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Abstract: This paper studies a kind of gyro structure of N = 3 Wineglass Mode Metal Cylindrical
Resonator Gyroscope (WMMCRG). Compared with traditional Cylindrical Vibrating Gyroscope (CVG),
the designed structure has higher scale factor and lower frequency split. This paper provides a more
specific processing method and the parameters of resonator materials. A closed-loop controlling system
with low error and low noise is designed for WMMCRG. The system is composed of three independent
closed-loop systems: drive closed-loop, sensing closed-loop, and quadrature error correction closed-loop.
Through the test of the high-precision turntable, under the premise of the same material and processing
technology, the bias instability, bias stability, zero bias, Angular Random Walk (ARW), and frequency
split of WMMCRG is 1.974◦/h, 10.869◦/h, 10.3323◦/s, 16 (◦)/

√
h, 0.02 Hz, respectively.

Keywords: cylindrical resonator gyroscope; control method; wineglass mode

1. Introduction

According to their working principles, gyroscopes can be divided into three categories:
mechanical rotor gyroscopes, optical gyroscopes, and vibrating gyroscopes. The Coriolis
vibrating gyroscope is one of the fastest growing and most commonly used gyroscopes
in inertial navigation systems, in which the hemispherical resonator gyroscope (HRG) is
more mature and has been well applied. Quality factors and frequency matching play an
important role in the performance improvement of resonators, which determines the noise
level and sensitivity of Coriolis vibrating gyroscope. The Q factor and bias stability of the
HRG represented by the Northrop Grumman Company of the United States has reached
25 million and 0.0001/h, and can work continuously for 16 million hours without failure.
Despite its remarkable advantages, HRGs have a number of problems, including extremely
high cost and a complex manufacturing process.

In [1], an optimal quadrature error correction scheme is proposed for the dual-mass
MEMS gyroscope. In light of utilizing the Coupling Stiffness Correction (CSC) technique,
the Angle Random Walk (ARW) can be increased from 0.66◦/

√
h to 0.21◦/

√
h. In [2], a

strategy, named the sensing mode force rebalancing combs stimulation method (FRCSM),
is presented to simulate the Coriolis force. This method expands the gyro bandwidth from
13 Hz to 102 Hz. In [3], three methods, including radial basis function neural network (RBF
NN), RBF NN based on genetic algorithm (GA), and RBF NN based on GA with Kalman
filter (KF), are proposed to increase three-axis MEMS vibration gyro performance efficiency.
The bias instability of Gyros X, Y, and Z improve from 139◦/h, 154◦/h, and 178◦/h to
2.9◦/h, 3.9◦/h, and 1.6◦/h, respectively.

Note that the abovementioned studies [1–10] are incapable of avoiding frequency split,
which always occurring in the manufacturing process, obviously reducing the performance
of gyroscope. In addition, it should be pointed that the existing research [1–10] does not pay
much attention to increasing the mechanical sensitivity by regulating the structure, which
limits the development of gyroscope. Therefore, based on the abovesaid observation, this
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paper proposes a new structure of gyroscope, which can obviously reduce the frequency
split and improve mechanical sensitivity.

Under the same processing technology, the frequency split of the N = 3 Wineglass
Mode Metal Cylindrical Resonator Gyroscope (WMMCRG) is about 96% smaller than that of
Cylindrical Vibrating Gyroscope (CVG), which are 0.02 Hz and 0.6 Hz, respectively [11–22].

The contact driving method is adopted, and specially designed tooling is used to
locate the piezoelectric chip to ensure that all the piezoelectric pieces are evenly distributed
on the bottom of the gyroscope [23]. The glue quantity is controlled by the glue dispensing
machine; the minimum resolution is 0.01 mL and the minimum glue thickness is 560 um
on the piezoelectric chip with an area of 18 mm2.

This paper provides the manufacturing method of a low-cost Coriolis vibrating gy-
roscope with an extremely low frequency split. The tests of the WMMCRG show that the
bias instability of the WMMCRG is 1.974 (◦)/h, and the angle random walk is 16 (◦)/

√
h.

However, this technology is temporarily limited to the smaller CVG, and it is not known
whether it is suitable for other kinds of gyroscopes [24–26].

The aim of this paper is to study the parameters of the WMMCRG after closed-loop
control, and requires the controller to have simple structure and good adaptability. After
adopting the new structure, the performance of the gyroscope will be improved obviously.
Section 2 introduces the structure of the WMMCRG, including modal analysis, dynamic
equations, and a structural simulation. Section 3 introduces the processing technology of
the WMMCRG and the installation of the electrode in detail, and provides the specific heat
treatment and electrode installation scheme. In Section 4, the control method of the WMMCRG
and the design idea of the controller are introduced. Then, in Section 5, the open-loop and
closed-loop of the WMMCRG are tested, and the final static test results are shown. Finally,
Section 6 discusses the experimental results and comments on the conclusions.

2. N = Three Wineglass Mode Metal Cylindrical Resonator Gyroscope (WMMCRG)
Sensitivity Structure

The WMMCRG structure diagram investigated in this paper is shown in Figure 1. It
can be seen from Figure 1 that the structure is centrally symmetrical; 12 beams are uni-
formly distributed on the bottom of the gyro; the beam is the place where the piezoelectric
electrode are pasted; and the droplet-shaped holes between the beams play the role of
stress concentration and positioning. Six discrete piezoelectric electrodes are distributed in
two degenerate modes, of which two electrodes are used as drive and four electrodes are
used for detection [2,13,23]. There are a total of four drive electrodes and eight detection
electrodes on the gyro, Figure 2.
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Figure 1. The structure of WMMCRG.

DX (+) and DX (−) are the electrodes of the driving mode, and DX (+), DX (−) applies
sinusoidal signals with a phase difference of 180◦. SX (+) and SX (−) are used as driving
feedback electrodes, and the signal is amplified and filtered into the preprocessing circuit. When
the gyro has angle signal input, the sensing electrode SY (+), SY (−) picks up the Coriolis force
signal, and the gyro rotational speed signal is obtained by processing. DY (+) and DY (−)
electrodes are quadrature error correction electrodes and sensing closed-loop electrodes [22].



Electronics 2023, 12, 131 3 of 13

Electronics 2022, 10, x FOR PEER REVIEW 3 of 13 

 

 
Figure 1. The structure of WMMCRG. 

 
Figure 2. The electrode distribution of the gyro, of which four are drive eletrodes and eight are 
sense electrodes. 

DX (+) and DX (−) are the electrodes of the driving mode, and DX (+), DX (−) applies 
sinusoidal signals with a phase difference of 180°. SX (+) and SX (−) are used as driving 
feedback electrodes, and the signal is amplified and filtered into the preprocessing circuit. 
When the gyro has angle signal input, the sensing electrode SY (+), SY (−) picks up the 
Coriolis force signal, and the gyro rotational speed signal is obtained by processing. DY 
(+) and DY (−) electrodes are quadrature error correction electrodes and sensing closed-
loop electrodes [22]. 

The first eight order modes of the structure are simulated and shown in Figure 3, and 
the working modes are emphasized. The resonant structure of the metal shell designed in 
this paper is classified according to half n (the shell vibration displacement is zero) of the 
number of nodal lines. The modal characteristics of the metal shell resonant structure de-
signed in this paper are shown in Figure 3. 

The first (Figure 3a) and second modes (Figure 3b) of the gyro are swing modes (n = 
1). The shell structure vibrates around the center of the anchor point, and the swing mode 
is one of the degenerate modes, and the difference between the two modes is 90° . The 
third (Figure 3c) and fourth modes (Figure 3d) are vertical vibration modes (n = 0), and 
the shell moves as a whole along the central axis and twist. The fifth (Figure 3e) and sixth 
modes (Figure 3f) are wineglass modes (n = 2), which are "round-oval" four-wave belly 
vibration; the two modes are 45° to each other. The seventh (Figure 3g) and eighth modes 
(Figure 3h) are working modes (n = 3). The shell mode is completely symmetrical around 
the symmetry axis as a "round-equilateral triangle" six-wave belly vibration state, and the 
two modes are 30° to each other, which are the driving mode and detection mode, respec-
tively. 

Figure 2. The electrode distribution of the gyro, of which four are drive eletrodes and eight are
sense electrodes.

The first eight order modes of the structure are simulated and shown in Figure 3, and
the working modes are emphasized. The resonant structure of the metal shell designed
in this paper is classified according to half n (the shell vibration displacement is zero) of
the number of nodal lines. The modal characteristics of the metal shell resonant structure
designed in this paper are shown in Figure 3.Electronics 2022, 10, x FOR PEER REVIEW 4 of 13 
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Figure 3. WMMCRG structure lower eight vibration order: (a,b) swing mode (204.36 Hz, 204.49 Hz);
(c) vertical vibration modes (570.97 Hz); (d) Z axis in phase twist mode (2524.78 Hz); (e,f) wineglass
modes (n = 2) (3057.6 Hz, 3057.7 Hz); (g,h) wineglass modes (n = 3) (8065.9 Hz, 8065.9 Hz).

The first (Figure 3a) and second modes (Figure 3b) of the gyro are swing modes (n = 1).
The shell structure vibrates around the center of the anchor point, and the swing mode is
one of the degenerate modes, and the difference between the two modes is 90◦. The third
(Figure 3c) and fourth modes (Figure 3d) are vertical vibration modes (n = 0), and the shell
moves as a whole along the central axis and twist. The fifth (Figure 3e) and sixth modes
(Figure 3f) are wineglass modes (n = 2), which are “round-oval” four-wave belly vibration;
the two modes are 45◦ to each other. The seventh (Figure 3g) and eighth modes (Figure 3h)
are working modes (n = 3). The shell mode is completely symmetrical around the symmetry
axis as a “round-equilateral triangle” six-wave belly vibration state, and the two modes are
30◦ to each other, which are the driving mode and detection mode, respectively.

The fifth and sixth modes and the seventh and eighth modes are in complete dynamic
equilibrium with respect to the symmetric axis, and the frequency difference in the seventh
and eighth modes is simulated as 0 Hz, so the six-wave mode is selected as the working
mode of the WMMCRG. At the same time, the two working modes are typical inverse dif-
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ferential motions, which can effectively restrain the influence of common mode acceleration
and have obvious advantages in environmental adaptability.

The vibration mode of the resonator has the influences of of frequency split, non-
uniform damping, mass imbalance, and other factors. In this paper, the mathematical model
of the hemispherical resonant gyro derived by Lynch is used to analyze the WMMCRG
error propagation equation [24–26]. The WMMCRG two-dimensional vibration equation
with error term derived by Lynch can be expressed as [27]:

..
a− 6kΩ

.
b + ( 2

τ + ∆( 1
τ ) cos 6θτ)

.
a + ∆( 1

τ ) sin 6θτ

.
b

+(ω2 −ω∆ω cos 6θω)a−ω∆ω sin 6θωb = fa..
b + 6kΩ

.
a + ( 2

τ − ∆( 1
τ ) cos 6θτ)

.
b + ∆( 1

τ ) sin 6θτ
.
a

+(ω2 + ω∆ω cos 6θω)b−ω∆ω sin 6θωa = fb

(1)

In the Formula (1), a is the direction of the gyro drive axis and b is the direction of the
detection axis, where:

ω2 =
ω2

a + ω2
b

2
,

1
τ
=

1
2
(

1
τa

+
1
τb
), ω∆ω =

ω2
a −ω2

b
2

, ∆(
1
τ
) =

1
τa
− 1

τb

ωa and ωb are the resonant frequencies of two vibration modes (shown in Figure 4.).
Due to the existence of frequency splitting, these two frequencies are not equal. It is
assumed that ωb < ωa, θω is the azimuth between the rigid “frequency normal axis” ωb
and the X axis. Similarly,τa and τb are the time attenuation constants of two “damping
normal axes”. It is assumed that τa < τb, θτ is the azimuth between the “damping normal
axis” of τa and the X axis. The items in equation are described as follows:
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pling term caused by frequency splitting.
5. fa, fb is the force applied to the resonator by the control electrode.
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3. WMMCRG Resonator Processing and Electrode Assembly

The metal structure of the WMMCRG resonator is a typical thin-walled part of rotation,
and its material characteristics, machining accuracy, and machining efficiency are the key to
determining the high performance and low cost of the gyroscope. According to the require-
ment of full symmetry of the resonator structure of the cup-shaped undulatory gyroscope with
high sensitivity, the high shape, position accuracy, and surface quality should be guaranteed
in the precision machining process of the resonator metal structure. In addition, the high Q
factor and good temperature stability of the WMMCRG also put forward high requirements
for material selection and heat treatment of the resonator metal structure [28–30].

The resonator material is alloy 902 of Ni-Span-C Company of the United States, and
its composition and performance parameters are as follows: Ni (41–43.5%), Cr (4.9–5.7%),
Ti (2.2–2.7%), Al (0.3–0.8%) Mn < 0.8% science C < 0.06%, and the rest is Fe. Working
temperature range: −45~70 ◦C, linear thermal expansion coefficient: 7.6 × 10−6/◦C,
mechanical quality factor: ≥20,000, frequency temperature coefficient: −5~5 × 10−6/◦C.

What has a greater impact on the properties and uses of alloy materials is the heat
treatment process of materials, because the characteristic of heat treatment, or deformation
heat treatment of constant elastic alloy, is that they not only strengthen the alloy, but also
shape the elastic elements. What is more important is to use the heat treatment process
to adjust the distribution of elements between matrix metals and metal compounds, and
control the structure and structure of the alloy. Finally, the requirements of the frequency
temperature coefficient and the mechanical quality factor of resonator are realized. In
this paper, the heat treatment process of the resonator metal material mainly includes the
following links [30]:

(1) Solid solution treatment. If the cold deformation and aging treatment are to be
carried out, Ni-Span-C alloy902 needs to be treated by solid solution first to obtain a
supersaturated single solid solution at room temperature. The grain size of the alloy
increases with the increase in solution treatment temperature below 1000 ◦C, but when the
solution temperature is above 1000 ◦C, the grain grows rapidly, resulting in the decrease in
alloy plasticity and in the difficulty of mechanical processing.

(2) Cold deformation treatment. In order to increase the lattice distortion and disloca-
tion density of Ni-Span-C alloy902 and improve its strength, it is necessary to carry out
cold deformation treatment on Ni-Span-C alloy902. When the deformation degree reaches
50% to 60%, the strength change of the alloy is not obvious. For frequency elements used
in dynamic applications such as a resonator, cold deformation is also one of the effective
methods to improve the mechanical quality factor of alloys.

(3) Aging treatment. In general, the optimum aging temperature corresponding to the
optimum frequency temperature coefficient, the maximum strengthening effect, and the
highest quality factor of Ni-Span-C alloy902 alloy are different. Therefore, according to the
performance requirements of the harmonic oscillator, some strength performance indexes
should be sacrificed in the heat treatment process to ensure the low frequency temperature
coefficient and high mechanical quality factor as far as possible. The preliminary machined
resonator is shown in Figure 5.
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The resonator is machined by DJC-100E ultra-precision single-point diamond lathe; the
maximum diameter can reach 100 mm, the surface roughness of the workpiece (Ra) < 2 nm,
the surface shape precision PV value <0.1 um, the three-axis resolution is 1 nm, and the
straightness is 0.1 um/100 mm. Finally, the surface roughness Ra of the machined resonator
is 0.085 um, and the roundness < 0.1 um and axiality < 0.1 um measured by Taylor Hopson
profiler. The finished resonator is shown in Figure 6.
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The pasting process of the piezoelectric electrode is shown in Figure 7. The twelve slots of
the positioning base are used to ensure the positioning accuracy of the piezoelectric electrode.
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The piezoelectric electrode is fixed by springs and bolts; the force between the resonator
and the positioning base is controlled by adjusting the number of bolts and the hardness
of the spring; and the thickness of the glue layer is controlled by a gluing machine. The
piezoelectric electrode mainly depends on the bonding layer to stick to the bottom of
the resonator. The vibration of the piezoelectric electrode under alternating voltage is
transmitted to the resonator through the bonding layer. Therefore, the quality of the
bonding layer is very important for the performance of the gyroscope.

4. Circuit Design and Simulation

As a kind of resonator based on the piezoelectric effect, the WMMCRG resonator
has both input voltage and output voltage on its piezoelectric electrode. The resonator
itself is an elastic body with an infinite number of modes. The dynamic characteristics of
each mode are similar to those of the RLC circuit, which are the dynamic characteristics
of the second-order system. Therefore, the response characteristics of the WMMCRG
resonator to the input voltage frequency can be described by the equivalent circuit model,
as shown in Figure 8.
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Each branch in the equivalent circuit model describes a vibration mode of the resonator,
in which Ci and Li are the equivalent capacitance and equivalent inductance of the resonator,
also known as dynamic capacitance and dynamic inductance, which are related to the
mechanical properties of the resonator, corresponding to the orderi modal mass and modal
stiffness, respectively. Ri is the equivalent resistance of the resonator, which is related to
the mechanical loss of the material, and corresponds to the orderi modal damping. In
addition, the parallel capacitance C0 represents the electrostatic capacitance between the
piezoelectric electrodes. Although the dynamic response of the WMMCRG resonator is
the superposition of an infinite number of mode responses, for the working mode of the
WMMCRG with high quality factor, the resonator is near its working mode frequency, and
the higher accuracy of the dynamic response can be obtained only by using the working
mode of the resonator to analyze the steady-state response of the driving force. Therefore,
the vibration of the working mode of the voltage excited resonator can be simplified to an
RLC branch to be equivalent.

The gyro control loop is shown in Figure 9. In the drive closed-loop mode, the
AGC control technology is employed, and the driving displacement is detected by the
piezoelectric electrode SX and measured by a differential amplifier. Then, the phase of the
signal is delayed, to satisfy the phase requirement of the AC drive signal VdacSin. Then the
amplitude of the signal is obtained by full-wave rectification and low-pass processing of
the VdacSin. The Vdac is then compared with the reference signal Vref. Next, the closed-loop
drive PI controller generates a control signal and multiplies it with the VdacSin to stimulate
the drive mode. Based on the above closed-loop driving mode, the gyro driving mode can
be stimulated at the resonant frequency with a steady amplitude, which can be set by Vref.

The sense mode loop employs the same interface as the drive mode circuit. First, the
movement signal of resonator is detected with differential detection amplifiers as Vstotal. Then,
Vstotal is demodulated by the signal VdacSin, and a demodulated signal Vdem is generated. Then,
Vdem passes through the low-pass filter and forms the sense mode open-loop signal VOopen.
For the sense feedback loop, VOopen is sent to PIPAC to generate the controlling signal. Finally,
the signal is modulated with VdacSin to form the final feedback signal.

The quadrature error correction loop also uses the closed-loop system with the same
mode. first, the quadrature error demodulation is used to pick up the SY signal into the
demodulator, and the drive mode displacement of the drive closed loop is demodulated
with the in-phase signal. Then the quadrature error compensation is carried out, and the
demodulated signal is processed by the low-pass filter and compared with reference signal
VQref through the comparator. Finally, the quadrature error correction controlling signal is
generated, and the compensation result is sent to PI controller. The resulting control signal
is sent to the quadrature correction electrode to correct the quadrature error signal.
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5. Experiment
5.1. Experiment Platform and Equipment

Prototypes of the WMMCRG were tested with atmosphere packaging to evaluate
their resonance and performance characteristics. A sample of the WMMCRG (shown in
Figure 8) was used to construct a simple working mode frequency response test system in
a laboratory environment. The function signal generator generated an alternating voltage
signal to be applied to the WMMCRG drive electrodes, and then the output voltage signal
of the drive feedback electrodes was amplified by an amplifier circuit and then measured
by a multimeter (Keysight 34401A, Santa Rosa, CA, USA).

The frequency test signal is generated by the function signal generator, and the fre-
quency of the applied signal and the voltage amplitude detected by the multimeter are
recorded. The maximum voltage value corresponded to signal frequencies of 8065.52 Hz
with the amplitude of 2Vpp (drive mode), and 8065.5 Hz with the amplitude is 2Vpp (sense
mode), which are basically consistent with the theoretical model data.

5.2. Scale Factor Test

A set of angular rates are inputted to the tested gyroscope by the rate turntable. The
output values of the gyroscope are recorded under each input, and the scale factor of the
gyroscope is obtained by least square fitting.

The test method is as follows:
a. Power on the gyroscope, set the sampling interval and sampling times N, and start

the test after the preparation time.
b. The input angular rate of the turntable changes in the order of absolute value from

small to large. The output Uip of the gyroscope is recorded at each angular rate, and the
average Ui of the output of the gyroscope at the input angular rate is obtained according to
the Formula (2).

c. Enter no less than 11 points of angular velocity within the measurement range,
which must include the maximum and minimum values of the measurement range.

The average Ui of the gyro output is calculated according to the Formula (2):

Ui =
1
N

N

∑
p=1

Uip (2)
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In the Formula (2), Ui is the average output of the gyroscope with the i angular rate
input, Uip is the p output value of the gyroscope with the i angular rate input, and N is the
sampling number.

For the linear model of input and output of gyroscope, as Formula (3)

U = KX + b (3)

In the Formula (3), U is the output value of gyroscope, K is the scale factor, X is the
input of gyroscope, and b is the zero position of gyroscope fitting.

The straight line is fitted by the least square method, and K and b are calculated
according to the Formulas (4) and (5).

K =

n
∑

i=1
XiUi − 1

n

n
∑

i=1
Xi

n
∑

i=1
Ui

n
∑

i=1
X2

i −
1
n (

n
∑

i=1
Xi)

2 (4)

b =
1
n

n

∑
i=1

Ui −
K
n

n

∑
i=1

Xi (5)

In the Formula (5), i is the sampling sequence, i = 1, 2, 3, . . . , n, and n is the number of
points of the input angular rate.

The WMMCRG prototype was fixed on the turntable test system for scale factor
testing. The rate sensitivity was measured under a rotating disk at input angular rates of
0 (◦)/s,±0.1 (◦)/s,±0.2 (◦)/s,±0.5 (◦)/s,±1 (◦)/s,±2 (◦)/s,±5 (◦)/s,±10 (◦)/s,±20 (◦)/s,
±50 (◦)/s, ±100 (◦)/s, ±150 (◦)/s, and ±200 (◦)/s, and the output values at each point
were recorded. The results of this test are shown in Figure 10.
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5.3. Static Test

The output of the gyroscope is recorded, the input axis of the gyroscope is parallel to
the geography from east to west, the sampling rate and sampling time of the gyroscope
test are set, and the output Uot of the gyroscope in the sampling time is recorded after the
preparation time.

In the experiment, the sampling rate is 1 Hz, the sampling time is 3000 s, and the
output of the gyroscope is shown in Figure 11.
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The zero bias Formula (6) of the gyroscope is as follows:

B0 =
1
K
· 1

n

n

∑
i=1

Uot (6)

In the Formula (6), B0 is the zero bias of the gyroscope, K is the scale factor, n is the
sampling time, and Uot is the i-th sampling value.

The zero bias of the gyroscope is calculated to be 10.3323◦/s.
The measured output values of the gyroscope are averaged according to the prescribed

sampling time (smoothing time), and the zero bias stability of the gyroscope (1σ method) is
obtained by calculating the standard deviation of these averages.

Calculate the number of samples M included in the specified smoothing time according
to the Formula (7):

M = T · ft (7)

where M is the number of samples contained in the specified smoothing time, T is the
specified smoothing time, and ft is the sampling rate.

The initial sample is divided into a group per M, and the m group (m > 6) is obtained,
and the Bmi is calculated according to the Formula (8):

Bmi =
1
K
· 1

M

M

∑
j=1

Uo[(i−1)M+j] (8)

In the Formula (8), Bmi is the zero bias sample (i is an integer), K is the scale factor, Uoi
is the output of the i-th test gyroscope, and j is the serial number of samples in each group.

The zero bias stability Bsσ of gyroscope is calculated according to the Formula (9):

Bsσ =

√
1

m− 1

m

∑
i=1

(Bmi − B0)
2 (9)

In the Formula (9), Bsσ is the gyroscope zero bias stability (1σ method), B0 is the
gyroscope zero bias, and m is the number of sample groups.

The zero bias stability of the gyroscope is calculated to be 10.869◦/h.
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The Allan variance analysis results of the WMMCRG output are shown in Figure 12.
From the Allan variance curve, it can be determined that the bias instability is approximately
1.974 (◦)/h and the angle random walk is approximately 16 (◦)/

√
h.
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6. Conclusions and Discussion

In this paper, a new type of gyroscope structure is proposed, and its processing mode
and control method are described. The structure has the advantages of small frequency
split, high output sensitivity, simple structure, and small control error. The structure of the
sensor is simulated, and the simulation results show that the frequency split of the sensor
in the working mode is very small, and the coupling effect of other modes on the working
mode is also very small. Through the analog circuit, the driving closed loop, the sensing
closed loop, and the quadrature error correction closed loop are established on two PCBs. The
experimental results prove the superiority of the new structure and closed loop system. The
bias instability is 1.974 (◦)/h, the bias stability is 10.869◦/h, the zero bias is 10.3323◦/s, the
angle random walk is 16 (◦)/

√
h, and the frequency splitting is 0.02 Hz. The scale factor of the

gyroscope and the static parameters of the gyroscope are improved. The experimental results
prove the correctness of the structural design method proposed in this paper.
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