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Abstract: Mobile olfaction is one of the applications of mobile robots. Metal oxide sensors (MOX) are
mobile robots’ most popular gas sensors. However, the sensor has drawbacks, such as high-power
consumption, high operating temperature, and long recovery time. This research compares a reduced
graphene oxide (RGO) sensor with the traditionally used MOX in a mobile robot. The method uses a
map created from simultaneous localization and mapping (SLAM) combined with gas distribution
mapping (GDM) to draw the gas distribution in the map and locate the gas source. RGO and MOX
are tested in the lab for their response to 100 and 300 ppm ethanol. Both sensors’ response and
recovery times show that RGO resulted in 56% and 54% faster response times, with 33% and 57%
shorter recovery times than MOX. In the experiment, one gas source, 95% ethanol solution, is placed
in the lab, and the mobile robot runs through the map in 7 min and 12 min after the source is set,
with five repetitions. The results show the average distance error of the predicted source from the
actual location was 19.52 cm and 30.28 cm using MOX and 25.24 cm and 30.60 cm using the RGO gas
sensor for the 7th and 12th min trials, respectively. The errors show that the predicted gas source
location based on MOX is 1.0% (12th min), much closer to the actual site than that predicted with
RGO. However, RGO also shows a larger gas sensing area than MOX by 0.35–8.33% based on the
binary image of the SLAM-GDM map, which indicates that RGO is much more sensitive than MOX
in the trial run. Regarding power consumption, RGO consumes an average of 294.605 mW, 56.33%
less than MOX, with an average consumption of 674.565 mW. The experiment shows that RGO can
perform as well as MOX in mobile olfaction applications but with lower power consumption and
operating temperature.

Keywords: gas source localization; Hector SLAM; reduced graphene oxide; metal oxide gas sensor;
gas distribution mapping; mobile robot

1. Introduction

A mobile robot is a type of robot that can move freely in the environment using a
wheel-based or foot-based system. These robots are developed to help solve problems
associated with tasks that are harmful to humans. Such duties include repetitive movement,
which can result in ergonomic risk, and potential exposure to toxic or odorless gas that can
cause harm to humans. Mobile robots have attracted the attention of many researchers as a
way to solve problems, with research continually conducted to explore additional robot
capabilities.

The usage of gas sensors in mobile robots, also known as mobile olfaction, is among
the contributions that mobile robots can make to solve gas-related problems or, more
specifically, gas leakage. Gas leakage can occur in any indoor area, especially in the oil and
gas industry, associated with the emission of volatile organic compounds (VOCs), such as
acetone, ethanol, and methanol. Popular gas sensors available are based on electrochemical,
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catalytic, and chemoresistive gas sensors. The electrochemical sensor usually consists
of several electrodes in contact with electrolytes. The gas diffuses into the sensor to the
working electrode. It interacts with the sensing material, causing a chemical reaction and
an electrical current passing through the measuring circuit [1]. In contrast, a catalytic sensor
works when combustible gas burns on the detector element. This increases the temperature,
as well as the resistance value [2]. Chemoresistive sensors consist of sensing material in
bulk or deposited on a suitable support, on which a molecular reaction takes place. This
leads to a change in concentration-dependent properties that can be transformed into an
electrical signal when in contact with environmental gas, and oxidization or a reduction
process occurs [3].

The most commonly used gas sensors for mobile robots are chemoresistive sensors
based on metal oxide (MOX). MOX can be based on zinc, iron, and tin oxide. MOX is
popular owing to its sensitivity, reliability, low deployment cost, and low complexity in
electronic parts, making it a viable choice for mobile robots [4]. However, the sensor is
subject to drawbacks, including high operating temperature with high power consumption
owing to the requirement of an additional heater circuit beside the sensing circuit to power
the sensor [5]. Typically, the power usage is high due to the time requirement of the MOX
sensor to reach its operating temperature and stability when it is turned ON and exposed
to air or VOCs [6]. Power usage is crucial, especially in mobile olfaction areas where the
robots are battery-powered with limited operating time.

Concerning MOX, Ref. [7] used two metal oxide sensors: Figaro TGS2620 and TGS2610.
In some cases, an e-nose is also used to increase the sensor selectivity to different gas
classifications. The authors of [8] used two e-noses comprising an array of four MOX
sensors (two TGS2600, one TGS2602, and one TGS2620). Each MOX sensor typically
consumes 210 mW for the heating circuit alone. When used in multiples, the power
consumption is further increased, limiting the operating time of the mobile robot. The
authors of [9] proposed using an array of 16 MOX gas sensors (4 TGS2600, 4 TGS2602,
4 TGS2611, and 4 TGS2620) sampled in open conditions. The gas sensor array is designed
to be constantly turned ON, even in mobile robot recharging conditions. The sensors
are operated at different operating temperatures using pulse width modulation (PWM)
of duty cycles (25%, 50%, 75%, and 62.5%). The researcher tested three gas conditions:
(1) ethanol, (2) acetone, and (3) ethanol and acetone at different locations. They reported
that the sensors successfully detected and classified ethanol and acetone, except under
condition (3), for which only one of the gasses with a higher concentration was observed at
a location. In other cases, researchers [10] used three different MOX gas sensors coated with
tin dioxide (SnO2), tungsten trioxide (WO3), and nickel dioxide (NiO) sensing material. The
SnO2 is doped with 2% Palladium and 0.4% Platinum (SnO2-PdPt) for enhanced stability.
Researchers used different metal oxides to increase the selectivity of VOC detection towards
hazardous gas for rescuers (toxic and explosive gas). The researcher used 2-propanol as
the target VOC in their experiment with two different VOC injection methods (head-space
sampling and spray injection). All three sensors could produce repeatable results, with NiO
showing the best repeatability of the gas source location. In terms of response, SnO2-PdPt
achieved a response rate of 80% (a decrease in resistance from baseline) in head-space
sampling and a 60% response using the VOC spray-injection method. WO3 achieved
a lower response rate of 40% and 15%, and NiO showed the lowest response rates of
10% and 5% towards the target VOC. Moreover, Ref. [11] used three TGS2620 MOX gas
sensors for mobile olfaction applications. The researcher reported that the sensor requires a
long recovery time of 60 s after leaving the gas source area, resulting in errors in the gas
distribution map, where the gas appears to drift along with the mobile robot and cause
errors in predicting the gas source location.

Besides the recovery time, the MOX gas sensor operates at high temperatures, typically
at an average of 300 ◦C [8,10,11]. This statement is also supported by the research done by
the researcher [12], which uses Titanium Dioxide nanowires (NW-TiO2). The researcher
tested the NW-TiO2 against 100 ppm ethanol at the different operating temperatures of 25,
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150, 300, and 450 ◦C. The researcher found that at higher operational temperature changes
from 25 to 300 ◦C, the response time becomes much faster, from 310 s reduced to 18 s. The
recovery time also shows significant results, reduced from 400 s to 22 s based on the results
of the researcher sample D. The high operating temperature is due to the requirement of
improving the sensor response and sensitivity towards gas like acetone, ethanol, carbon
monoxide, and toluene. This change is due to the competition of slow kinetic energy at
low temperatures and enhanced desorption at high temperatures, which directly affects
the sensor conductor changes [13,14]. Researcher [15] also highlights that using embedded
metal nanoparticles or mixed metal oxide active layers can reduce the sensor’s operating
temperature. However, a heater circuit is still needed since most sensors still require a
specific operating temperature (50 to 200 ◦C) to yield optimal gas sensing results. It is
also noted that the usage of MOX also requires high power consumption, and frequently,
different MOX is used to increase sensor selectivity [8,9,11].

Besides the conventional ground mobile robot with gas sensor MOX, biohybrid or
biosensor based on insect odor receptors has also been developed to be used with un-
manned aerial vehicles (UAVs), commonly known as drones. The biohybrid system inte-
grates with synthetic devices developed by researchers [16] to introduce human palm-sized
drones equipped with an insect’s odor-sensing antennae. The drones they set can navigate
autonomously toward the source of the airborne odor source. Combined with the odor
source localization technique, the researcher managed to detect the airborne odor while
avoiding obstacles in its flight path in a confined space. Meanwhile, researchers [17,18] also
developed a fully autonomous drone with a portable electroantennogram (EAG) based
on silk moth antennae mounted on the sensor. The researcher used the bombykol based
on adult male silk moth antennae for odorant stimulation to conduct the odor source
localization. The drone is moved using the spiral movement based on the spiral-surge
algorithm. The EAG signal intensities intensify over time to search the odor source location
by exploring the maximum value of the odor concentration based on the algorithm. The
drone can detect the odor with approximately 1 s response and recovery time, with constant
repeatability of the sensor response. However, the devices consume an average of 680 mW,
and using the 110 mAh battery only allows an operating time of 30 min. The antennae
used also requires changes after one h of usage, and the signal intensity decreases rapidly
over time. Even though the biohybrid sensor can offer a good response, recovery, and
repeatability in odor sensing, the sensor is still limited by its low operating time with its
high-power consumption of 680 mW from the devices alone. This also limits the distance
area the drone can cover, which cannot fully use the high mobility features of the drone.

Another type of chemoresistive sensor available is based on graphene, one of the
prominent sensors that proved able to detect a wide variety of gas with high sensitivity, low
operating temperature, and huge specific surface area for gas absorption [19]. The sensor
can detect the gas by absorption of the gas molecule, triggering charge transfer between
graphene and gas molecule, which results in a change of conductance. The graphene-based
gas sensor does not require the additional heater circuit to increase its working temperature
as opposed to the MOX.

So far, from our knowledge, there are yet to be seen graphene-based gas sensors that
are associated with mobile robots. Hence, this research will investigate the graphene-
based sensor capability to replace the traditionally used metal oxide sensor for gas source
localization on the mobile robot.

2. Research Methodology
2.1. Mobile Robot Setup

The mobile robot used in this research is Bveeta mini type R. It is a two-wheeled
mobile robot driven by educational computer programming language. It is primarily
used for educational or research purposes, with few modifications that can be added or
re-engineered to create a new platform for the robot. The benefits include its small size,
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programmable, and lower price due to its small and compact size without sacrificing any
of its quality and functionality.

2.1.1. Hardware Architecture

Bveeta mobile robot is equipped with three small platform sizes, each containing
different equipment, as shown in Figure 1. The first platform has 2 Direct Current (DC)
12 V 130 rotation per minute (RPM) geared motors with an encoder controlled by Smart
Drive Duo (SDD) and the main power board with Arduino Mega 2560 for analog sensor
reading and analyzing. The sensor main circuit board is placed on the front of the mobile
robot of the first platform that is interfaced with the Arduino. The mobile robot is powered
by a 12 V 2000 mAh battery on the back of the robot. The second platform has Single Board
Computer (SBC), the Raspberry Pi 4, as the main computer controlling the Bveeta. At the
same time, the third platform is equipped with 2D-LIDAR with 360◦ covering a distance of
0.1 m up to 8 m.
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Figure 1. Bveeta Mobile Robot with Gas Sensing PCB.

The mobile robot Bveeta is known as the base station, while the laptop or monitoring
station is known as the workstation for controlling and monitoring the mobile robot. Both
stations are communicated with each other using full-duplex communication through wire-
less connections of a router, as shown in Figure 2. This allows both-ways communication
while simultaneously sending and receiving messages from one another.
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2.1.2. Software Architecture

The Operating System (OS) used for both the raspberry pi on the base station and
the workstation is Ubuntu 18.04, together with Robotic Operating System (ROS) platform.
ROS is an open-source platform that allows users to communicate and control the robot.
The ROS version used in this research is Melodic Morenia, the 12th distribution release of
ROS suitable with Ubuntu 18.04. Figure 3 shows an example of the relation between ROS
Master, ROS node, and the topics. ROS Master will register and allow each node created
for communication to publish or subscribe to its assigned topics [20].
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2.2. Preparation of Reduced Graphene Oxide (RGO)

Reduced Graphene Oxide (RGO) is chosen as the graphene-based gas sensor to be
used with the mobile olfaction applications and compared with the MOX. RGO is synthe-
sized from Graphene Oxide (GO) of 0.4 mg/mL solution referenced from previous work
by [21,22]. The GO solution is prepared with de-ionized (DI) water and sonicated using
water-bath sonicate for 30 min. The sonication is to weaken the van-der walls force between
the molecules in GO to allow uniform aqueous dispersion. Then, GO is reduced in an
aqueous solution, where 100 mg of Ascorbic Acid (AA) is dispersed into the sonicated GO
solution. The mixed solution is then stirred vigorously by a magnetic stirrer on the hot
plate for one h at 65 ◦C in a room-temperature environment. The solution is centrifuged
for 15 min at 9000 rpm and washed with DI water to remove any residual unreacted GO
from the solution. The obtained sample of RGO is then drop-casted onto the Interdigitated
Electrode (IDE) as its sensing material based on the reference by the researcher [23], which
also used IDE as the sensing platform. Even though, Quartz Crystal Microbalance (QCM)
is also viable for depositing RGO sensing material as done by [24]. The QCM sensing
principle relies on the measures of frequency changes based on the mass absorbed by
the electrode. It requires an additional filter to suppress the effect of dust and particles,
especially for moving platforms such as mobile robots [25]. Figure 4 shows the illustration
of the RGO preparation process.
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2.3. Simultaneous Localization and Mapping (SLAM)

SLAM is one of the mapping methods available for mobile robot mapping using the
ROS platform in Ubuntu. The algorithm chosen for this research is Hector SLAM, an
open-source 2D SLAM Technique introduced in [26]. Hector SLAM algorithm is based
on the Gaussian–Newton Minimization Method, an improvement to the newton method,
where the second derivative is not needed to be calculated [27]. This algorithm is used
to find the ideal alignment of a laser scan endpoint with the built map by finding the
transformation ξk = (xk, yk, θk)

T from Equation (1):

ξ∗k = argmin
n

∑
i=1

[1−M(Si(ξk))]
2. (1)

The equation functions M(Si(ξk)), where M is the map value and (Si(ξk)) is the world
coordinates of the laser scan endpoint, and can be described as in Equation (2),

Si(ξk) =

(
cos(θk) −sin(θk)
sin(θk) cos(θk)

)(
si,x
si,y

)
+

(
xk
yk

)
. (2)

Then the next pose, step transformation ∆ξ change, can be estimated using the prior value
of ξk by optimizing laser point errors of Equation (3),

n

∑
i=1

[1−M(Si(ξk + ∆ξk))]
2 → 0. (3)
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Using the first-order Taylor expansion in the above Equation for M(Si(ξk + ∆ξk)) will yield
Equation (4):

n

∑
i=1

[
1−M(Si(ξk))−∇M(Si(ξk))

∂Si(ξk)

∂ξk
∆ξk

]2
→ 0. (4)

Setting the partial derivatives concerning ∆ξk to zero and estimating the minimized value
of the Equation gives Equation (5):

2
n

∑
i=1

[
∇M(Si(ξk))

∂Si(ξk)

∂ξk

]T

[
1−M(Si(ξk))−∇M(Si(ξk))

∂Si(ξk)

∂ξk
∆ξk

]
= 0 (5)

Finally, using the Gauss-Newton equation, solve the minimization of ∆ξk as in Equation (6):

∆ξk = H−1
n

∑
i=1

[
∇M(Si(ξk))

∂Si(ξk)

∂ξk

]T
[1−M(Si(ξk))] (6)

where H is as in Equation (7):

H =

[
∇M(Si(ξk))

∂Si(ξk)

∂ξk

]T[
∇M(Si(ξk))

∂Si(ξk)

∂ξk

]
. (7)

The Hector SLAM does not contain the explicit loop closure system detection, but is still
able to provide an accurate close-loop close to real-world environments. In turn, it allows
low computational requirements and prevents significant changes from happening to the
map building during the runtime [26]. The algorithm also does not rely on odometry data,
making it more suitable for mobile robots with low computational processing power and
still able to generate high map accuracy [28].

2.4. Gas Distribution Mapping (GDM)

GDM is one of the gas source localization techniques used to locate the gas source
in the environment, which introduced many algorithms today for research on mobile
olfaction. One such algorithm used in this research is Kernel DM which was introduced by
the researcher [29]. It is used to create a 2D gas distribution model based on the reading
measured from the gas sensor. This algorithm computes the mean concentration value
in the generated map based on the dataset from the gas sensor reading. It will continue
updating the map as the mobile robot moves forward.

The gas distribution is represented as a grid map with the value of grid cells, k, and
utilizes the univariate Kernel Gaussian function, N from Equation (8), to represent the
importance of measurement, ri, obtained from the location, xi on the grid cells of the
map. Firstly, two momentarily grid maps are generated by calculating Ωk, the cumulative
importance weight, and Rk, the cumulative weighted reading from Equations (9) and (10),
respectively:

N
(∣∣∣xi − xk

∣∣∣,σ) =
1

σ
√

2π
e−(|xi−xk|)2

/(2σ2) (8)

Ωk =
n

∑
i=1

N
(∣∣∣xi − xk

∣∣∣,σ) (9)

Rk =
n

∑
i=1

N
(∣∣∣xi − xk

∣∣∣,σ)ri (10)

From the formula, xk denotes the center of the grid cell k, and σ is the kernel width
determining the spatial gas distribution size in the environment. While

∣∣xi − xk
∣∣ shows
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the distance of location measurement, i with respect to σ and k. When the cumulative
weight, Ωk, gives a high value, it means that many measurements are recorded close to the
center of the cell, k. Meanwhile, a low value means only a few recorded measurements are
close to the center of the grid cell. Next, the confidence map αk from Equation (11) can be
computed by normalizing Ωk to the range [0, 1] with the scaling parameter σΩ,

αk = 1− e−(Ω
k)

2
/σ2

Ω (11)

The confidence map indicates the confidence level for the gas concentration estimation
at each cell, k. This map will be used to calculate the estimated mean concentration rk in
Equation (12),

rk = αk Rk

Ωk +
{

1−αk
}

r0 (12)

From Equation (12), r0 represents the estimation of the mean gas concentration of cells with
insufficient or few readings of gas concentration from neighboring cells which a low αk

value can indicate. In the research, we set the value of r0 to be the average of all our sensor
readings, in other words, the resistance value.

2.5. SLAM-GDM

In this research, we integrate SLAM and GDM to create a merged map that shows the
mean gas distribution in the map with obstacles features. The map from SLAM gives us the
map with obstacles features, which helps to ensure the calculated mean gas distribution
does not exceed the lab’s outer wall. In turn, it will not only be able to realistically portray
the gas flow that can be blocked by obstacles but also helps improve the accuracy of the
gas source localization. The Kernel DM calculations rely on the localization information
provided by Hector SLAM. From each time step, cumulative importance weight, Ωk

(Equation (9)) and cumulative weighted reading, Rk (Equation (10)), the calculation depends
on the gas sensor measurements, ri, and location of the measurement, xi of each time step
for the Kernel DM map [30]. When running SLAM-GDM, two independent maps are
generated: the SLAM map, mk, and GDM mean concentration map, rk. SLAM-generated
map, which is the occupancy grid map, consists of three different pixels colors, namely,
black (obstacles), white (free or empty space), and grey (no knowledge or data). Each
of them indicates occupied, unoccupied, and unexplored areas, respectively. Each of the
generated pixel colors is shown in the map, mk in terms of value as the condition in
Equation (13),

mk =


−1 unexplored,
0 unoccupied,
100 occupied.

(13)

Meanwhile, the Kernel DM-generated gas distribution map indicates the mean con-
centration of gas by the different intensities of color, as shown in Figure 5. In this case,
the color combination of yellow or red, or in the Python programming language YlOrRd,
is used to indicate the difference in the concentration level in the map. The darker color,
which in this case is dark red, represents a high concentration level, while the lighter color,
orange, indicates lower gas concentration in the map.

The map of SLAM and GDM mean concentration is merged such that the unoccupied
(free space) pixels in the SLAM map from Equation (13) are replaced by mean gas concen-

tration estimates from Kernel DM. The merged map,
~
r

k
Equation (14), also required that

SLAM and GDM maps be of the same orientation, resolution, and map size to ensure they
fit well for the merging.

~
r

k
=

{
rk if mk=0,

mk otherwise.
(14)
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3. Results and Discussion
3.1. Experimental Setup

The experiment is conducted in an indoor lab under a controlled wind flow environ-
ment with a single gas source, ethanol of 95% solution is placed in a closed container near a
corner of the lab. Figure 6 shows the location of the experiment with the initial and final
position of the mobile robot with the planned route movement and the location of the gas
source.
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Figure 6. Experimental setup of indoor Lab location.

The experiment is separated into two parts with different duration of 7 min and 12 min
of the same gas spread after opening the gas source container. The mobile robot will move
along the planned path without stopping at a speed of 0.1 m/s. The mobile robot speed
is chosen based on the experience from our previous work [31], and the mobile robot
speed can affect the map accuracy from SLAM. The non-stop movement simulates real-life
conditions where the user does not know the location of the gas source. Once the first
part is done, the mobile robot will restart and run again using the same path after the
12th min of gas spread. Then, the experiment is repeated for five trials to deduce the results’
consistency under the same environmental conditions.

3.2. Experimental Results
3.2.1. Sensor Lab Testing

Before the sensor is used with the mobile robot, the sensor is first tested in the lab. The
RGO and MOX gas sensor is tested against 100 ppm and 300 ppm ethanol, as shown in
Figure 7. The sensor response (%) is calculated based on Equation (15). R is the resistance



Electronics 2023, 12, 171 10 of 17

reading of the gas sensor, where Rg is the resistance measured when the sensor is exposed
to the target gas, and Ra is the baseline resistance of the sensor exposed to air.

Sensor Response (%) =
Rg − Ra

Ra
× 100% (15)
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Results show that the RGO sensor responds towards 100 ppm and 300 ppm ethanol in
6.6–7.1% and 11.3–11.9%, respectively. It shows that the differences are minimal at 0.5%
and 0.6% for 100 and 300 ppm in terms of repeatability performance. Meanwhile, MOX
shows a range of 41–45% for 100 ppm and 58–64% for 300 ppm. MOX also shows good
repeatability with differences of 4% and 6% for 100 and 300 ppm ethanol, respectively.

The response time is measured from baseline until 90% of the peak reading. Mean-
while, recovery time is calculated from peak to 10% of baseline reading, as shown in Figure 8
for both RGO and MOX. Figure 8a RGO and Figure 8b MOX shows the gas sensor response
and recovery time of the first trial to 100 ppm ethanol. The response and recovery time for
RGO is 19 s and 40 s, while for MOX is 57 s and 64 s, respectively. The measurement is then
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taken for the rest of the four trials, as shown in Table 1. The results show that RGO sensors
read an average of 23.5 s and 20 s response time, while MOX sensor reads an average of
54 s and 44 s towards 100 and 300 ppm ethanol, respectively. At the same time, the recovery
time average for RGO is 44 s and 29.5 s, and MOX with 65.75 s and 75.25 s. Response
and recovery time for both sensors shows that RGO gives 56% and 54% faster response
time and 33% and 57% better recovery time than MOX towards 100 and 300 ppm ethanol,
respectively.
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Table 1. Response and recovery time of MOX and RGO to 100 ppm and 300 ppm ethanol.

Sensor Trial
100 ppm 300 ppm

Response
Time (s)

Recovery
Time (s)

Response
Time (s)

Recovery
Time (s)

RGO

1 19 40 28 28
2 25 43 17 29
3 18 50 17 36
4 32 43 18 25

MOX

1 57 64 37 85
2 63 61 50 72
3 51 79 49 74
4 45 59 40 70

The RGO and MOX sensor’s long-term stability in its response to ethanol is also
measured for 20 days, as shown in Figure 9. The stability test for RGO is conducted on a
QCM sensing platform, where the same RGO solution was also synthesized on the IDE that
was used by the mobile robot. The stability test is conducted for 20 days with references
from the previous researcher [12]. The results show that the RGO response consistently
changes from day 1 to day 10. However, the sensor shows a slight decrease of 0.12% in
response from day 10 to day 20. MOX also offers a similar response as RGO until day
5, where MOX shows a slight increase of 3.4% on day 10 before decreasing back by 4.2%
sensor response on day 20 with differences of 0.8% from day 5. This shows that both gas
sensors exhibit similar response pattern changes. The result indicates that both sensors
still have good stability overall for 20 days and are less affected by chemical change when
exposed to the atmosphere.
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3.2.2. SLAM-GDM Test Results

The experiment is carried out based on the experimental setup in Figure 6. The SLAM-
GDM experiment result is obtained as a merged map, as shown in Table 2. The integrated
map shows the typical mean gas spread, which is indicated by the color brightness of
yellow and red, with dark red indicating the highest mean gas concentration and light
yellow the lowest mean gas concentration.
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Table 2. Mean gas concentration SLAM-GDM Map with actual and predicted gas source location.

Duration of Gas
Spread (min)

Gas Sensor Legends

MOX RGO

7
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From the results, both MOX and RGO detect gas distribution on the right side of the
map or area located nearby the gas source. It shows that a small amount of wind flow still
exists in the indoor environment, causing the air to flow toward the right side of the map.

Based on the built gas distributed map, the gas source is predicted using the global
maxima to get the highest concentration mean gas reading from the neighboring grid cell.
Table 3 shows the error of distance measured from the predicted to the actual gas source
for the five repetition trials.

Table 3. The measured distance (error) of the predicted from the actual gas source location.

Trial
Distance Error (cm)

1 2 3 4 5 Average

Duration of gas spread (min) 7 12 7 12 7 12 7 12 7 12 7 12
MOX 31.9 30.5 5.4 31.8 28.3 27.3 26.9 30.2 5.1 31.6 19.52 30.28
RGO 6.3 33.2 27.7 28.5 35.4 26.2 28.0 33.2 28.8 31.9 25.24 30.60

Both MOX and RGO were able to give consistently predicted gas source localization.
The measured distance for MOX is closer than RGO to the actual gas source location by
differences of 5.72 cm (22.7%) for the 7th min trial and 0.32 cm (1.0%) for the 12th min
trial. However, two of the MOX trial also gave very close predicted locations by 5.4 cm
and 5.1 cm from trial 2 (7th min) and trial 5 (7th min). Meanwhile, for RGO, only in trial
1 (7th min) was it able to get closest to the actual source by 6.3 cm. These differences
show that MOX is better in terms of predicting the precise gas source location. However,
MOX also shows vast differences in localization of gas source from 7th min to 12th min
by 35.5% increase in distance measured. At the same time, RGO shows a minor difference
of a 17.5% increment. The difference in increment is due to the RGO sensor being able
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to detect earlier the low concentrations of ethanol further from the gas source during the
7th min run. Meanwhile, the MOX sensor did not detect the low concentrations of ethanol
in the early run and only started to detect once the concentration increased from a more
prolonged duration of gas spread in the 12th min run.

From the built map in Table 2, gas distribution around the gas source can be separated
from the merged map by image processing technique. The separated gas distribution image
is then changed to grayscale and, finally, a binary picture (0 and 1). The value 0 (black) is
the background image, and 1 (white) is the gas distribution area detected by the gas sensor.
This is to investigate the size of the gas distribution area detected by both sensors, as shown
in Table 4. This shows the differences in the gas spread from the 7th to 12th min and which
sensor is more sensitive to the gas ethanol.

Table 4. Binary image of mean gas distribution.

Duration of Gas Source
Spread (min)

Gas Sensor

MOX RGO

7
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Based on the visual alone, RGO shows a larger size of gas concentration of the mean gas
sensing area compared to MOX. The total pixel number from the binary figure is calculated
to represent which sensor has better sensitivity from the gas sensing area, as shown in
Table 5. The RGO sensor offers a range of 0.35–8.33% difference in the concentrated gas
sensing area, except for trial 3, 7th min, where the MOX sensor sensing area is larger by
1.8%. The results show that RGO detects more significant gas-sensing regions of the gas
distribution from the map. This indicates that RGO is more sensitive toward the gas than
MOX in the experiment.

Table 5. Summation of pixel binary number 1 (white area).

Trial Duration of Gas
Source Spread (min) MOX RGO Differences (%)

1
7 24,321 26,530 8.33
12 25,326 25,477 0.59

2
7 24,621 24,708 0.35
12 24,628 26,467 6.95

3
7 25,377 24,919 1.80
12 25,139 25,736 2.32

4
7 24,716 26,124 5.39
12 24,442 25,323 3.48

5
7 24,410 24,695 1.15
12 24,623 25,045 1.68
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Meanwhile, power consumption for both RGO and MOX is also measured and calcu-
lated from the sensor’s voltage output and resistance reading. MOX gas sensor, including
the heater circuit, shows an average power consumption of 674.565 mW, while RGO shows
an average of 294.605 mW. The differences show that the average power consumption of the
RGO sensor is 56.33% lesser than the MOX sensor. MOX shows higher power consumption
due to the requirement of a heater circuit, which typically consumes 210 mW to heat the
sensor to its operating temperature. Meanwhile, the RGO sensor in this research works
at room temperature with no heating element requirement. However, it can still deliver a
good response for the gas source localization process.

The results show that the sensing capabilities of RGO are comparable to the tradition-
ally used MOX gas sensor. Both sensors ran simultaneously on the mobile robot in the
same environmental conditions in all five trials.

Based on the result discussed, RGO sensors successfully detected gas sources while
running with the mobile robot.

4. Conclusions

Graphene-based gas sensor, more specifically RGO, is proposed to be used with the
mobile robot and compared its performance with MOX. The sensor is tested in an indoor
controlled environment by running simultaneously with the mobile robot to locate the
gas source, ethanol of 95% solution. In this research, we indicated the limitations faced by
MOX, the long recovery time, high power consumption, and high operating temperature
for mobile olfaction.

The RGO and MOX gas sensor is tested in the lab first against 100 and 300 ppm ethanol.
The testing is repeated four times, and the sensor can give good repetition with minimal
response (%) differences of 0.5% and 0.6% for 100 and 300 ppm. At the same time, MOX gas
sensor reading shows 41–45% for 100 ppm and 58–64% for 300 ppm differences of 4% and
6% for 100 and 300 ppm ethanol, respectively. Response and recovery time for both sensors
shows that RGO is 56% and 54% faster response time and 33% and 57% lower recovery
time than MOX. RGO and MOX gas sensors are also tested for their stability. Both sensors
show similar constant pattern changes in response and can maintain stability until day 20.

Five trials were conducted, and both RGO and MOX successfully detected the gas
spread and predicted the location of the gas source. Results show that even though MOX
gives a lower measured distance of predicted gas source location to the actual, RGO can
detect more gas spread of ethanol in the environment, indicating it is more sensitive than
MOX. Meanwhile, at the same time, the power consumption of RGO is 294.605 mW which
is 56.33% lower than MOX which consumes 674.565 mW.
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