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Abstract: Water shortages have increasingly become a global issue due to the acceleration of climate
change. The consumption of freshwater can be reduced to a minimum using water irrigation
techniques that are based on conservative methods. For example, one of these is precision irrigation,
or PI, which uses advanced digital technology to regulate the amount of water used. The aim is to
use the least amount of water necessary for a given purpose. This approach keeps consumption to a
minimum while the amount remains effective for its purpose. It is also important to note that the
variability which occurs in soil and crops will create different types of conditions. These different
conditions will need to be studied so as to determine the correct and adequate dynamics for a water
management approach that is efficient. In this study, three investigation methods were developed and
compared. The first evaluation was performed on outputs from the geoelectric reading of Automatic
Resistivity Profiling (ARP). A second evaluation was performed in real time via a sensor network
placed in the soil for the duration of two growing seasons of two different crops. The last evaluation
was carried out by using maps of spectral indices obtained by the Sentinel 2 satellites. The correlations
between the three methods were evaluated to verify if satellite information may have significant
potential in the use of water management in varying conditions. From the results obtained, some
correlations have been found from the observations of the three systems under study. This has
given a positive input towards using satellite maps which are integrated with simplified proximal
sensor networks. The outcome of this technique can improve the efficiency of how to manage water
distribution on cultivated land.

Keywords: water management; irrigation techniques; variability; crop requirements; satellite maps

1. Introduction

Water shortage has become a serious issue on a global scale as a consequence of
ongoing climate change. The growing number of extreme events such as heat waves,
drought, violent storms, tornadoes, and hailstorms creates a situation of climatic chaos
that often leads to environmental conditions which are above the tolerability level for
many species of plants and animals, including human beings. In Italy, as in many other
parts of the world, the mean annual temperature increases every year while precipitation
decreases. An analysis carried out by the Italian National Institute for Environmental
Protection and Research [1] based on the historical comparison of temperatures for the last
30 years showed that in this country, the temperature had risen by 0.035 ◦C every year. It
corresponds to about half of the global average, which is over 0.08 ◦C since 1880 [2].

A comparison of the averages on rainfall for the period 2000–2009 shows that the
average annual precipitation in Italy was 763 mm, which is 30 mm less than the average for
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the years 1971 to 2000 [3]. The 2010–2020 decade was dramatic for Italy, with cumulative
annual precipitations lower than 10% as compared to the mean of the previous decade,
with peaks of drought that were much higher in southern Italy [4]. Another problem that
Italy is now dealing with is rainfall fluctuation and intensity. The prolonged periods of
drought, especially during the summer, have made these commonplace problems. The
cause of these problems occurs when a large amount of water falls onto the soil in a short
amount of time. The limited water retention capacity of the soil will allow the water to run
off. Thus, there are water losses and other related problems such as soil erosion, increased
risk of landslides, and flooding.

Agriculture is the sector that is the most demanding for water. Water consumption for
agricultural purposes makes up about 70 percent of the total annual withdrawal of fresh
water [5]. In extensive agriculture, water is distributed mostly by sprinkler irrigation and
surface irrigation [6]. In sprinkler irrigation, the percentage of water loss can be up to 45%
due to evaporation and other factors [7], while surface irrigation is even more wasteful,
with losses that are about 35% higher than sprinkler irrigation [8]. These systems are not
sustainable and should be improved or replaced so as to lessen the pressure of demand
on the global fresh-water reservoirs. In recent years, the problem of water availability has
seriously affected industrialized countries. The development of systems that are made to
plan irrigation cycles and eliminate water loss is urgently needed.

Some advancement in technological development has been accomplished in this direc-
tion. For instance, precision irrigation applies water in minimal amounts and exclusively
in the specified place at a predetermined time to create the best growing conditions for
plants [9]. The precision irrigation system is based on soil sensors. These sensors are
geo-localized and monitor the soil water content at different soil depths, providing remote
information, and notifying or directly commanding the start of irrigation only where and
when it is required [10–14]. There are several pros and cons to these systems. The pros
include reliability, continuous monitoring, and precision. In contrast, the cons are the
costs, the risks of damage during field operations, and the practical management [15]. For
these last reasons, the installation of a dense sensor network in the field is not always
feasible. Given the current levels of satellite images [16], the use of satellite imaging in com-
bination with an on-site monitoring system is under study in both marine and terrestrial
environments [17,18].

A review by Massari et al. (2021) [19] compiles about 50 scientific papers on using
space technology for the retrieval of information for irrigation. The techniques consisted of
visible and near-infrared sensors (VIS/NIR), microwave (MW), land surface models (LSM),
and energy balance models (EBM). The authors gave observations about the advantages
and disadvantages of each technique and concluded that the levels of action are very
different, as are the capabilities of different satellite installations.

In a study conducted in the USA, De Lara et al. (2019) [20] studied soil water content
(SWC) behavior by integrating information obtained from soil sensors by the Rapid Eye
satellite constellation to determine the optimal time and depth of SWC and its relationship
to maize grain yield. The study concluded that different sources of information could be
combined to obtain more accurate models of soil water content and maize yield at the field
level for precision irrigation.

In another study performed in Southeastern Canada by Ihuoma et al. (2020) [21],
the suitability of multispectral images acquired from Unmanned Aerial Vehicles (UAV-
MSI) and Sentinel-2A & 2B satellite platforms was compared with in-situ soil moisture
data to estimate irrigation water requirements of field grown tomato crops (Lycopersicum
esculentum). The researchers stressed the validity of this near real-time approach for
supporting precision irrigation and preventing over-irrigation.

In any case, the precise determination of the rate of water application by the remote
sensing approach requires further study. This is due to the high number of variables in
cultivated lands. Soil water retention capacity and water plant requirements vary according
to soil type, climate, plant species, and other site-specific factors. A challenging aspect
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of soil water content detection using satellite technology is related to the condition of no
vegetation. In fact, several of the cited scientific papers use satellite systems in the condition
of soil vegetation, while no relevant approaches were identified for the condition of bare
soils. Knowing the soil water content in the condition of bare ground can be very useful,
especially for the success of seed emergence [22,23]. In this study, three investigation
methods for monitoring soil water content were compared in Northern Italy in the Po
valley. Two systems are based on proximal sensing and one on remote sensing, based on
maps of spectral indices obtained by the Sentinel 2 satellites (A and B). The study aimed to
evaluate the correlation between the three investigation techniques and highlight if satellite
data obtained from remote sensing may have a high potential for use in water resource
management and in no-vegetation conditions. The aim of the study is to determine if
satellites are suitable for planning PI in the conditions that are found in Northern Italy.

2. Materials and Methods

The experimental tests were carried out in a portion of agricultural land located at
the CREA-IT farm (Figure 1—yellow quadrilateral) in Treviglio, Bergamo, Northern Italy
(45◦31′14′ ′ N; 9◦35′27′ ′ E; +128 m a.s.l.). This 3.0 ha field is normally cultivated with the
typical crop rotation: triticale for winter cultivation (Triticosecale Wittnack) and corn for
spring-summer cultivation (Zea mays). According to the World Reference Base for Soil
Resources [24], the soil was classified as Calcic Skeletic Mollic Umbrisol, with neutral-sub-
alkaline pH and with the presence of carbonates on the surface. The period of observation
started in July 2020, when corn was present, and concluded in April 2021, when triticale
was present. No crops were present between 15 September and 10 November. However, the
condition of uncultivated soil must be considered until 31 December since the emergence
of triticale plants still represented a negligible percentage compared to the visible surface
of the soil.
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2.1. Proximal Monitoring—Geoelectric Survey  

Figure 1. Experimental field of CREA-IT.

2.1. Proximal Monitoring—Geoelectric Survey

The soil was tested for electrical conductivity utilizing two methods. The first method
involved the use of the Automatic Resistivity Profiler (A.R.P.; Geocarta SA, Paris, France). It
is a mobile system consisting of three pairs of metal gear wheels. The first pair functions as
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injection electrodes and the other 2 pairs function as receivers, which measure the electrical
potential difference (Figure 2). The distance between each pair of receivers was calibrated
to study 3 depths (0–50 cm, 0–100 cm, and 0–180 cm). The raw data was filtered using a 1D
median filter and then interpolated to obtain a soil resistivity map (2 × 2 m pixels) for each
layer studied.
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Figure 2. Mobile system to measure the electrical potential difference.

The second method of geoelectric survey was performed by placing a network of
21 transmitting nodes in the ground according to a regular grid measuring 20 × 40 m
(Figure 1—blue points). Each node was composed of 2 capacitive soil moisture sensors,
model SKU:SEN0193, placed respectively at 15 cm and 30 cm depth. The technology, unlike
other sensors on the market, performs measurements through capacitive sensing. The
operating voltage of the sensor is 3.3~5.5 VDC, the output Voltage is 0~3.0 VDC, and the
operating current is 5 mA. The system is integrated into a DFRduino UNO hardware and
an Arduino IDE V1.6.5 software. Each sensor was calibrated in the laboratory, checking
the correspondence of the variations of the readings with soil samplings by studying
soil moisture according to referring standard [25]. The readings were expressed in terms
of spatial variation and not in absolute values to avoid eventual flaws or imperfections.
The nodes are transmitted via a LoRa (Long Range) radio frequency to a receiving unit
connected to a Wi-Fi network. Two of the nodes also had an air temperature and a humidity
sensor (model DHT11 DF Robot). The data was acquired and transmitted with a time-
frequency of 15 min. Before the geostatistical analysis, all the coordinates that were retrieved
from the mapping tools and nodes were converted from geographic coordinates (World
Geodetic System 84-WGS84) into Cartesian UTM coordinates using the “spTransform”
function of the “rgdal” package [26]. All statistical processing followed the methodology
indicated by Córdoba [27].

2.2. Remote Monitoring—Satellite Reading

Throughout the observation period, the maps of the spectrum bands available from
two satellites (Sentinel A and B) were downloaded from the ESA website (European Space
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Agency, www.esa.int, accessed on 1 September 2022.). In particular, the bands utilized
were the B3 (560 nm), the B4 (675 nm), the B8 (842 nm) and B11 (1610 nm). These bands
were necessary to obtain the MCARI2 (Modified Chlorophyll Absorption in Reflectance
Index 2) and NDWI (Normalized difference water index) spectral indices, described in the
following formulas:

MCARI2 =
1.5[2.5(R842 nm − R675 nm)− 1.3(R842 nm − R560 nm)]√
[2R842 nm + 1]2 −

[
6(R842 nm − 5

√
R675 nm − 0.5

)
]

(1)

NDWI =
R560 nm − R842 nm

R560 nm + R842 nm
(2)

The MCARI2 spectral index was chosen because it was considered suitable for the
predictions of some biophysical parameters of plants [28–31], while the NDWI index was
chosen because it is more correlated to the presence of water in the crop and uncultivated
soil [32,33], but also because its correlation with soil fertility characteristics had been
recently described and evaluated [34].

2.3. Monitoring of Meteorological Precipitation

The meteorological data were monitored through a local meteorological station located
near the fields, which collected hourly data relating to the temperature and humidity of the
air and millimeters of rain.

2.4. Dataset and Statistical Analysis

The dataset collected in the experimental fields during the observation period was
composed of the following dependent variables:

• the measurements for each geographic soil coordinate of the electrical conductivity
obtained from the ARP system;

• the difference in electrical conductivity detected by the surface sensors compared to
those placed in the depth of the network of the transmitter nodes, with a frequency of
15 min;

• The spectral indices NDWI and MCARI2 are calculated by the Sentinel 2 source.

The independent variables of the experiment were the meteorological data (mm of
rain) and the field conditions (crop present or not).

The methodology of data processing was dependent on the satellite information, both
for resolution (20 m × 20 m) and dates of availability to be compared. During the whole
observation period, 55 maps of the spectral bands of the two satellites were downloaded
and observed. However, from these, only maps with no interference due to cloud densities
were used. There is a list below of the dates when maps were sharp and implementable
(Table 1).

From the available dates, the spectral indices MCARI2 and NDWI were calculated;
the spectral bands utilized were the B3, the B4, and the B8 for MCARI2 and the bands
B3 and B11 for the NDWI. The B3, B4, and B8 bands are available with a resolution of
10 m× 10 m, while the B11 band relating to the short-wave infrared (SWIR) has a resolution
of 20 m × 20 m.

Therefore, for the source of information coming from the sensor network, a data
filter was carried out by selecting the dates and times corresponding to the passage of the
satellites. The differences in conductivity between the sensor placed on the soil surface and
that placed 0.15 m deeper were calculated.

For the geoelectric source, spatial vectors were prepared and subjected to clustering
for the determination of homogeneous zones. From these zones, soil samples were taken in
order to establish their composition in sand, silt and clay. Subsequently, a vector with the
information obtained from the sampling point was extracted. The flow chart depicted in

www.esa.int
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Figure 3 shows that information from spatial raster coming from the satellites was extracted
as well and corresponded to the coordinates of the ground sensors.

Table 1. Dates of availability of information used for this study.

Date Condition mm Rain (Last 5 Days Cumulative)

25 July 2020 corn 66.50
30 July 2020 corn 42.80

9 August 2020 corn 40.00
14 August 2020 corn 0.00
19 August 2020 corn 40.00

13 September 2020 corn 0.00
19 September 2020 corn 0.00
17 November 2020 soil 4.30
22 November 2020 soil 0.00
27 December 2020 soil 42.40

16 January 2021 triticale 0.00
15 February 2021 triticale 16.50
25 February 2021 triticale 0.00

2 March 2021 triticale 0.00
7 March 2021 triticale 0.00

17 March 2021 triticale 0.00
22 March 2021 triticale 0.00
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The data were subjected to geostatistical analysis using the “R” statistical software.
The values coming from the three sources, with the same coordinates for construction, were
interpolated with the kriging method through the krige function of the gstat package of R,
using a regular grid of 5 m × 5 m points in the quadrilateral defined by the area observed
by the sensor network, to observe its distribution in space.
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Therefore, 17 rasters interpolated from the values came from the sensor network
(R1); 17 rasters interpolated for satellite information (R2), and 1 raster from the geoelectric
reading (R3) were obtained.

To verify the correlation between the corresponding rasters of the same day (from
satellite and from the sensor network) and between these and the 1 relating to the geo-
electric reading, the analysis of correlation was applied based on the moving window of
Dutilleul [35].

The analysis of variance (ANOVA) was applied to the values of the correlations
obtained for each available date, considering as independent variables the conditions of
the field based on the coverage (triticale, bare soil, and maize) and based on the water
conditions. This took into consideration if the soil had received in the previous 5 days a
quantity of water greater than 40 mm, in the form of both rain and irrigation.

3. Results

The range of soil water content monitored with soil sensors (average of 21 nodes) was
reported for the dates of satellite data availability (Figure 4). The values are represented
with the independent variables considered for the experiment, i.e., meteorological data
(mm of rain in the green square) and the field conditions (corn, soil, and triticale). Higher
variability was noted for corn on 25 July 2020, for soil on 27 December 2020, and for triticale
on 2 January 2021 (Figure 5).
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Figure 4. Distribution of soil water content (%) and precipitation (mm, green line box) in the period
of observation.

3.1. Comparison between Sensor Grid Maps (R1) and Corresponding Satellite Maps (R2)

Using the MCARI2 index (Figure 6), greater correlation values were identified when
the soil was not cultivated (correlation values close to 1) and when the corn was cultivated
(correlations close to−1). The use of the NDWI index has the opposite behavior, with many
values close to 1 in the corn cultivation period and −1 in the period in which the soil was
without the crop. These results highlight that the comparison between grid and satellite
maps delivers high correlation values during corn cultivation, with a negative direction for
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MCARI2 and a positive one for NDWI. During the cultivation of triticale, the correlation
values were very variable, and this did not define any trends.
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the sensors and with the MCARI2 spectral index; in the right column is the distribution of correlation
values between the maps produced with the sensors and with the NDWI spectral index.

3.2. Comparison between Sensor Grid Maps (R1) and Corresponding Geoelectric Maps (R3)

In the period of corn cultivation (25/07/2020–18/09/2020), correlation values of
different intensities from −1 to +1 were identified with a widespread and homogeneous
distribution of all values (Figure 7). In the period in which the soil was not cultivated,
larger correlations were detected at −0.40, while in the period in which the triticale crop
was present, correlation densities were closer to −1.
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In the condition of uncultivated soil, there are very few correlations close to 0, with
higher densities of correlations close to 0.90 and −0.60. In the period of triticale cultivation,
the correlations are mainly concentrated towards the value of −1. Regarding the NDWI
index, in the period of corn cultivation, greater densities of correlations were identified at
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−1 while presenting some correlations close to +1. In the period of uncultivated soil, the
values appear to be homogeneously distributed between −1 and +1. On the other hand,
dense values of correlations were identified in the triticale growing period with values
close to +0.80.

Summarizing, the results showed that in the period in which the summer crop (corn)
was present, the correlation between the sensor grid and the satellite maps was greater. In
the period when the soil was not cultivated, the correlation between the sensor grid and
the mapping with the ARP method was greater. Finally, in the period in which triticale
was grown, the correlations between the ARP method, satellite maps, and the sensor grid
were greater.

The analysis of variance (ANOVA) showed significance (p-value < 0.001) in the com-
parison between sensors and satellite maps (R1-R2) for both spectral indices and for the
corn condition; between sensors and ARP (R1-R3) the condition of soil and triticale were
similar but different compared to corn (Table 2). Finally, the comparison between ARP and
satellite maps (R3-R2) showed statistically significant differences in both indices for the
triticale condition. All comparisons, except for R1-R2 (MCARI2 used), showed statistical
significance in case of rainy events greater than 40 mm, which occurred in the previous five
days, also showing first-order interaction factors with this condition. This indicates that
the results are influenced by the presence of water in the soil.

Table 2. Significance of the soil condition and soil moisture in relation to the correlations between the
survey methods.

Condition (Corn,
Soil, Triticale) Moisture (>40 mm) Interaction

Condition-Moiture

R1-R2 (MCARI2) *** (corn) n.s. ***
R1-R2 (NDWI) *** (corn) *** ***

R1-R3 *** (soil, triticale) *** ***
R3-R2 (MCARI2) *** (triticale) *** ***
R3-R2 (NDWI) *** (triticale) *** ***

*** corresponds to p-value < 0.001.

4. Discussion

The study showed that the three sources of information utilized have contributed
to the representation of the soil moisture in the determined conditions. On the other
hand, considering each source singularly, some limitations have been noted, especially
in the case of different soil conditions and cultivations type (triticale, corn, uncultivated
soil). The analysis of the correlation maps displayed interesting results that may lead to
identifying “exclusivity” or “complementarity” between the methods. For exclusivity, it
can be intended that one system (e.g., satellite system) may replace another (e.g., soil sensor)
because of high correlations. However, for complementarity, we intend that one method
can be functionally similar to another for the goal of defining a precision irrigation schedule.
This complementarity was observed in the conditions of minor correlation between the
reading methods. For instance, the maps obtained from the ground sensors (R1) showed
less correlation with the satellite maps (R2) when the soil was cultivated with triticale,
with an average correlation of −0.02 for the MCARI2 index and of 0.1 for the ‘NDWI
index. Therefore, in the period in which the triticale was cultivated, the satellite indices did
not allow us to obtain maps corresponding to the proximal readings. This was probably
because of the meteorological trend, which showed a significant influence on the values
of correlation. Instead, the satellite information (R2) correlate with those of soil sensor
(R1) during corn cultivation, meaning that the satellite, in this case, can substitute the
information of soil sensors.

The same consideration applies to both geoelectric methods (R1 and R3) and between
the MCARI2 satellite index and ARP (R2 and R3). The two geoelectric methods showed
an average correlation in the period of uncultivated soil (−0.45) and in the period of corn
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cultivation (−0.2). This can be attributable to the fact that reading with ARP (R3) was
performed only once, while the readings with the soil sensors (R1) were performed at
a high frequency, detecting variations over time. On the other hand, the same was also
observed between the maps processed through the MCARI2 satellite index and the map
obtained with the ARP, showing a very low correlation, lower than −0.4, in the condition
of uncultivated soil.

Previous studies have observed correlations between soil moisture and electromag-
netic observations in the visible-near infrared [36,37], in the thermal infrared [38,39] and in
microwaves [40–42].

Based on these correlations, Ma et al. [39] have considered the opportunity to detect
and localize the variability of soil moisture. Additionally, the study conducted by Balenzano
et al. [43] explored the need to integrate soil surface humidity indexes and vegetation
indexes to plan irrigation events during the entire vegetative season.

However, despite the numerous studies performed, the extreme soil variability and
the different field conditions may limit the applicability of the use of satellite indexes for
this purpose.

The most interesting aspect of this study is the correlation and complementarity
between the sensor network and the satellite indexes. This is because sensor networks can
be considered the most reliable and repeatable measurements, while satellite indexes are
the most affordable. Potential future approaches may look for complementarity between
satellite indexes with a significantly reduced number of sensors. Reducing the number of
sensors may decrease the initial investment cost for farmers, but at the same time, farmers
may rely on satellites for scheduling precision irrigation interventions.

5. Conclusions

The aim of this study was to evaluate the correlation between three soil water content
investigation techniques in an effort to understand if satellite data obtained from remote
sensing has a high potential for use in the management of water resources and in precision
irrigation, as well as no-vegetation conditions. The results showed that indexes utilized
from satellite data correlate in different cases with proximal sensing methods. Even if the
method cannot be considered fully satisfactory, the high correlation between the MCARI2
and the in-field sensor network suggests possible applications in the condition of bare soils.
This opens the opportunity to monitor soils after sowing to guarantee the success of the
seed emergence. To fully exploit the potential of this approach, its association with proximal
investigation methods is still recommended. These aspects will be investigated in future
studies. In view of using digital systems to make living conditions simpler and affordable
for the population, this paper has contributed towards exploring satellite technology to
facilitate the process of planning precision irrigation and to reduce the costs of investment
in tools and equipment for future farming generations.
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