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Abstract: The continuous scaling of electronic components has led to the development of high-
performance microprocessors that are suitable even for safety-critical applications where radiation-
induced errors such as Single Event Effects (SEEs) can have a significant impact on the performance
and reliability of the system. This work is dedicated to investigating the reliability of systems
based on programmable hardware and Real-time operating Systems (RTOS) in the presence of
architectural faults induced by soft errors in the configuration memory of the programmable hardware.
We performed a proton radiation test campaigned at PSI radiation facility to identify the fault
model affecting the configuration memory of Xilinx Zynq-7020 reconfigurable AP-Soc Device. The
identified fault model in terms of SEU and MBU clusters has been used to evaluate the impact of
proton-induced faults on applications running within FreeRTOS on a Microblaze soft processor.
A Single Event Multiple Upset fault model resulting from a proton test is presented, focusing on
characteristics such as shape, size, and frequency of observed cluster of errors. We conduct two fault
injection campaigns and analyze the results to assess the effect of cluster size on system reliability.
Moreover, we discuss software exceptions caused by faults that can affect the hardware structure of the
soft processor.

Keywords: MBU; proton radiation test; Real-Time Operating System; SEU; soft processor

1. Introduction

Field-Programmable Gate Arrays (FPGAs) are becoming increasingly important for
space and avionic applications due to their high flexibility and performance. Satellite
lifetimes have increased far beyond 10 years, making hardware reconfigurability in-flight
a demanded requirement [1]. The increasing complexity in applications and tasks has
pushed Soft-core processors to be one of the cores commonly implemented using the
programmable logic of the FPGAs. A soft-core processor as an IP-Core provides an easy
way to combine the flexibility granted by the software with the performance of dedicated
hardware accelerations [2].

Among the available solutions, Microblaze is an industry leader in FPGA-based soft
processing solutions. The highly flexible architecture and configuration options make it very
suitable for embedded applications due to the few resources required to be implemented
on programmable hardware.

The increasing task complexity required for embedded systems has also led to the de-
crease of bare-metal applications and the adoption of Real-Time Operating Systems (RTOSs),
which provide an efficient solution for meeting stringent real-time requirements [3].

The Free Real Time Operating System (FreeRTOS) has been established as an excellent
choice when there are multiple tasks to be executed in an organized and predictable fashion.
It has deterministic and predictable task scheduling, which allows the more critical tasks to

Electronics 2023, 12, 169. https://doi.org/10.3390/electronics12010169 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010169
https://doi.org/10.3390/electronics12010169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9169-6140
https://orcid.org/0000-0003-4212-3052
https://orcid.org/0000-0002-2976-101X
https://doi.org/10.3390/electronics12010169
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010169?type=check_update&version=1


Electronics 2023, 12, 169 2 of 12

meet hard real-time executions. Scheduling tasks can be instrumented by priority and time
slicing and it is designed to run on small microprocessors that need to perform multiple
tasks deterministically [4].

However, when using a soft microprocessor in mission-critical applications, the re-
liability issues deriving from the exposure of the devices to ionizing radiation, such as
Single Event Upsets (SEUs), should be considered [5–7]. Differently from hardwired mi-
croprocessors, the netlist of soft microprocessors such as Microblaze is implemented in
the programmable hardware using the configuration memory (CRAM) of the FPGA. This
memory can be corrupted by SEU, leading to micro-architectural faults in the hardware that
can propagate to the application layer and, in the case of the usage of a microprocessor sup-
porting an operating system, can lead to catastrophic results, especially in mission-critical
applications [8].

The main contribution of this work is dedicated to performing a detailed evaluation of
the impact of radiation-induced architectural faults affecting the application benchmarks
running on the FreeRTOS of the Microblaze embedded soft processor. The analysis has been
performed through a fault injection campaign while an accurate fault model consisting
of different cluster patterns of Multiple Bit Upset (MBU) has been identified through
proton radiation performed at Paul Scherrer Institute (PSI) radiation facility. We evaluated
the effect of faults during the execution of different software applications on FreeRTOS
supported by Microblaze implemented on Zynq-7020 FPGA while we performed a deep
investigation on the outcome of the software application.

Please notice that the developed platform is not targeting the software-level fault
injections, but is instead targeting the hardware faults and their impact on the execution
of the software running in the operating system. In detail, the platform emulates SEUs
and MBUs by injecting bitflips in the configuration memory of the FPGA, creating a
hardware architectural fault that might propagate to the output of the system and create a
wrong functionality.

The current work is organized as follows. Section 2 is dedicated to elaborating on
radiation-induced effects in reconfigurable hardware. Section 3 is dedicated to related
works. Section 4 describes the methodology and the fault models deriving from the ra-
diation test experiment. Section 5 illustrates the proposed radiation analysis workflow.
Section 6 reports the results of the experimental analysis. Finally, Section 7 draws conclu-
sions and proposes further steps.

2. Background on Radiation Effects in Reconfigurable Hardware

Radiation can significantly impact the reliability of electronic systems [9]. This is a
major issue in space and avionics applications, which can be exposed to high fluxes of high
energy particles, and it is also one of the main concerns for the reliability of safety-critical
systems working at sea level, where cascades of secondary particles due to solar activity
interacting with the upper atmosphere can be the source of radiation-induced disturbance
in the devices [10].

A single event upset (SEU) occurs when a particle, traversing an electronic device,
interacts with a sensitive node and causes data corruption that may lead to different
outcomes; for example, it can cause the termination of the application, create wrong
outcomes (silent data corruption), system reset, and other malfunctions. The error is a
transient effect since the functionality of the affected memory cell is usually not disrupted,
but only its content has been corrupted. As a result, the value of the memory cell can be
overwritten later by normal system execution, usually leading only to a temporary error.

The increasing technology scaling and the higher working frequency as well as the
reduction of operating voltages have exacerbated this phenomenon, especially in CMOS
technology [11]. In particular, Single Event Multiple Upsets (SEMUs) refer to when as a
result of a single event, more than one memory element is corrupted. It can be the result of
a particle interacting with multiple memory cells, which are usually physically close.
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These events are a potential issue in reconfigurable hardware such as FPGA. Indeed,
reconfigurable hardware is designed to be reprogrammed by writing binary content in its
configuration memory. SEUs and SEMUs can cause errors in the configuration memory
content that results in errors in the hardware architecture implemented in the device. This
phenomenon is schematized in Figure 1 at different levels of abstraction. In addition,
configuration memory is usually overwritten only during device programming or reconfig-
uration. This implies that a microarchitectural error due to failure in configuration memory
may affect the system for a long time and cause more critical faults by directly affecting the
hardware configuration of the device [12].
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3. Related Works

Several works elaborate on the software-level techniques for evaluating the sensitivity
to Single Event Upsets (SEUs) of the embedded operating system. Commonly, these
approaches are based on modifying the original kernel of the embedded operating system
or altering either the memory that the OS uses or the parameters of system calls.

In Ref [13], the vulnerability of FreeRTOS has been evaluated through a software-based
fault injection method that targets the most relevant variables and data structures of the
OS. An automatic method for fault injection into program and data memory is presented
in [14]. The authors of [15] proposed a detailed analysis and hardening architecture based
on lockstep synchronization supporting FreeRTOS. The heavy ion irradiation test presented
in [16] targets the SRAM and the special purpose registers of an ARM microcontroller to
evaluate the impact of the radiation-induced SEU.

However, software application-level methods do not take into account the impact of
faults occurring at the architectural level of the soft-core processor on the functionality of
the operating system.

On other hand, works such as [17,18] focused on the reliability evaluation of soft
cores, in particular RISC-V cores, implemented in programmable hardware against radi-
ation effects. However, these analyses do not consider real-time operating systems such
as FreeRTOS.

Other approaches are based on the simulation of the HDL description of microproces-
sors [19]. The advantage of these methods is the feasibility of injecting upsets into any CPU
register and structure at any time; however, these methods are time consuming.

As far as the Single Event Multiple Upset is concerned, there is little literature available
because most of the work, especially works focusing on reconfigurable hardware reliability,
are dedicated to Single Event Upset evaluation that for less recent technologies largely
contributes to the majority of errors. However, due to technology scaling and lower
operating voltages, SEMUs are attracting more interest, partly because of their threat to
redundant systems [20,21].
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4. Proton Radiation Test-Based Fault Model

In order to perform the reliability analysis by fault injection campaigns with an
accurate fault model, we have performed a proton radiation test at the Paul Scherrer
Institute (PSI) Proton Facility in Switzerland.

4.1. Radiation Test Setup

A Zynq-7020 device has been irradiated with proton beams with energies between
29 and 200 MeV. The board under the test has been mounted on an adjustable frame in
the irradiation room to point the beam to Zynq SoC embedded in the board, as shown in
Figure 2. The serial and power cables reached out to the control room in order to enable
reconfiguration, data acquisition, and power cycle of the board.
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Figure 2. The Board under test is mounted on an adjustable frame facing the proton beam in the
irradiation room.

A host computer was placed in the control room. It was connected through a serial
connection to the system under test for acquiring the configuration memory content by
readback. The monitoring system was autonomously capable of sending a soft reset signal
to the device in the irradiation room if the readback system stopped working. In the case
that a software reset could not solve the issue, a power switch was available in the control
room to perform a manual power cycle if needed.

The experiment was carried on for 8 h in December 2022 at the PSI proton facility.
During the experiment, the configuration memory of the device has been continuously
monitored through a periodic reading of the content every 5 s. The flux of the particles has
been tuned to keep a few bitflips in configuration memory in each snapshot. Table 1 shows
the value of energies and fluxes used during the radiation test experiment.

Table 1. Radiation Test Conditions: Energy, Flux, and Fluence.

Energy [MeV] Flux [cm−2s−1] Fluence [cm−2]

29.31 4.124 × 107 9.173 × 1010

50.80 4.024 × 107 6.064 × 1010

69.71 4.110 × 107 2.124 × 1010

101.34 4.319 × 107 2.415 × 1010

151.18 4.094 × 107 1.226 × 1010

200 4.144 × 107 3.942 × 1010
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4.2. Single Event Multiple Upset Fault Model

The snapshots of the configuration memory content have then been analyzed to detect
the occurrence of Multiple Bit Upsets (MBUs) between two consecutive readbacks.

The few bitflips and the large size of the configuration memory (more than 108 bits)
allowed us to detect groups of SEUs with a strong correlation both in time and space. Due
to the huge dimension of configuration memory and the possibility to observe a close
snapshot of the configuration memory data, it has been possible to evaluate a cluster of
bits with a high probability to have occurred as a result of a Single Event Multiple Upsets
(SEMUs). The most recurring cluster shapes are depicted in Figure 3 for the different
cluster sizes. Two bitflips are defined as close when their Euclidean distance in frame-bit
coordinated in the configuration memory is less than

√
2 [22].

Electronics 2023, 12, x FOR PEER REVIEW 5 of 12 
 

 

151.18 4.094 × 107 1.226 × 1010 

200 4.144 × 107 3.942 × 1010 

4.2. Single Event Multiple Upset Fault Model 

The snapshots of the configuration memory content have then been analyzed to de-

tect the occurrence of Multiple Bit Upsets (MBUs) between two consecutive readbacks. 

The few bitflips and the large size of the configuration memory (more than 108 bits) 

allowed us to detect groups of SEUs with a strong correlation both in time and space. Due 

to the huge dimension of configuration memory and the possibility to observe a close 

snapshot of the configuration memory data, it has been possible to evaluate a cluster of 

bits with a high probability to have occurred as a result of a Single Event Multiple Upsets 

(SEMUs). The most recurring cluster shapes are depicted in Figure 3 for the different clus-

ter sizes. Two bitflips are defined as close when their Euclidean distance in frame-bit co-

ordinated in the configuration memory is less than √2 [22]. 

As was expected, not all the MBUs have been observed with the same frequency. 

Figure 4 shows the cross-section per particle of each cluster size observed during the 

whole radiation test. The cross-section is calculated as the number of clusters of a certain 

size divided by the number of particles passed through the device across all runs for the 

performed proton test. It can be seen that the contribution of SEMUs is not negligible com-

pared to SEUs. Indeed, more than 40% of the detected events have been SEMUs, which 

might create a huge impact on the total sensitivity of the system toward radiation-induced 

errors. 

The proposed cluster of faults has been used as the fault model in the fault injection 

campaign. In order to obtain an analysis as close as possible to reality, the occurrence rate 

of the different clusters during the fault emulation has been weighted on the cross-section 

reported in Figure 4. Due to the high occurrence rate of SEMUs, evaluating only an SEU 

fault model will result in a loose approximation of the observed events. 

Figure 3. Detected cluster sizes and shapes during the Zynq-7020 proton test. 

Cluster size 2

Cluster size 3
Cluster size 4

Cluster size 5

Cluster size 6 Cluster size 7

Cluster size 8

Figure 3. Detected cluster sizes and shapes during the Zynq-7020 proton test.

As was expected, not all the MBUs have been observed with the same frequency.
Figure 4 shows the cross-section per particle of each cluster size observed during the
whole radiation test. The cross-section is calculated as the number of clusters of a cer-
tain size divided by the number of particles passed through the device across all runs
for the performed proton test. It can be seen that the contribution of SEMUs is not neg-
ligible compared to SEUs. Indeed, more than 40% of the detected events have been
SEMUs, which might create a huge impact on the total sensitivity of the system toward
radiation-induced errors.

The proposed cluster of faults has been used as the fault model in the fault injection
campaign. In order to obtain an analysis as close as possible to reality, the occurrence rate
of the different clusters during the fault emulation has been weighted on the cross-section
reported in Figure 4. Due to the high occurrence rate of SEMUs, evaluating only an SEU
fault model will result in a loose approximation of the observed events.
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5. Radiation Analysis Workflow

The fault model collected through the proton test has been used to perform an accurate
radiation analysis on the impact of radiation-induced faults on the Microblaze-embedded
soft processor porting FreeRTOS through fault injection campaigns.

5.1. The Implemented Hardware/Software Platform

The current section elaborates on the implemented hardware platform, Microblaze
soft-core, supporting the FreeRTOS and software benchmark applications.

5.1.1. Hardware Platform

The Microblaze embedded soft processor is a Reduced Instruction Set Computer (RISC)
optimized for FPGA deployment. It is highly configurable, allowing for the selection of a
specific set of features required by the design. Therefore, it has been chosen as the platform
for supporting FreeRTOS. FreeRTOS, as a deterministic Real-time operating system, allows
concurrency among several tasks with different priority levels, supporting a preemption
mechanism to switch between tasks’ execution [23].

Another important feature that characterizes the Microblaze porting of FreeRTOS
is the possibility to instantiate exception handlers to cope with the standard exception
conditions defined by Microblaze soft-core [24].

A Xilinx 28 nm CMOS Zynq-7020 FPGA is chosen as a target hardware device.
Figure 5 represents the implemented hardware while Table 2 reports the device utiliza-

tion when implementing a Microblaze porting FreeRTOS. As it is can be observed from the
table, the implemented design used few resources from the FPGA. Therefore, fault injection
campaigns are performed selectively to target only a subset of the whole configuration
memory of the FPGA where the circuit is implemented.
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Table 2. Resource Utilization of the Hardware Platform.

Resources Used [#] Available [#] Usage [%]

LUTs 2596 53,200 4.88
Logic Slices 966 13,300 7.26
Flip-Flops 2668 106,400 2.51

BRAM 32 140 22.86

5.1.2. Software Platform

As a software application suite, a set of software benchmarks have been chosen to
run through FreeRTOS while exploiting its main functionalities. To exploit the capability
of FreeRTOS to schedule the execution of different tasks, for each software application,
three different tasks (software benchmarks) with the same priority have been instantiated.
To elaborate, the three tasks are executing the same application software—thus the same
program code—and performing the same calculation, but on different input data, and
creating different outcomes. Therefore, three tasks running on FreeRTOS share the same
binary code in the instruction memory; however, they are operating on different input data
while sharing the processor execution time. The three selected software benchmarks are:

• matmul: matrix multiplication between large matrices of integers.
• matconv: matrix convolution between large matrices of integers.
• dijkstra: computation of shortest path between nodes in a large graph using the

Dijkstra algorithm.

5.2. Fault Injection Analysis

Reliability analysis of the applications under test against radiation-induced hardware
architectural faults in soft microprocessors has been performed through a fault injection
campaign. The PyXEL platform has been used as a supporting fault injection frame-
work [25]. PyXEL is a python-based platform easing the execution of FPGA fault injection
campaigns. The platform has been instrumented to inject MBU patterns identified during
the proton radiation test into the configuration memory of the FPGA.

The device under test is connected to the host computer running the PyXEL experiment
manager through a serial connection, allowing it to run the experiments on the platform
and collect results. A timeout mechanism is used to handle the halt or endless loops of the
processor due to the injected faults.
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The fault injection platform emulates the effects of MBU by changing the configuration
memory content. The faulty configuration data are then loaded into the configuration
memory via the JTAG interface. The benchmark software uses the serial connection to send
the results of the computation. The experiment manager logs the output of each run along
with the injected fault model and injected location. Silent Data Corruption is detected by
comparison with the expected results, while a Halt is detected via timeout. The rise of
exception is notified by the software benchmark to the experiment manager through the
serial connection as well. A single experiment on a single board, starting with the fault
model and fault location generation and ending with outcome collection and categorization,
requires about 7 s. As a reference, a 10,000-fault injection campaign requires about 20 h.
However, we sped up the experiments by using more fault injection platforms in parallel.

Two fault injection campaigns have been performed. The former has been carried out
based on the distribution of SEUs and MBUs represented in Figure 4. In the latter, each
detected cluster has been extensively tested in order to estimate the impact of the different
MBU clusters on the application failures.

As we have mentioned previously, during the fault injection campaigns, only part
of the whole configuration memory implementing the circuit under test is targeted by
the fault injection task in order to reduce the injection space to the resources used by the
implemented netlist.

6. Experimental Analysis and Results

This reliability analysis has been carried out by two fault injection campaigns based
on fault models collected through a proton radiation test campaign targeting the Zynq-7020
device. Results have been collected, categorized, and discussed.

6.1. Error Classification

As a result of fault injections, different misbehaviors have been observed. Errors are
detected by comparison of the outcomes of the fault injection experiments with the outcome
of the golden (i.e., without faults) run.

The collected results have been classified into four categories: correct, silent data
corruption (SDC), halt, and raising exceptions. They are defined as follows:

• Correct: The FreeRTOS succeeded in executing the application and produced an
output that matches the golden one.

• Silent Data Corruption: the task execution on FreeRTOS terminates but the produced
output data does not match the golden one.

• Halt: The FreeRTOS does not complete the task. It can be due to different causes, such
as infinite loops and application timeout.

• Raising Exceptions: an exception is generated in the FreeRTOS (i.e., at the software
level) as a result of a fault affecting Microblaze architecture (i.e., netlist modification
due to configuration memory corruption).

Moreover, we have performed a detailed investigation on the cause of each raised
exception and classified them as follows:

• FSL_EXCEPTION: data bus error exception.
• UNALIGNED_ACCESS: attempt to perform unsupported unaligned access to memory.
• ILLEGAL_OPCODE: attempt to execute an illegal opcode.
• AXI_D_EXCEPTION: data system bus timeout.

Finally, we have reported the benchmark application error rate which is defined as the
percentage of results that deviate from the nominal behavior.

6.2. Experimental Results

We have performed two fault injection campaigns.
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The first one is dedicated to evaluating the reliability of the system against the fault
models reported in Section 4 observed during radiation testing. It takes into account the
clusters’ shape, size, and distribution reported in Figures 3 and 4, respectively.

The second one is dedicated to evaluating the criticality and comparison of each type
of cluster size to the system’s reliability.

6.2.1. First Experimental Campaign

In the first campaign, we performed a total of 10,000 fault injections considering the
cluster distribution represented in Figure 4. The observed error rate with respect to the
cluster distribution is reported in Figure 6. Data show that the three applications have been
impacted differently by the fault injections. In particular, the matconv has registered the
highest number of total errors (including all four categories) with 2179 corruptions over
10,000 injections while matmul and dijkstra collected 1028 and 1026 errors, respectively.
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Figure 6. Distribution of errors for each application over cluster sizes.

For each application, the vast majority of the errors are due to the cluster injection
of sizes 1 and 2. Indeed, it is easy to observe that the distribution of errors by roughly
following the distribution of the clusters. Table 3 reports the classification of the observed
errors for each application.

Table 3. Error Rate Classification (# is the number of occurrences).

Application SDC [#] Halt [#] Exception [#] Total Errors [#]

matmul 227 (19.95%) 882 (77.50%) 29 (2.54%) 1138 (100%)
matconv 1016 (46.63%) 1139 (52.27%) 24 (1.10%) 2179 (100%)
dijkstra 119 (11.58%) 891 (86.67%) 18 (1.75%) 1028 (100%)

It can be noticed that the highest value always belongs to the Halt label, most likely
due to the corruption of communication modules within the design.
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6.2.2. Second Experimental Campaign

The second campaign is performed considering 5000 fault injections for each cluster
size. The results are represented in Figure 7. As can be seen, the cluster size has a marginal
effect on the error rate. It may be related to the fact that bits associated with a specific hard-
ware resource are closely located in the configuration memory. If that part of configuration
memory is selected as a fault location, the size of the injected cluster will only marginally
increase the corruption of the used logic resource.
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Figure 7. Distribution of errors for each application over cluster sizes.

6.2.3. Software Exceptions induced by Hardware Architectural Faults

A classification of the observed exceptions in the two fault injection campaigns has
been performed. The chart in Figure 8 shows the relative frequencies of each exception type.
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Observed exceptions are all related to reading from the system memory, except in the
case of ILLEGAL_OPCODE, which is the less occurring exception.

Although a negligible value with respect to the other errors, the exceptions are a
mechanism that can be used to improve the reliability of soft processors and detect the
occurrence of a hardware fault.

7. Conclusions and Future Works

In this paper, the impact of radiation-induced architectural faults that have been
identified through a proton radiation test have been evaluated, which affected different
applications executing on a Microblaze embedded soft-processor implemented on a Zynq-
7020 device running FreeRTOS.

The Single Event Multiple Upset fault model resulting from a proton experiment
using a range of 200 MeV energies has been presented in detail, with consideration of
characteristics such as shape, size, and frequency.

We have performed different fault injection campaigns that consider the identified
pattern of MBU fault models, and have investigated the contribution of the proposed fault
models to the error rate. Errors have been categorized by typology and observed software
exceptions have been categorized further.

In the future, we plan to consider both software and hardware approaches for miti-
gating radiation-induced errors on applications running within FreeRTOS. For example,
we plan to evaluate the impact of selective software redundancy and exploit multiple task
features of the FreeRTOS to implement a fault-tolerant system.
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