.

Figure 14. IMF1‑VMD mathematical morphology fractal dimension map.

Table 2. Characteristic sample of the fault signal analysis dimension.

Fault Type D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

IMF1‑EMD box
fractal dimension

Fault 2 1.6870 1.6743 1.6061 1.6156 1.5567 1.4838 1.4095 1.4910 1.3974 1.4057
Fault 3 1.3602 1.3735 1.2853 1.2908 1.2303 1.2689 1.2595 1.2419 1.1655 1.2092
Fault 4 1.6854 1.6508 1.5835 1.6074 1.4556 1.4123 1.4073 1.3394 1.3462 1.1949
Fault 5 1.4071 1.4256 1.4133 1.4572 1.4097 1.4085 1.3832 1.4120 1.3796 1.4140

IMF1‑EMD mathematical
morphology

fractal dimension

Fault 2 1.6557 1.5995 1.6661 1.6124 1.5050 1.4923 1.4890 1.4820 1.4785 1.3868
Fault 3 1.2908 1.2497 1.2513 1.2051 1.2482 1.2010 1.1755 1.1980 1.1438 1.1610
Fault 4 1.5835 1.5981 1.5337 1.5402 1.5452 1.5372 1.4151 1.3950 1.4024 1.3920
Fault 5 1.4245 1.4288 1.4231 1.4305 1.3863 1.4354 1.3571 1.4290 1.3221 1.3840

IMF1‑VMD box
fractal dimension

Fault 2 1.6377 1.6630 1.6447 1.6047 1.5988 1.5418 1.5182 1.5485 1.4724 1.4856
Fault 3 1.2176 1.2186 1.2342 1.2047 1.1636 1.1646 1.1709 1.0993 1.1236 1.0548
Fault 4 1.5439 1.5164 1.4729 1.4471 1.3472 1.3457 1.2516 1.1949 1.1485 1.0201
Fault 5 1.5152 1.4002 1.4789 1.4600 1.3385 1.2972 1.2955 1.2996 1.2957 1.2398

IMF1‑VMD mathematical
morphology

fractal dimension

Fault 2 1.7564 1.7629 1.7429 1.7480 1.7094 1.7206 1.6582 1.6947 1.5685 1.6582
Fault 3 1.3526 1.3309 1.3422 1.3164 1.2954 1.3168 1.3281 1.2294 1.2786 1.2202
Fault 4 1.6780 1.6333 1.5508 1.6014 1.5463 1.4624 1.3951 1.3472 1.3241 1.2779
Fault 5 1.4636 1.4081 1.4240 1.4096 1.3862 1.4158 1.4075 1.3644 1.3465 1.3457

In Figure 15, the IMF2 of Fault04 and Fault05 has undergone serious aliasing and
crossing, and the fault type of the IMF2 of Fault02 and Fault03 can be distinguished, in
which aliasing and crossing have occurred. In Figure 16, the IMF2 of Fault02 and Fault03
has been separated, and the fault type is well distinguished, but the IMF2 of Fault04 and
Fault05 shows aliasing with the increase in the q value, which is difficult to distinguish.
In Fault02 and Fault04 in Figure 17, there is no aliasing, the effect of the fault type dis‑
crimination is good, and the IMF2 of Fault02 and Fault04 has serious aliasing and cross
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phenomena, so it is impossible to distinguish fault types. In Figure 18, when the scale of
q is low, the state‑differentiation effect of various fault types is good. With the increase in
the q value, the IMF2 of Fault02, Fault03, Fault04, and Fault05 shows aliasing and cross‑
ing phenomena to different degrees. The characteristic sample set of the IMF2 component
dimension of the fault signal is shown in Table 3.

Figure 15. IMF2‑EMD box fractal dimension map.

Figure 16. IMF2‑EMD mathematical morphology fractal dimension map.

Figure 17. IMF2‑VMD box fractal dimension map.
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Figure 18. IMF2‑VMD mathematical morphology fractal dimension map.

Table 3. Characteristic sample of the fault signal analysis dimension.

Fault Type D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

IMF2‑EMD box
fractal dimension

Fault 2 1.6724 1.6409 1.5960 1.6104 1.5887 1.4592 1.5010 1.4442 1.3803 1.3475
Fault 3 1.2033 1.1910 1.2749 1.1832 1.2477 1.1637 1.1319 1.1749 1.0982 1.0771
Fault 4 1.5704 1.5366 1.5300 1.4305 1.4335 1.4065 1.3918 1.3501 1.3340 1.2630
Fault 5 1.4732 1.4991 1.4765 1.4639 1.3728 1.3707 1.3455 1.4209 1.3471 1.3389

IMF2‑EMD mathematical
morphology

fractal dimension

Fault 2 1.7191 1.6930 1.6806 1.7753 1.7065 1.6413 1.6832 1.6537 1.5967 1.6174
Fault 3 1.3262 1.3347 1.3554 1.3026 1.2784 1.3080 1.3305 1.2270 1.2034 1.1797
Fault 4 1.6367 1.5909 1.5630 1.5450 1.4599 1.4536 1.4299 1.3777 1.2598 1.2645
Fault 5 1.4337 1.4428 1.4455 1.3915 1.4417 1.3987 1.4169 1.3843 1.3339 1.3127

IMF2‑VMD box
fractal dimension

Fault 2 1.6682 1.6430 1.6465 1.5938 1.6249 1.5514 1.5236 1.5458 1.5285 1.4540
Fault 3 1.4124 1.3532 1.3172 1.2933 1.3407 1.2331 1.2043 1.1930 1.1455 1.1187
Fault 4 1.5354 1.4761 1.4657 1.4808 1.4348 1.3826 1.3322 1.2779 1.2330 1.2255
Fault 5 1.3421 1.3818 1.3269 1.2532 1.2227 1.3078 1.2388 1.2553 1.1584 1.1871

IMF2‑VMD mathematical
morphology

fractal dimension

Fault 2 1.8336 1.7650 1.6697 1.6639 1.5206 1.4509 1.3764 1.2351 1.0954 1.0255
Fault 3 1.2066 1.2076 1.1819 1.1740 1.1543 1.1640 1.1372 1.0974 1.0867 1.0477
Fault 4 1.5862 1.5894 1.5584 1.4899 1.4371 1.3627 1.3394 1.2667 1.1744 1.0933
Fault 5 1.3914 1.4041 1.3228 1.2901 1.2495 1.1834 1.1311 1.0992 1.0216 0.9455

In Figure 19, with the increase in the number of IMF components, the dimension val‑
ues of several components of the IMF are no longer stable, because with the increase in
the number of modal decomposition components, each component contains less and less
original feature information. After the dimension calculation process, the fault types be‑
come difficult to distinguish. When the scale of q is small, Fault04 and Fault05 have been
aliased and crossed to some extent. With the increase in the scale of the q value, the IMF3 of
Fault02, Fault04, and Fault05 has been aliased and crossed to some extent. In Figure 20, the
IMF3 aliasing of Fault02, Fault03, Fault04, and Fault05 is obviously crossed, which makes
it difficult to distinguish the fault type*. In Figure 21, the IMF3 fault type * of Fault02 is not
aliasedwith other components, and the IMF3 of Fault03, Fault04, and Fault05 is completely
aliased, so the fault types cannot be distinguished. In Figure 22, the IMF3 of Fault03 and
Fault05 is seriously aliased and crossed, which makes it impossible to classify fault types.
The IMF3 of Fault04 and Fault02 is aliased and crossed with the increase in the scale of q,
which makes it difficult to classify faults. The sample set of dimension characteristics of
the IMF3 components of fault signals is shown in Table 4.
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Figure 19. IMF3‑EMD box fractal dimension map.

Figure 20. IMF3‑EMD mathematical morphology fractal dimension map.

Figure 21. IMF3‑VMD box fractal dimension map.
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Figure 22. IMF3‑VMD mathematical morphology fractal dimension map.

Table 4. Characteristic sample of the fault signal analysis dimension.

Fault Type D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

IMF3‑EMD box
fractal dimension

Fault 2 1.6425 1.5815 1.6568 1.5538 1.5591 1.5163 1.3947 1.3949 1.2907 1.2155
Fault 3 1.2093 1.2727 1.2897 1.1941 1.2341 1.1991 1.1068 1.1599 1.1544 1.0175
Fault 4 1.5398 1.4772 1.4563 1.4778 1.4028 1.3408 1.4195 1.3429 1.3243 1.2693
Fault 5 1.4692 1.5379 1.4932 1.3761 1.4532 1.2804 1.2449 1.1868 1.1960 1.1634

IMF3‑EMD mathematical
morphology

fractal dimension

Fault 2 1.5228 1.5109 1.4754 1.4798 1.5059 1.4950 1.4424 1.3519 1.3430 1.3664
Fault 3 1.3759 1.3059 1.3622 1.2773 1.2727 1.2793 1.2458 1.2006 1.1177 1.1418
Fault 4 1.5832 1.4883 1.5046 1.4610 1.3508 1.2476 1.1925 1.1773 1.0822 0.9293
Fault 5 1.4000 1.4409 1.3951 1.4175 1.4387 1.3977 1.3469 1.3875 1.2988 1.2890

IMF3‑VMD box
fractal dimension

Fault 2 1.6495 1.6844 1.6046 1.5205 1.5495 1.4687 1.3787 1.3839 1.3042 1.2562
Fault 3 1.4191 1.3063 1.3525 1.2212 1.1764 1.1212 1.0217 0.8440 0.8091 0.7661
Fault 4 1.5537 1.4901 1.3837 1.4014 1.3290 1.2042 1.0699 1.0852 0.9733 0.8581
Fault 5 1.3449 1.3789 1.3486 1.2915 1.2383 1.1452 1.1382 1.0759 1.1057 1.0257

IMF3‑VMD mathematical
morphology

fractal dimension

Fault 2 1.7796 1.7642 1.7462 1.6209 1.4996 1.4773 1.3646 1.2168 1.0315 0.9121
Fault 3 1.3130 1.2390 1.2553 1.1322 1.1181 1.1154 1.0490 1.0063 0.8897 0.8612
Fault 4 1.5879 1.6034 1.6084 1.5244 1.4576 1.4153 1.3128 1.2901 1.1824 1.1364
Fault 5 1.3690 1.2818 1.2176 1.3254 1.2867 1.0991 0.9629 0.8677 0.9853 0.7289

In Figure 23, with the increase in the number of IMF components, the dimension
values of several IMF components fluctuate seriously, and the IMFs of Fault02, Fault03,
Fault04, and Fault05 have all experienced serious aliasing and crossing. In Figure 24, the
IMF4 in Fault02, Fault04, and Fault05 is aliased, so it is impossible to distinguish the fault
type, and with the increase in the q value, the IMF3 in Fault03 is also aliased. In Figure 25,
the IMF4 of Fault02, Fault04, and Fault05 shows serious aliasing and cross phenomena and
even overlapswith the increase in the scale q, making it difficult to determine the fault type.
Only the fault type of the IMF4 of Fault03 can be distinguished. In Figure 26, the IMF di‑
mension maps of the four fault states fluctuate unstably, and the IMF4 of Fault02, Fault03,
Fault04, and Fault05 is seriously aliased and crossed, making it impossible to judge the
fault type. The characteristic sample set of the IMF4 component dimension of the fault
signal is shown in Table 5.
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Figure 23. IMF4‑EMD box fractal dimension map.

Figure 24. IMF4‑EMD mathematical morphology fractal dimension map.

Figure 25. IMF4‑VMD box fractal dimension map.
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Figure 26. IMF4‑VMD mathematical morphology fractal dimension map.

Table 5. Characteristic sample of the fault signal analysis dimension.

Fault Type D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

IMF4‑EMD box
fractal dimension

Fault 2 1.7086 1.6009 1.6704 1.6145 1.6659 1.6313 1.5714 1.5283 1.4293 1.4673
Fault 3 1.3636 1.1981 1.3329 1.3307 1.2095 1.2752 1.2552 1.1051 1.1830 1.1496
Fault 4 1.6361 1.6215 1.5215 1.4240 1.5164 1.4166 1.4624 1.2987 1.3937 1.3317
Fault 5 1.4543 1.5268 1.5021 1.4439 1.3231 1.2708 1.3980 1.3052 1.1614 1.1513

IMF4‑EMD mathematical
morphology

fractal dimension

Fault 2 1.6237 1.5708 1.4693 1.5382 1.5381 1.5434 1.3651 1.3573 1.4111 1.3618
Fault 3 1.2192 1.1913 1.2263 1.1684 1.2160 1.0961 1.1527 1.0913 0.9866 1.0166
Fault 4 1.5751 1.4699 1.5610 1.5105 1.3341 1.2244 1.3016 1.1332 1.0131 0.9396
Fault 5 1.4514 1.4499 1.2924 1.4263 1.3537 1.3699 1.3763 1.2150 1.3415 1.2034

IMF4‑VMD box
fractal dimension

Fault 2 1.7392 1.6474 1.5963 1.6330 1.4800 1.4325 1.5802 1.3741 1.2797 1.1849
Fault 3 1.1807 1.1413 1.1157 1.0596 0.9071 0.9112 0.7803 0.6663 0.6173 0.3559
Fault 4 1.6682 1.6414 1.4984 1.4061 1.5206 1.3689 1.2697 1.3084 1.1258 1.0662
Fault 5 1.3989 1.4584 1.2869 1.2534 1.2027 1.3211 1.2789 1.2685 1.1085 1.1401

IMF4‑VMD mathematical
morphology

fractal dimension

Fault 2 1.8431 1.7512 1.7105 1.6216 1.5655 1.5535 1.4940 1.3929 1.1252 0.9969
Fault 3 1.4350 1.3262 1.2600 1.2737 1.1133 1.1532 1.0151 0.8810 1.0270 0.7543
Fault 4 1.6208 1.6509 1.5660 1.5690 1.5982 1.3570 1.3641 1.1889 1.1223 1.1073
Fault 5 1.3001 1.5073 1.4525 1.3854 1.1631 1.3242 1.1771 1.0530 0.9213 0.9574

The feature extraction of different states of signals is carried out through the fractal
dimension. Although the number of data samples increases and the fault set becomes
larger, the high‑dimensional data contain a lot of miscellaneous and repetitive data, which
seriously affect the accuracy of fault diagnosis. The feature set needs to be dimensionally
reduced. In the literature [18], different kernel functions have different effects on data di‑
mensionality reduction. Generally, the Gaussian radial basis function (Formula (25)) is
selected to perform the kernel function PCA on data sets to achieve dimensionality reduc‑
tion and fault classification in high‑dimensional feature space.

k(x, y) = exp
(
− x − y2

2σ2

)
(25)

The cumulative contribution rate of the principal component calculated by the KPCA
algorithm is shown in Table 6. It can be seen from Table 6 that the first three principal com‑
ponents contain almost all the information of the system, so the first three principal com‑
ponents are retained as the eigenvalues of the system; that is, the feature space is reduced
from high‑dimensional to three‑dimensional. KPCA can be used to calculate the princi‑
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pal component contribution rate, effectively eliminating the samples containing too much
interference information, which greatly improves the accuracy of subsequent diagnoses.

Table 6. Cumulative contribution rate.

Cumulative Contribution Rate KPCA1 KPCA2 KPCA3

Fault 2 (%) 93.26 95.59 98.88
Fault 3 (%) 95.33 96.21 99.11
Fault 4 (%) 96.34 98.88 100
Fault 5 (%) 97.77 99.18 100

Therefore, considering the feature extraction method of the VMD‑MMFD‑KPCA, the
results are shown in Figure 27, and various fault types can be distinguished in the
following figure.

Figure 27. VMD‑MMFD‑KPCA feature extraction.

To further verify the effectiveness of the feature‑extraction methods explained above,
a support vector machine was used to complete fault diagnosis. Among them, the fault
datasets that were used were all from the fault settings of various components of the sim‑
ulation circuit. To achieve better experimental results, more than 50 signal samples were
collected for each fault type, and more than 750 signal samples were collected for 15 fault
types. Eighty percent of the samples from each fault type were randomly selected as the
training sample, and the rest were selected as the test sample. The kernel function was
introduced and determined in the previous theory, using Gaussian kernel function. After
that, the data needed to be normalized. First, the data need to be filtered and sorted. For ob‑
viously abnormal data, we considered using the sample mean to replace it, so as to reduce
the extent to which the abnormal sample data interferes with the results. To prevent the
individual abnormal sample data volume from influencing the training results, the data
were normalized according to Formula (26).

X∗
i =

Xi − Xmin
Xmax − Xmin

(26)

After 100 iterations, diagnosis is carried out in combination with different diagnosis
models, as shown in Figure 28.
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Figure 28. Flow chart of SVM Classification.

In the literature [19], there is a wavelet neural network (WNN) analog circuit soft fault
diagnosis method based on kernel partial least square (KPLS) feature extraction, which
uses support vector machine (KPLS‑WNN‑SVM) for fault classification. In the
literature [20], a multifractal extraction method based on empirical mode decomposition
is combined with support vector machine (EMD‑MFD‑SVM). The diagnostic rate of the
diagnostic model combined with support vector machine (VMD‑MMFD‑KPCA‑SVM) in
this paper is shown in Table 7, which shows that the VMD‑MMFD‑KPCA‑SVM method
has the highest diagnostic accuracy.

Table 7. Fault Diagnosis Rate.

Diagnostic Model Average Diagnostic Rate (%)

KPLS‑WNN‑SVM 87.3

EMD‑MFD‑SVM 91.9

VMD‑MMFD‑KPCA‑SVM 96.3

7. Conclusions
This paper proposes a feature‑extraction method based on VMD‑MMFD‑KPCA.

Firstly, the fault signal is decomposed by VMD to obtain multiple modal IMF components,
which greatly reduces the impact of modal aliasing. The appropriate IMF components
were selected, and the fractal dimension of the mathematical morphology was calculated
to obtain a large number of high‑dimensional feature data sets. The data sets were reduced
by KPCA to obtain low‑dimensional data, which eliminated a large number of redundant
and jumbled information in the high‑dimensional data. The experimental results show
that the feature‑extraction method based on VMD‑MMFD‑KPCA has a good effect.
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