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Abstract: In recent years, human action recognition has received increasing attention as a significant
function of human–machine interaction. The human skeleton is one of the most effective representa-
tions of human actions because it is highly compact and informative. Many recent skeleton-based
action recognition methods are based on graph convolutional networks (GCNs) as they preserve
the topology of the human skeleton while extracting features. Although many of these methods
give impressive results, there are some limitations in robustness, interoperability, and scalability.
Furthermore, most of these methods ignore the underlying information of view direction and rely on
the model to learn how to adjust the view from training data. In this work, we propose VW-SC3D,
a spatial–temporal model with view weighting for skeleton-based action recognition. In brief, our
model uses a sparse 3D CNN to extract spatial features for each frame and uses a transformer encoder
to obtain temporal information within the frames. Compared to GCN-based methods, our method
performs better in extracting spatial–temporal features and is more adaptive to different types of
3D skeleton data. The sparse 3D CNN makes our model more computationally efficient and more
flexible. In addition, a learnable view weighting module enhances the robustness of the proposed
model against viewpoint changes. A test on two different types of datasets shows a competitive
result with SOTA methods, and the performance is even better in view-changing situations.

Keywords: skeleton-based action recognition; sparse 3D convolutional neural network; transformer;
view adaptive

1. Introduction

Human action recognition has become a popular area in current research studies, and
has been widely used in industrial [1,2], social [3–5], medical [6], and sports [7] fields. With
the development of deep learning and the drop in computational cost, many excellent
works [8] for action recognition have been proposed in recent years. According to the
type of action data, the existing works are mainly divided into two types: video-based [9]
and skeleton-based [10–12] action data. Compared with RGB and optical flow sequences,
skeleton modality is robust to illumination changes, body scales, dynamic camera views,
and background noise. In addition, both motion capture devices [13,14] and some advanced
human pose estimation algorithms [15–17] can make it easier to obtain high-accurate 3D
skeletal action data. Based on the above advantages of the skeleton, skeleton-based action
recognition has received much attention and become an active topic in computer vision.

Skeleton-based action recognition (SAR) aims to recognize action categories by using
skeletal action sequences. The most challenging problem for skeleton-based action recogni-
tion is how to extract the spatial and temporal features from skeleton data properly. For
spatial features, due to the geometric constraints of the human skeleton and the strong
correlation between adjacent joints, rich spatial information of the human skeleton can
be extracted in each frame. For temporal features, time domain correlation information
can be given by calculating the change in the skeletons between frames. Designing a
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framework to combine the temporal and spatial features of skeleton sequences and extract
as many effective features as possible is the key to the SAR task. Traditional SAR methods
generally focus on modeling the motion characteristics of the skeleton joints and designing
hand-crafted features [14,18,19] according to human experience in recognizing actions.
However, handcrafted features are suboptimal in most cases and depend on the dataset.
For different datasets, we often need to design different features, which is inconvenient.
With the successful application of deep learning in the action recognition task, methods
based on various neural network architectures have emerged [20]. At present, deep learn-
ing methods for SAR can be divided into three types: RNN-based methods, GCN-based
methods, and CNN-based methods.

The skeleton sequence records the joint positions at each moment, which can be
regarded as a kind of time series. Meanwhile, RNNs are suitable for analyzing time series
data due to their specially designed structure [21–23]. Aiming at the problem of the gradient
vanishing and exploding of RNNs making them difficult to train, Li et al. [24] presented an
independently recurrent neural network (IndRNN), where neurons in the same layer are
independent of each other and are connected across layers. However, although the RNN
is good at obtaining the temporal features of the skeleton sequence, it lacks the ability to
effectively learn the spatial relationship between skeleton joints.

From the skeleton’s view, human skeleton data are represented in a natural topolog-
ical graph, so graph-related neural networks, especially GCNs [25–28], are suitable and
frequently used for SAR. Yan et al. [29] first introduced GCNs into the SAR field. They
proposed a novel model of dynamic skeletons called spatial–temporal graph convolutional
networks (ST-GCNs), which can automatically learn both the spatial and temporal patterns
from skeleton sequence. Human skeletons were processed as spatial graphs of edges and
nodes in this study. The excellent results of this work have inspired many researchers to
investigate GCN-based methods. However, GCN-based methods are difficult to generalize
to skeletons with a different number of joints or connections.

CNNs are widely used in image analysis tasks due to their natural and excellent high-
level information extraction capabilities. Compared with the above deep learning models,
CNNs have better feature extraction capabilities and better flexibility toward different sizes
of skeletons. However, it is also a challenge for CNN-based methods to balance and model
the spatial and temporal information. Many works [30–34] represent skeleton sequences
as 2D pseudo-images, which can be fed into CNNs directly. However, there are still
limitations for these methods: (1) converting 3D skeletal data to a 2D pseudo-image may
not be an ideal skeleton representation, because they will inevitably lose some information,
such as the potential connections between some joints; (2) the coordinates of joints are
employed as features, which may ignore the 3D spatial structure relationship of joints under
different poses; (3) how to fully utilize the spatial feature extraction capability of CNNs,
the architecture of CNNs, and the size and speed of the model [11,35] are still problems.

In this paper, we propose a novel view-invariant spatio-temporal model for SAR,
called VW-SC3D, which utilizes sparse three-dimensional convolutional neural networks
(3D CNNs) to extract spatial features of a 3D skeleton within each frame to form feature
vectors. First, 3D skeletons in each frame were processed to the 3D maps, and we rotated
the skeleton in each frame to a uniform angle by weighting the average view of each frame.
Second, sparse 3D CNNs took the 3D maps of skeletons as an input to extract the spatial
features, and then a temporal transformer was applied to obtain the temporal dependencies
between frames and dynamic relationships. Figure 1 shows an overall pipeline of our work.
Third, we verified our methods and carried out experiments on a large-scale public dataset,
NTU-RGB+D 60, and a small-scale dataset, the Taichi dataset. To the best of our knowledge,
we are the first to apply sparse 3D CNNs on the 3D map transformed by the 3D human
skeleton. Our main contributions are summarized as follows:

(1) This work presents a novel spatial–temporal architecture for SAR that uses sparse
3D CNNs to obtain spatial features for each skeleton and a temporal transformer to
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extract temporal dynamic information between skeletons, which take full advantage
of the properties of different network structures.

(2) To retain more information and generalize to any skeleton, we transformed the 3D
skeleton to a 3D point cloud instead of converting a 3D skeleton to a 2D pseudo-image.
The entire 3D point cloud was taken as features in place of the coordinates of joints.
In addition, sparse 3D CNNs were employed instead of general 3D CNNs to make
our model lighter.

(3) A view-weighted transformation mechanism was introduced to address the view
variation problem of 3D point cloud for better action recognition.

The overall structure of the study takes the form of five chapters, including this
introduction. Section 2 first provides a review of the existing related works. Then, a
detailed description of our proposed method is provided in Section 3. After this, extensive
experiments on the large-scale public action dataset were conducted, followed by an
analysis and comparison of experimental results in Section 4. Finally, Section 5 summarizes
our paper and draws conclusions.

Figure 1. Diagram of the proposed method.

2. Related Work

In this section, we collect and discuss relevant prior work, including CNN-based
methods for SAR, temporal transformer networks, and view invariance in SAR.

2.1. CNN-Based Methods for Skeleton-Based Action Recognition

In recent years, CNNs have shown encouraging performances in image and video
analysis. However, such models cannot directly act on 3D skeleton sequences due to their
limitations on the 2D image input. For 2D CNN-based methods, 3D skeleton sequence
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data are converted to a pseudo-image to meet the needs of the CNN input. Wang et al. [36]
proposed joint trajectory maps (JTM) to represent 3D skeleton sequences by encoding
the the joint trajectories and their dynamics into three 2D images. Caetano et al. [37]
introduced a novel skeleton image representation, named SkeleMotion, where the temporal
dynamics of the sequence are encoded as variations in columns and the spatial structure
of each frame is represented as rows of a matrix. In [35], Yang et al. presented a double-
feature double-motion network (DD-Net), which uses a lightweight network structure and
can reach a very fast speed. However, this method of processing the skeleton sequence
inevitably loses some information. Liu et al. [38] firstly applied 3D CNNs in SAR. They
proposed a novel two-stream model using 3D CNNs, and two 3D CNN models extracted
the spatial and temporal information, respectively. However, it is difficult for 3D CNNs
to mine long-term temporal information, and the two-stream structure model has large
parameters and a slow speed. However, this work treats skeleton sequences in the temporal
and spatial dimension in the same way, ignoring the difference between the temporal
and spatial dimension in skeleton data. Duan et al. [39] represented the human skeleton
sequences with a 3D heatmap volume instead of a 2D graph sequence, and then used
3D CNNs for feature extraction and action classification. This method also essentially
converts the 3D skeleton into a 2D graph, and then adds the time dimension to form the
three-dimensional input data for the 3D CNN. Shi et al. [40] proposed a novel sparse 4D
convolutional network (SC4D) by regarding the skeletal sequence as a spatial–temporal
point cloud and voxelizing it into a four-dimensional grid. The advantage of this work is
that there is no need to manually design hand-crafted transformation rules. It makes better
use of the advantages of convolutional networks, and provides a more general and robust
framework for skeletal data. Similar to [40], we converted the human skeleton into a 3D
map, retaining the information of three dimensions in the skeleton. However, we only used
sparse 3D CNNs to extract the spatial information of the skeleton in order to make full use
of the spatial extraction ability of CNNs. The temporal features of skeleton sequences were
obtained by other methods.

2.2. Transformer for Skeleton-Based Action Recognition

The success of the transformer [41] proposes a new simple network architecture for
modeling long temporal sequences through a powerful self-attention mechanism. The
transformer has a good performance in the field of natural language processing [42,43].
Since text and action sequences have a high logical similarity, it is a natural idea to introduce
the transformer into the action recognition field [44]. Cho et al. [45] first introduced
the self-attention mechanism for SAR, and presented three variants of the self-attention
network to extract high-level semantics. In addition, Plizzari et al. [46] used a spatial
self-attention module to understand intra-frame interactions between different body parts,
and a temporal self-attention module to model inter-frame correlations. For 2D pose-based
action recognition, Mazzia et al. [47] introduced an action transformer to provide a low-
latency solution for an accurate and effective real-time performance. To adopt the skeleton
with noise, Zhang et al. [48] proposed a self-supervised learning method, and designed a
spatial transformer block and directional temporal transformer block for modeling skeleton
sequences in spatial and temporal dimensions, respectively. These works have proved
that the transformer has shown an excellent performance on some action datasets. It is
worth mentioned that the time series modeling ability of the transformer is outstanding,
especially when dealing with long temporal sequences. Therefore, in our work, we use
the transformer to extract the temporal features of the 3D skeleton; that is, the dynamic
information between frames.

2.3. View Invariance in Skeleton-Based Action Recognition

In addition to feature extraction, how to deal with the view change problem [49,50]
is also one of the challenges for SAR. The commonly used methods are to preprocess the
skeleton [51–53] before feeding it into the model. In [23], Du et al. centralized the joints’
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positions to the human center for each frame and smoothed the positions. Shahroudy et
al. [54] translated the skeletons to the body coordinate system and scaled all of the 3D
points based on a fixed distance. However, these preprocessing methods are inflexible
and may result in a loss of dynamic information within actions. Ji et al. [55] proposed
a view-guided skeleton CNN (VS-CNN) to solve the arbitrary-view action recognition
by emphasizing crucial joints and their relationships. Zhang et al. [33] designed two
view adaptive networks, VA-RNN and VA-CNN, which can determine the most suitable
observation viewpoints and transform the skeletons to those viewpoints. In addition, Gao
et al. [56] presented a view transformation network that transforms arbitrary-view action
samples to a base view to seek a view-invariant representation. In our paper, we introduced
a simple view transformation mechanism by per-frame view weighting to address the view
variation problem.

3. Method

In this section, we will propose the framework of our model, VW-SC3D, a spatial–
temporal action recognizer based on sparse 3D convolutional neural network and trans-
formers. Our method is a competitive alternative to GCN-based frameworks and highly
adaptable to view variance with the help of a view weighting module. The details of our
model will be covered in the following subsections. In brief, our model takes raw 3D
skeleton data of an action as the input and outputs the probabilities of possible actions. We
will dive into the data format later.

3.1. 3D Point Cloud Generating and View Weighting

The input data contain a 3D skeleton for each frame of an action. The skeleton data
consist of 3D coordinates of human joints. There are several different definitions of the joints
layout according to different public datasets or the data acquisition device. In different
layout definitions, the number of joints and the connectivity between joints may vary,
which makes it hard to design a unified model that can handle different layout definitions.
Therefore, we first developed a mechanism that can adapt our model to different types of
layout definitions.

Given a layout definition and raw 3D coordinates of joint as we described, we set the
input data as a tensor X with shape (N, T, V, 3), where N is the batch size, T is the number
of frames, V is the number of joints, and 3 indicates the 3 real numbers of a Cartesian 3D co-
ordinate. The layout is described as a list of joint pairs, which indicates which pairs of joints
are linked in this particular definition of layout; for example, [(1, 2), (2, 21), . . . , (25, 12)],
where each number is a joint index that corresponds to a human joint such as the elbow,
wrist, or neck. With this index information, we can transform the raw input into a tensor
X′ with shape (N, T, V′, 2, 3), where V′ is the number of pairs. X′ stores the 3D coordinates
of two points for each of N samples, T frames, and V′ pairs of joints.

Given the tensor X′, we linked the joints with discrete 3D points to generate a point
cloud. Specifically, we first set a hyperparameter s, which is an integer indicating the
density of link points. Then, we constructed a matrix M with shape (1 + s, 2) as follows:

1 0
1− 1

s
1
s

1− 2
s

2
s

...
...

0 1

 (1)

After that, we calculated the link points with the formula

Yijklm =
N

∑
n=1

MlnX′ijknm (2)
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where Y is a tensor with shape (N, T, V′, 1 + s, 3), which stores the 3D coordinates of the
skeleton point cloud. This operation can be carried out in parallel with the help of an
Einstein sum or batch matrix multiplication supported by tools such as Pytorch or Numpy.
In Pytorch, this operation can even be built as a differentiable module, which can be
integrated into our end-to-end trained model. Figure 2a is an illustration of the generated
3D skeleton point cloud.

Figure 2. (a) Three-dimensional skeleton point cloud in a single frame, (b) frames of 3D skeleton
point cloud before view adjusting, (c) frames of 3D skeleton point cloud after view adjusting.

Finally, for each of N samples, we rotated the skeleton according to the view direction
of each frame. This operation is designed to cope with variant view points of the same
action. In brief, if the whole action is viewed from a different point, the algorithm should
still know it is the same action. Most researchers calculate the view direction of each frame
and rotate each frame separately so that all of the frames are viewed along the x axis. The
view direction of each frame is usually defined as the normal vector of the plane formed by
the left shoulder, right shoulder, and the middle of the spine, which is a stable structure
that exists in all different layout definitions. However, rotating the frames separately will
lose the global information between frames. Thus, in our work, we calculated a global
view direction by a weighted averaging of all of the view directions. We initialized the
weights equally, but we set the weights as trainable parameters so that they can be adjusted
according to the training data. Some frames such as the beginning and ending frames
are not as important as the middle ones, so trainable weights can make the model more
flexible and effective. As Figure 2b,c show, the 3D skeleton point cloud was adjusted to a
normalized direction.

3.2. Sparse 3D Convolutional Neural Networks

For each frame of each action sample, a 3D point cloud skeleton with a normalized
view was generated by the above method. To extract features from 3D data, 3D CNNs are
a powerful tool.

Three-dimensional CNNs are usually used for extracting feature from data with a
3D structure, such as videos, MRI, and HSI. Similar to 2D CNNs, 3D CNNs convolves
three-dimensional kernels to the input. A single kernel move along three spatial directions
in the 3D feature maps to calculate the output at each coordinate.

The output value of the jth convolutional kernel at position (x, y, z) in the ith layer is
given by

v′ij
xyz

= bij +
Mi

∑
m=1

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(z+r)

(i−1)m (3)
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where vxyz
im is the mth feature map of the ith layer at position (x, y, z), and there are Mi

feature maps in the ith layer. wpqr
ijm is the (p,q,r)th value of the jth kernel in the ith layer

connected to the mth feature map of the previous layer. Note that, for each combination
of i, j, and m, there exists a 3D cubic kernel of shape (Pi, Qi, Ri), where those kernels are
independent to each other. This convolutional operation outputs a tensor v′, which has J
(j ∈ [1, J] and j ∈ N). Figure 3 is an illustration of 3D CNNs.

Figure 3. Three-dimensional convolutional neural networks.

We can normally reshape tensor Y to (N ∗ T, V′, s + 1, 3), quantize the coordinates to
a 3D grid, fill an empty tensor with shape (N ∗ T, V′, D, H, W), and use 3D convolution
to extract deep features. However, in our case, most of the space is unoccupied, which
means normal 3D convolutional modules will waste many computing resources and are
extremely slower.

Sparse 3D CNNs (SC3Ds) were developed for reducing the computational consump-
tion of 3D CNNs, especially when processing the point cloud, which is always spatially
sparse. SC3Ds formulate the point cloud with features as an unordered set of points
paired with features {(pj, x( j)}, where xj ∈ RC is a C-dimensional feature vector for point
pj ∈ ZD. Instead of computing all of the convolutions at each 3D position, the SC3D maps
the possible output position to the sparse input points and only performs the necessary
computations. There are some slight differences between normal 3D CNNs and SC3Ds
because SC3Ds omit some of the possible output positions that are far from the input points.
This difference will not significantly influence the performance, especially when the input
point cloud is sparse. The details can be found in [57].

The design of the SC3D is different from normal 3D CNNs because we do not obtain
the shape of the output in each layer. For each layer in the SC3D, the input is a point
cloud with features as mentioned above and the output is also a featured point cloud. In
our work, we designed a SC3D with a stem block and several encoder blocks as shown
in Figure 4. The stem block extracts the shallowest feature from the input and adjust the
channel dimension to 32, but without any down-sampling.

The encoder blocks each extract deeper features by extending the channel dimension
and performing down-sampling. After a few encoder blocks, the output point cloud is
much smaller but with larger feature channels. Finally, the model performs an average
pooling for each channel and outputs a feature vector for each of N samples and T frames.
Figure 5 is an illustration of our SC3D layers. Note that we processed the point cloud
without it being limited in a cubic boundary in comparison to the 3D CNN in Figure 3, and
still extracted more channels of deep features in each layer. Beyond computational efficiency,
SC3Ds can help focus on the relevant points without having to set a limit beforehand, which
is highly feasible in action data processing.
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Figure 4. Details of the proposed SC3D-based model.

Figure 5. SC3D for skeleton feature extraction.

3.3. Transformer Encoder

In recent research, the transformer has proved to be quite powerful in processing
sequential data, which is compatible with our method. The original transformer model
solves the problem of machine translation, where an encoder and a decoder are developed
to encode a sentence in one language to a feature and decode it to a sentence in another
language. The details of the whole structure contains multi-head attention, masked multi-
head attention, a feed-forward network, positional encoding, and word embeddings. Many
modules are designed specifically for the language model, but the multi-head attention
mechanism is adaptive to multiple different tasks, including extracting features from
sequential data such as human actions.

An attention function maps a query and a set of key–value pairs to an output, where
the query, keys, and values are all vectors. The output is computed as a weighted sum of
the values, where the weights are computed by a dot-product of the query and keys. In



Electronics 2023, 12, 117 9 of 16

naive attention, queries, keys, and values are all identical to the input vectors, which makes
the output linear combinations of the input vectors; that is, given a vector vt for each time
step t, the attention mechanism outputs a vector v′t, respectively, and each output vector is
a linear combination of all of the input vectors vt′ , where the weight for vt′ is determined by
calculating the dot-product of vt and vt′ . This mechanism helps the information exchange
between feature vectors along the time dimension; thus, it can extract temporal features
from the input data. Compared with methods based on recurrent neural networks, the
attention mechanism exchanges information in both forward and backward directions,
and the distance between frames will not influence the strength of the exchange. This
is basically an advantage, but with a small drawback. Regardless of the order of input
vectors, the output will be the same because of this mechanism. Thus, in the transformer
encoder, there is a positional encoding module to introduce position information to the
model. Multi-head attention is an upgraded version of attention, and feeds the original
input to different linear layers to produce different queries, keys, and values, which makes
the model more flexible.

In our work, after we fed our data to SC3D networks and obtained a feature vector
for each frame, we used a stacked multi-head attention module with a feed-forward sub-
network to extract temporal features from the spatial features over time, and obtained a set
of feature vectors of the same length as the input. Finally, we used global average pooling
to compress the whole spatial–temporal information into a single feature vector. Instead
of directly processing the spatial feature vectors with a fully connected neural network,
our method takes full advantage of the prior knowledge that the spatial feature vectors
are correlated along the axis of time. Thus, our method is more powerful in extracting
spatial–temporal features than naive neural networks or GCN-based networks, which focus
more on the spatial topology of the human body. In the next section, we will show some
experimental results to prove our thoughts.

4. Experiments

In this section, we conducted our experiments on one large-scale and one small-scale
skeleton-based action recognition dataset and compared our results with state-of-the-
art methods under different evaluations. In addition, we designed multiple ablation
experiments to verify the effectiveness of each part of our architecture.

4.1. Datasets

The NTU-RGB+D 60 dataset [54] is a large-scale public action dataset for human action
recognition. It contains 56,880 action samples in 60 labelled action classes, including daily
actions, mutual actions, and medical conditions. This dataset is captured by three Kinect
V2 cameras, and has four different modalities—RGB videos, depth map sequences, 3D
skeletal data, and infrared (IR) videos—for each sample. We used the 3D skeletal data
as our experiment data. Each skeleton has 25 body joints, as shown in Figure 6a, and 3D
skeletal data contain the 3D coordinates of joints at each frame. Forty distinct subjects,
various camera settings, changed captured views, and different orientations of objects form
a large and diverse sample. There are two evaluations proposed in [54]. Cross-subject (CS)
evaluation splits the 40 subjects into two groups: 20 subjects for training and the other
20 subjects for testing. For cross-view (CV) evaluation, all of the samples of camera 1 are
for testing and the samples of cameras 2 and 3 are for training. Both evaluation settings
were still followed in our experiments.
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Figure 6. Skeletons of NTU-RGB+D 60 and Tai Chi dataset.

The Taichi dataset [14] is a self-established fine-grained small-scale dataset. We used
the actions that come from Wu Style Tai Chi, which is one of the most popular genres
of Tai Chi. Motion data were collected by an inertial sensor system, and the skeletons
were obtained by processing the motion quaternion based on the chain rule. This dataset
contains twenty sets of Tai Chi actions performed by two subjects, including one female
and one male. Each subject collects ten sets, and we used the first ten action categories in
each set for the next experiments. The skeleton has 21 joints, as shown in Figure 6b. Note
that the inertial sensor system is not capable of collecting different views of the same action
simultaneously like the camera-based acquisition method. In our work, we augmented
the data by rotating the skeletons to several new directions in 3D space to simulate view
changing. The directions were aligned to the same axes as the setup of NTU RGB+D
dataset. This augmentation makes the dataset a good evaluation standard of the cross-view
performance because, in camera-based data, the depth camera is less sensitive in the depth
direction than other directions, which brings additional disturbance to pure view changing.

4.2. Experiment Settings

Our experiments were conducted using Pytorch framework. We trained our model on
eight NVIDIA GTX 3090 GPUs in parallel with the pytorch distributed package. We chose
SGD as our optimizer, with a learning rate of 0.1, momentum of 0.9, and weight decay of
5 × 10−4. A cosine annealing strategy of learning rate adjustment was used. We performed
a few instances of data pre-processing on both the training dataset and testing dataset, such
as uniform sampling and 3D normalization, before feeding the raw data into our model
to make sure that the spatial and temporal scale of different samples were comparable. In
our final settings, there were approximately 2.4 M FLOPS in the SC3D module and 9.1 M
FLOPS in the transformer module, which cost approximately 100 ms on our platform. Note
that the cost of the view weighting module can be ignored compared to the SC3D and
transformer. The computational complexity of the transformer is proportional to the square
of input dimensions and frames, which can be adjusted for different situations.

4.3. Experiment Results

Table 1 shows the performance of our method on the NTU-RGB+D 60 dataset and the
Taichi dataset under CS and CV evaluations. For each sample, our model will predict a
score for each category. There are two different types of accuracy measurements in our
experiment: Top-1 accuracy and Top-5 accuracy. Top-1 accuracy measures the proportion
of examples for which the label with the highest predicted score matches the single target
label; Top-5 accuracy means any of our model’s top five highest scores matching with the
target label. We recorded both the Top-1 and Top-5 action recognition accuracy to better
represent the capabilities of our model.
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Table 1. Action recognition accuracy (%) on the NTU-RGB+D 60 and Taichi datasets.

Dataset Evaluation Top-1 Top-5

NTU-RGB+D 60 CS 83.7 94.5
CV 89.4 97.3

Taichi CS 90.4 98.5
CV 95.0 99.7

Our experimental results support that our model can handle skeleton data with
different structures and different numbers of joint points. Since our model does not need to
obtain the skeleton structure in advance, when dealing with small-scale datasets, we can
first pre-train our model on a large-scale dataset and then fine-tune it. For experiments on
the Taichi dataset, we fine-tuned the model pre-trained on the NTU RGB+D 60 dataset to
solve the insufficient training data problem. In addition, action data from different views
in the Taichi dataset were acquired by manually rotating the skeleton randomly. Therefore,
the high recognition accuracy under the CV setting on the Taichi dataset proves that our
view weighting module is robust to simple view changes.

Figure 7 presents the confusion matrix on the NTU-RGB+D 60 dataset, using the CS
benchmark as an example, to reflect the stability of our model. In this figure, we can see
that some cases in NTU-RGB+D 60 are more likely to be misclassified. This is because
human actions are not only described by the shape and trajectory of body parts. Without
the environmental information such as the objects appearing in the scene, some actions are
very similar to each other. For example, reading and sitting are basically in the same posture
most of the time. The skeleton data do not show that there is a book in the scene. Ideally, the
skeleton data and the visual data should be analyzed together to deeply understand human
actions. The performance on the Taichi dataset is much better because the Taichi actions are
purely martial arts that can be recognized without any environmental information.

Figure 7. Confusion matrix of the (a) NTU-RGB+D 60 dataset and (b) Tai Chi dataset under CS setting.

4.4. Ablation Study

In this section, we verify the validity of modules in our framework, including view
weighting and transformer modules, and analyze the influence of 3D sparse CNN layers
on the experimental results.

4.4.1. Impact of View Weighting and Transformer Modules

View weighting aims to adjust the skeleton sequence to the same view, minimize the
impact of view changing for the network to recognize actions, and further help to improve
the recognition accuracy, especially under CV evaluation.



Electronics 2023, 12, 117 12 of 16

In addition, thanks to the powerful modeling capability and unique self-attention
mechanism, the transformer has shown an excellent performance in many vision tasks. In
our model, the transformer was used to find the correlation between frames and extract
temporal features of the skeleton sequences. If we remove the transformer encoder and
replace it with a single fully connected layer, the structure still works. In this subsection,
we analyze the effectiveness of these two modules.

Table 2 compares the experimental results under different module combinations. From
this table, we can see that view weighting in the presence of the transformer can improve
the recognition accuracy by around 3 and 8 percent for the CS and CV settings, respectively.
Moreover, the transformer is also essential for achieving a better result.

Table 2. Accuracy (%) comparisons on different modules on the NTU-RGB+D 60 dataset.

Module NTU-RGB+D 60 Tai Chi

VW Transformer CS CV CS CV

× × 78.1 79.2 87.3 89.8
X × 78.5 82.2 88.2 93.3
× X 80.3 81.1 89.1 91.1
X X 83.7 89.4 90.4 95.0

4.4.2. Influence of 3D Sparse CNN Layers

In our design, the backbone of our model consisted of two kinds of layers: a sparse
stem layer and sparse encoder layer. The stem layer is meant for data dimension transforma-
tion and extracting shallow features that cannot be removed. The sparse encoder layers are
serialized one above another with trailing global average pooling, so the number of layers
is negotiable. The deeper model abstracts more semantic features but is more complicated
and difficult to train. We set different configurations of layers to test the influence.

Table 3 shows a comparison between different numbers of layers. To some extent,
adding more encoders will increase the accuracy. Note that, at some point, adding more
layers no longer boost the performance; that is how we choose the final configuration
of layers.

Table 3. Accuracy (%) comparisons on different numbers of layers for the main network on the
NTU-RGB+D 60 dataset.

Main Network Structure CS CV

3D Sparse CNN

1 sparse encoder 81.2 83.5
2 sparse encoders 82.1 84.4
3 sparse encoders 83.5 87.2
4 sparse encoders 83.7 89.4

4.5. Comparisons with the State-of-the-Art Approaches

Table 4 shows the results of SOTA skeleton-based action recognition methods. In this
table, it is obvious that our work surpasses the RNN-based methods because these methods
use LSTM for temporal feature extraction but ignore the underlying spatial structure of the
3D skeleton in every frame and treat the coordinates as features directly. In contrast, our
work combines spatial and temporal features. Further, the transformer encoder does not
limit the temporal information exchange to a single direction.

Our work is also better than most CNN-based methods because of two main reasons.
First, the input of our model is a pure 3D skeleton, with the 3D spatial structure preserved,
whereas some CNN-based methods compress the 3D skeleton into a 2D image, where it is
difficult for the networks to directly learn 3D features. Second, our method extracts the
spatial and temporal spatial features, respectively, thus being easier to learn for both parts,
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whereas some CNN-based methods treat spatial and temporal features in the same way by
naively stacking the spatial–temporal data as one big tensor.

Table 4. Accuracy (%) comparisons with SOTA methods on NTU-RGB+D 60 dataset.

Method CS CV

RNN-Based
STA-LSTM [53] 73.4 81.2
VA-LSTM [58] 79.4 87.6
DS-LSTM [59] 77.8 87.3

GCN-based
ST-GCN [29] 81.5 88.3
AS-GCN [25] 86.8 94.2

Shift-GCN [26] 90.7 96.5

CNN-Based

JTM [36] 73.4 75.2
SkeletonNet [60] 75.9 81.2

Clips+CNN+MTLN [61] 79.6 84.8
SkeleMotion [37] 76.5 84.7

Skepxel [62] 81.3 89.2
Banerjee et al. [63] 84.2 89.7
VW-SC3D (Our) 83.7 89.4

The GCN-based method is slightly better than our work because the model makes full
use of the topology information by processing the skeleton graph. This is an advantage
but sometimes a limitation. As we mentioned above, the graph-based method relies on the
definition of the skeleton layout, which makes it difficult for the model to adapt to new
tasks where the layout is different. Our work is more flexible in the situation where the
layout is a little different from training data because our model transforms the raw skeleton
to a point cloud. For example, in our experiments, we can apply the model pre-trained on
the NTU-RGB+D 60 to the small-scale Tai Chi dataset. As long as the skeleton belongs to a
human, the generated point cloud will vary little, which makes our model reusable.

5. Conclusions

In this paper, we present VW-SC3D, a spatial–temporal model for skeleton-based hu-
man action recognition. Our model is basically based on sparse 3D CNNs and transformers.
First, the model transforms the raw data into a point cloud with a linking module and a
view weighting module. Then, a sparse 3D CNN extracts spatial features from the point
cloud. Finally, transformer encoders extract temporal information from the spatial features.
We trained our model on two different types of human action datasets. The results show
that our proposed method is competitive with SOTA methods and performs better against
view changing. We also conducted many ablation studies to show the effectiveness of dif-
ferent modules in this method. Specifically, we compared the performances with different
setups, such as the existence of different modules and the number of sparse encoders. The
results show that the view weighting module mainly enhances the cross-view performance
and that the transformer encoder enhances the overall performance. Furthermore, the
number of sparse encoders should be limited according to our study.
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Abbreviations
The following abbreviations are used in this manuscript:

RNN Recurrent Neural Network
LSTM Long Short-Term Memory
STA-LSTM Spatio-Temporal Attention Long Short-Term Memory
VA-RNN View Adaptive Recurrent Neural Network
DS-LSTM Denoising Sparse Long Short-Term Memory
GCN Graph Convolutional Network
ST-GCN Spatio-Temporal Graph Convolutional Network
AS-GCN Actional–Structural Graph Convolution Network
JTM Joint Trajectory Maps
SC4D Sparse 4D Convolutional Network
3D-CNN 3D Convolutional Neural Network
S3D-CNN Sparse 3D Convolutional Neural Network
VW-SC3D View Weighting Sparse 3D Convolutional Neural Network
VA-CNN View Adaptation Convolutional Neural Network
TCN Temporal Convolutional Network
SAR Skeleton-based Action Recognition
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