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Abstract: Artificial intelligence (AI), in particular deep learning, has proven to be efficient in medical
diagnosis. This paper introduces a new hybrid deep learning model for pneumonia diagnosis based
on chest CT scans. At the core of the model, a Gaussian mixture is combined with the expectation-
maximization algorithm (EMGMM) to extract the regions of interest (ROI), while a convolutional
denoising autoencoder (DAE) and deep restricted Boltzmann machine (DRBM) are combined for the
classification. In order to prevent the model from learning trivial solutions, stochastic noises were
added as an input to the unsupervised learning phase. The dataset used in this work is a publicly
available dataset of chest X-rays for pneumonia on the Kaggle website; it contains 5856 images with
1583 normal cases and 4273 pneumonia cases, with an imbalance ratio (IR) of 0.46. Several operations
including zooming, flipping, shifting and rotation were used in the augmentation phase to balance
the data distribution across the different classes, which led to enhancing the IR value to 0.028. The
computational analysis of the results show that the proposed model is promising as it provides an
average accuracy value of 98.63%, sensitivity value of 96.5%, and specificity value of 94.8%.

Keywords: deep learning; pneumonia prediction; Gaussian mixture; convolution autoencoder;
Boltzmann machine

1. Introduction

Medical images such as MRI or X-ray scans allow for a better diagnosis process
without the need for surgery. Chest X-ray (CXR), for example, is considered an important
requirement to diagnose the COVID-19 virus. Recently, integrating AI techniques in
medical scan machines has improved the detection of infected parts and has aided in the
diagnosis process. One of the serious diseases that infect the lungs and cause respiratory
system defects is pneumonia, which can be caused by different types of viruses, bacteria,
fungi, or chemical exposure [1]. It dangerously fills the lungs with fluids and minimizes
the carbon dioxide exhalation causing breath struggle, fainting, fever, and other symptoms
that may lead to sudden death based on the severity and intensity of the infection [2].
Accordingly, the early detection of pneumonia is a very important step in order to prevent
patients from having severe symptoms, save them from disorder complications [3], and
treat them with low-cost medications.

Various AI techniques have been used in automatic analysis systems for noninvasive
pneumonia detection and diagnosis, which has led to quicker, more accurate, and more re-
liable treatment decisions [4,5]. Recently, deep learning has shown better performance over
traditional AI techniques for medical image classification [6–8]. Although deep learning
models [9–11] have allowed for fast and accurate diagnosis, the efficiency and effectiveness
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of these models have mainly relied on their hyperparameter values.Choosingsuitable
hyperparameter values is a critical task in order to create an efficient model for the
problem at hand. Several models have achieved high accuracies, especially when they
combine supervised and unsupervised learning, such as deep restricted Boltzmann ma-
chine (DRBM) [12–14], convolution neural network (CNN) [7,8], and denoising autoen-
coder [15,16].

This paper introduces a new hybrid deep learning model that at its core uses the
EMGMM as a guide for a multi-phased model to improve the total training time and
complexity. The model also integrates the DAE and DRBM to assist with the prediction of
chest diseases. The EMGMM allows for the efficient extraction of the ROI, while the DAE
prevents the model from learning trivial representations during the feature extraction phase
from healthy and unhealthy (pneumonia) cases. Finally, the DRBM provides an extra layer
that aims to extract the abstract features and increases the robustness and generalization to
avoid over-fitting.

The main contributions of this work can be summarized as follows: (1) the ability
of the model to extract the ROI based on the EMGMM that combines both the Gaussian
mixture and the Max Expectation segmentation with thresholding boundary detection;
(2) the use of a hybrid model that combines DAE and DRBM for better generalization
and robustness; (3) the ability of the proposed model to achieve higher accuracy rate over
existing works when applied to the same large CT scans dataset.

The paper is structured as follows: Section 2 focuses on similar research in the litera-
ture that used deep-learning models to diagnose chest diseases based on CXR. Section 3
introduces the proposed model and its constituents. Section 4 presents the experimental
setup and discussion of results, in addition to a comparison between the proposed model’s
performance and similar studies. Finally, Section 5 concludes this work.

2. Literature Review

Pneumonia, one of the most common chest diseases, can be diagnosed by radiologists
using CXRs. Several AI techniques [17–19] and analytical models [20,21] have been devoted
to diagnosing pneumonia from lung X-ray images. Deep learning techniques were used for
image analysis and diagnosis-based classification [7–12] showing significant performance
in identifying infected regions with high accuracy. The remainder of this section surveys
existing deep-learning models that aimed to diagnose chest diseases based on CXR.

In [15], the authors built a deep learning model for automatic COVID-19 detection
based on CT scans using four convolution layers trained by the autoencoder. Each layer
of the stacked autoencoder detector was separately trained to guarantee dimensionality
reduction and better feature extraction. The authors reported that the model achieved
94.7% accuracy using 5-cross folding. This might be considered not to be a high enough
accuracy based on the fact that the model was trained on a small dataset of CT scans with
470 cases only.

In [22], the authors built a CNN deep-learning model to detect different types of
pneumonia including COVID-19. Firstly, they used meta-learner optimization by training
the model using either normal or non-COVID-pneumonia cases. Then, they utilized depth-
wise convolution with several dilation rates to extract optimal diversified features from
chest X-rays of pneumonia. High accuracy of 98.1% was achieved while detecting normal
versus pneumonia cases, and moderate accuracy of 90.2% for COVID-19/Viral pneumonia
classification.

In [23], researchers constructed a deep CNN to diagnose pneumonia disease. Their
architecture utilizes backpropagation neural networks (BPNNs) for error enhancement
and competitive neural networks (CpNNs) to allow for both supervised and unsupervised
learning opportunities. They concluded that CNN has better generalization power than that
achieved by BPNN, whereas it suffers from high computational time and a large number
of iterations. The model achieved an accuracy of 92.4% using CNN, and a minimum
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and maximum accuracy of 80.04% and 92% respectively when applying the BPNNs and
CpNNs models.

In [24], the authors introduced a CNN model to detect pneumonia from 5856 x-ray
chest scans for children from 1–5 years old. The authors used data augmentation algorithms
to improve the classification power of the model. The model achieved an accuracy of 95.31%
when applied to 200 data samples in the training phase and 93.73% in the validation phase,
which are good results but not high enough.

In [25], the authors used an ensemble of three convolution neural network models:
GoogLeNet, ResNet-18, and DenseNet-121 to detect pneumonia disease. Their proposed
model was developed using two different chest x-ray images: Kermany and RSNA. Al-
though the ensemble model achieved an accuracy of 98.81% for the Kermany dataset, and
86.85% for RSNA, the imbalance ratio for the Kermany dataset was 0.46, which might have
played a role in the resulting high accuracy, especially in view of the small number of
healthy, or normal, patients. Regrettably, this issue was not addressed by the authors in
their work.

In [26], the authors used a CSAC-Net deep-learning model to diagnose mild COVID-19
pneumonia. The dataset included 2087 chest CT exams collected from four hospitals. The
overall sensitivity was 91.5%, the specificity was 90.5%, and the general AUC value was
95.5%. The proposed deep learning model was trained on 1538 patients and tested on an
independent testing cohort of 549 patients. Despite the small number fCT scans used in
this work (AUC), the specificity and sensitivity values are not high enough and might even
get lower with the use of a larger number of cases.

The authors in [27] detected pneumonia from chest scans by using a deep learning
model. They constructed a convolutional sparse denoising autoencoder to minimize the
reconstruction error and to obtain the set of features. They applied a voting scheme to
identify the case as normal or infected and evaluated their model on four publicly available
radiology datasets of chest scans. Despite thousands of CT scans used in the training phase,
the achieved average accuracy for both normal and abnormal classes was 96.5% with a
precision of 97.9%, which is high but not as high as other models including the proposed
model in this paper.

In [28], the authors were motivated by the increased cases of pneumonia and suspected
infection with COVID-19. They proposed an efficient technique based on the DAE model,
which provided a satisfying depiction of the CT scans in addition to successful extraction of
the main features from a balanced dataset using augmentation. Their architecture contained
8-autoencoders, two dense layers, and a SoftMax layer for classification. The technique was
applied to a dataset of 5856 images and an additional 125 images from another dataset: the
achieved average accuracy was 96.8% with 93% precision and 92% recall. It is worth noting
that this is the same dataset we adopted for our work.

The previous works used the DAE to extract the significant features and an additional
SoftMax layer in their classifiers. Some others considered the autoencoder and the hidden
features with a similar construction model. Instead, our model integrates EMGMM for ROI
extraction and the hybrid DAE-DRBM in the classification task (which is a novel approach).
The hybrid model uses the hidden features along with a cascade model with different roles
of the DRBM for better generalization, and was able to achieve an average accuracy of
98.63% (the highest accuracy among all the surveyed models).

3. Background

This section presents the different techniques that were considered in the proposed
model along with a brief description including the expectation-maximization technique, the
Gaussian mixture model, the deep autoencoder model, and the deep restricted Boltzmann
machine model (DRBM).
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3.1. Expectation-Maximization Guided Gaussian Mixture Segmentation (EMGMM)

The Gaussian mixture model (GMM) allows for accurate image segmentation with
precise region description and accurate categorization of these segments based on the
image size and shape [27,28]. The images are represented as a set of pixels with values that
reflect their intensity or color; assume (a) I = {i1, i2, . . . , in} is a stochastic random variable;
wj = j = 1, . . . , q are the corresponding weights satisfying ∑

q
j =1 wj = 1, n

(
I/∅j, ∑ j

)
;

and j = 1, . . . , q are the Gaussian densities; and (b) ∅j is the mean vector while ∑ j is
the covariance matrix of the jth Gaussian. The GMMs maximize the probability of the
parameters (e.g., means, covariance, and mixing coefficients). The multi-variant Gaussian
mixture distribution can be defined by Equation (1):

mgd(I) =
k
∑
j =1

wjn
(

I/∅j, ∑j

)
, n(I/∅j, ∑j) =

1√
(2π)2

∣∣∣∑ j

∣∣∣ exp

−1
2

(
I−∅j

)T
∑

j

(
I−∅j

). (1)

The GMM algorithm selects pre-defined clusters (k) at the beginning based on the
sample distribution. However, in image segmentation, it is absolutely necessary to es-
timate the best value of the GMM parameters. The (EM) algorithm targets the optimal
GMM parameters. Hence, the segments of the image can be efficiently obtained. In fact,
the GMM mixture models calculate the maximum likelihood probability for each pixel
color’sbelonging to a particular segment. The algorithm is a continuous optimization
approach that iteratively attempts to obtain the parameters of each segment [29,30]. The
parameters of ∅j and ∑ j for each cluster act as an input to the EM algorithm. The algorithm
stops in one of the following cases: (1) the estimations of the new objective parameters’
values reach the defined value; or (2) the predefined number of iterations is reached.

The maximum value of the algorithm is computed over two steps (E-step and M-step):
E-step evaluates the responsibilities of the latent variable for given parameter values, while
the maximization step (M-step) maximizes the parameters and updates them with new
values. More information about these steps are provided below:

• E-Step: suppose the parameter value is ∅j, calculate ∑k
j =1 wj = 1 for all data points Ij,

1 ≤ j ≤ n and all mixture components 1 ≤ k ≤ K, which yields an n × K membership
weights matrix.

• M-Step: in this step, the maximization of the parameters is reached based on the
previous matrix. Let n = count of the membership weights, such that ∑k

j =1 wj = 1 is
the sum of the membership weights for the kth parameter; as seen in Equation (2), the
values of weights and means are then updated respectively:

µ
updated
k =

nk
n

, 1 ≤ k ≤ K,

µ
updated
k =

(
1

nk

) K

∑
k =1

wjkIj, 1 ≤ k ≤ K,

µ
updated
k =

(
1

nk

) K

∑
k =1

wjk

(
Ij −∅updated

k

)(
Ij −∅updated

k

)T
, 1 ≤ k ≤ K. (2)

3.2. Autoencoder (AE)

The autoencoder (AE) is a feed-forward neural network with 2L + 1 hidden layers.
During training, the model aims to learn a compact and valuable representation based
on the weight matrix, which will then act as an estimate of the input data and regenerate
the look-up map pixels [31]. Assuming the autoencoder takes an input i with a defined
representation DR in a certain domain d (i Є DRd), it would work as follows:

(1) The encoder maps i to a lower dimensional representation (h Є Rd) by using a
deterministic function hl = fl (i) = α(Wli + bl), where α is the hyperbolic tangent activation
function (Wl = weight matrix and bl = bias term for encoder).
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(2) The decoder acts as a mirror or reverse mapping for the output o by another
deterministic function o = fl (h) = α (W’lh + b’l) with l’ = lW’b (W’ = weight matrix and
b’ = bias for the decoder).

(3) During the training phase, step (2) is repeated for each i (mapped to its abstraction
h and new rebuild o) with an optimal cost function for fine-tuning.

The use of deep convolutional AE has provided tremendous promise for neuroimaging
and medical scans [32]. Generally, each fully connected layer is replaced by several con-
volutional, pooling, and normalization layers, where the number of these layers depends
on the problem at hand and the target performance. The mathematical formulas of the
convolutional autoencoder are very similar to the elemental autoencoder stated earlier,
except that the weights are shared. For input I, the representation of the jth feature map
is stated in Equation (3), where b is distributed over the whole map, α is the activation
function, and * means convolution:

hj = α (i*Wj + bj) (3)

The produced input to the decoder is formulated as in Equation (4), where c = bias per
one input channel, h = the feature maps, and W” = the reverse operation of the weights
mapping. The cost function (mean squared error) is shown in Equation (5) in which the
backpropagation computes the gradient of the error, where dh and do are the differences in
the hidden and output layers, respectively. A stochastic gradient descent in Equation (6)
modifies the weights, and the class label o” is estimated by Equation (7).

o = v
(
∑j∈H hj∗W”j + c

)
(4)

e∝ =
1

2n

n

∑
i =1

(ik − ok)
2 (5)

δeα
δWj = i ∗ dhj + h∼j∗do (6)

o” =

{
1 if k ≥ 0.5
0 if k < 0.5

(7)

Additionally, the denoising autoencoder (DAE) [33] is a robust variant of the AE
that accepts a stochastic noisy representation of the input by using the Gaussian additive
noise while comparing it with the given ideal input, and hence reaching the optimal set of
weights that highlight the discriminative features.

3.3. Deep Restricted Boltzmann Machine (DRBM)

Restricted Boltzmann Machine (RBM) [10–14] is considered a variant of Markov
Random Field. It contains visible sophisticated variables sv = (sv1, sv2 . . . svi) and arbitrary
hidden variables rh = {rh1, rh2, rhJ}. It is bidirectional, between sv and rh, where both pivot
on the major features. This constrains direct neurons to being allied to the bipartite model.
Mathematically, the RBM is a probabilistic energy algorithm that aims to reach a probability
distribution (pd) association graph of sv and rh as shown in Equations (8)–(10).

Pd(sv) =
1
i

exp−E(sv), (8)

Pd(sv) = ∑
hn

Pd(sv, rh) = ∑
rh

1
i

exp−E(sv,rh), (9)

E(sv, rh) = −∑
ij

1
σi

sviwijrhj −∑
i

(ai − svi)
2

σ2
i

−∑
j

bjhj (10)
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In the above equations, i is a normalized term; Wij are weights svi→rhj; (ai, bj)
are biases for visible and hidden variables; and σi is the standard deviation for the
Gaussian noise.

As seen in Figure 1, a classification layer that accepts weights from h1 is added to the
one hot vector of labels, and its back propagating error constructs an optimal regression
layer to classify the scans to either class C1 (pneumonia) or class C2 (normal).
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Figure 1. Illustration of the proposed EMGMM-AEDRBM model for a two class classification problem:
“Visible layer” for the input layer and “h” for the hidden layer.

On the other hand, DRBM is a robust deep learning model [11] in which multiple
RBMs are stacked in a graded way to robustly handle ambiguous input. The DBM is an
undirected generative architecture that gathers features from lower and upper layers which
enhances the representation scheme. A DRBM is constructed by sequencings multiple
RBMs, where the input to the kth layer RBM is the learned feature representation from the
RBM at the (k − 1)th layer.

4. Architecture and Development of the Proposed Model

This work proposes a hybrid model for the identification of pneumonia that combines
DAE and DRBM to allow for a more powerful classification model. In order to overcome
the dimensionality problem during the training phase of the AE convolution, the ROI is
extracted from the input scans using the discussed EMGM model in Section 3.1.

As illustrated in Figure 2, the colored layers of the DAE represent consequent convolu-
tional, max pooling, batch normalization, and dense layers. The input noise exists in the
AE training phase only, and not in the validation and testing phases. In fact, in view of
the purpose of the model, the innermost flattening and dense layers may be omitted while
composing its layers. The convolutional layer (colored in blue in Figure 1) is accountable
for the extraction of the neighborhood features.
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Figure 2. Illustration of the deep denoising autoencoder.

As shown in Figure 3, extraction is achieved through applying a number of kernels
from the convolutions to construct a map of specific normalized features. In more precise
terms, a kernel function is convolved with a pre-determined part of the image of identical
kernel size to that of the output pixel. The kernel then slides by a certain distance, or
stride length, this continues till it abstractly represents the entire image. The rectified
linear unit (ReLU) acts as an activation function for the convolutional layers that maps the
inputs to the output (omitting the last layer of the decoder that uses alternative, or sigmoid,
activation). The batch normalization layer (colored with red in Figure 2) is responsible for
the normalization step. This is a regular run on the output of the layer, by constraining a
zero mean and a unit variance. Accordingly, it increases the balance of the network and
speeds up the training. The dense layer is a fully connected group of neurons (each input
neuron is connected to every output by a weight resulting from a nonlinear activation
function). On the other hand, as shown in Figure 2, the decoding entails the identical layers
of the encoder, although reversely ordered. Its first layer is the dense layer; however, when
the encoder architecture does not contain a dense layer, then reshaping of the hidden vector
occurs through the Reshape layer (colored in gray). Finally, the de-convolution and the up
sampling of the image processes are performed by the de-convolution layer.
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5. Case Study and Experimental Results

The experiments in this paper were implemented using Python, TensorFlow, keras,
and Google Colab, which offer features of remote servers’ capabilities including a GPU
(1× Tesla K80), (2496 CUDA), (12 GB) GDDR-5 V-RAM; a CPU (1× single core hyper
threaded) Xeon Processors 2:3 Ghz, 45 MB Cache; and our personal laptop, which is an
intel (R) core (TM) i7, 7200U processor 2:5 GHz and 16 GB of RAM.

5.1. Data Preprocessing and Augmentation

The proposed model is applied to a publicly available dataset of medical chest X-rays
for pneumonia detection [34]. The digital computed radiography (CR) captured a total of
5856 images with 1583 normal cases and 4273 pneumonia cases. Figure 4 shows an example
each of the CR scan for normal patients and for those diagnosed with pneumonia, in which
the lungs in the normal scan are clear, while the lungs diagnosed with pneumonia look
cloudy with a white area.
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Figure 4. Examples of normal and of pneumonia-infected lungs.

The data imbalance ration (IR) was measured using Equation (11). Since IR is 46% and
the convolution developed model is complex, an augmentation process was mandatory to
overcome the over-fitting issue.

|Support(Normalclass)− support(Pneumoniaclass)|
Support(Normalclass) + Support(Pneumoniaclass)− support(Normalclass ∩ Pneumoniaclass)

(11)

As seen in Figure 5, zooming, flipping, shifting and rotation operations were used in
the augmentation process to balance the distribution of the scans between Normal and
Pneumonia cases. After applying the augmentation process to the Normal class, the number
of normal cases increased from 1583 cases to 7915 cases. By contrast, the augmentation
process for the Pneumonia class was performed on 75% of the 4273 using only one operation
from the augmentation operations that was selected randomly. This results in an increase
of the Pneumonia cases reaching a new total of 7478. This led to the reduction in the IR of
Normal and Pneumonia cases from 46% to 2.8%, which is considered a huge improvement.

Lastly, a preprocessing phase was considered so as to unify the resolution among the
images in the dataset to all be (224 × 224). Thereafter, a normalization step was applied
before injecting the images to our model. Table 1 shows the details of the updated cases in
the dataset before and after preprocessing and the details of the distributed cases among
the training (70%), testing (25%), and validation (5%) phases.
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Table 1. Data set distribution before and after augmentation and class balancing.

Before Preprocessing Generated
Cases Updated After Preprocessing

Normal

Train Test Validate

6332 7915

Train Test Validate

1341 234 8
5540 1978 397

Total = 1583

Pneumonia
3875 390 8

3205 7478 5235 1870 373
Total = 4273

5.2. Feature Visualization and Model Results

This section presents the entailed results from each phase of the proposed model as
explained previously. The results from the segmentation phase using EMGMM to extract
the ROI are shown in Figure 6, where the extracted ROI images are cropped and are fed to
the training phase of the convolution denoising autoencoder (DAE) as shown in Figure 7.

As can be seen in Figure 7, the DAE minimized the error by reconstructing the input
using stochastic transformation, which involves adding noise with a specific factor (0.01
in our experiment), and randomly sets some inputs to zero to obtain a set of corrupted
images. Next, the DAE reconstructs the corrupted versions of images and extracts the
features from them.

Adding the denoised factor of 0.01 guides the autoencoder to select the most valuable
features and ignore the others, hence to reduce dimensionality and provide the unsuper-
vised work to the RBM layer for the supervised classification task. This hybrid structure
forces the model to learn in a more abstract way and to become more noise-resistant, which
in turn helps with improving the performance, robustness, and generalization of results. A
plotting for the used filter (3 × 3) and its features resulted in two-dimensional images, as
seen in Figure 8, where a sample of such filters and features is visualized using one normal
case and one pneumonia case, respectively.
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5.3. Adding DRBM Classifier

After the DAE training, the weights were transferred to the deep restricted Boltzmann
machine (DRBM) that contains two hidden layers. The input values for the DRBM depend
on the dimensions of weights from the denoising encoder. See Table 2 for details of kernel
layers, strides and dimensions.

Table 2. Denoising autoencoder layer parameters: kernel size, stride and output dimensions.

Layers Filter Size Stride Output Dimension

Conv2D 3 × 3 2 224 × 224 × 128

Batch Normalization - - 224 × 224 × 128

Conv2D 3 × 3 1 224 × 224 × 64

MaxPooling 2 × 2 2 112 × 112 × 64

Con2D 3 × 3 1 112 × 112 × 32

Batch Normalization - - 112 × 112 × 32

MaxPooling 2 × 2 2 56 × 56 × 32

Before the training started, some hyperparameters were set (e.g., fine-tuning learning
rates = 0.015, stop training = 100 epochs, and fine tuning = of 500 epochs). The number
of inputs to the model was 3136. The number of visible units was set to 224 × 224 nodes.
These were connected to 750 nodes in the first hidden layer. Once the DRBM learns the
structure of the input data, the data is transferred one layer down the net, hence it is
mapped to 100 in the second hidden layer. This approach of constructing sequential sets of
activations by clustering the features, and then clustering the clusters of features, is the main
function of the feature map; through this approach, the model learns more complicated but
summarized representations of data.

Additionally, a normal distribution with mean = 0 and variance = 1 is used to randomly
set the DRBM initial parameters. Later, a fully connected and a dense layer are added
to classify Normal and Pneumonia cases. With reference to the characteristics of the
autoencoder: it is not able to deal with categorical attributes; accordingly, data labels



Electronics 2023, 12, 105 12 of 15

were converted into one-hot encoding. In this implementation, two classes are considered:
Normal and Pneumonia. Two Boolean columns for the two mentioned classes were mapped,
and we then set a value of 1 to indicate the class label for every sample in only one column.
The DRBM records satisfactory learning and discriminative representation from epoch 15.
Hence, the autoencoder enhanced learning of features through the transfer of their weights.
Afterward, on reaching epoch 50, the enhancement in the learning rate slowed down with
respect to the epoch’s number. The proposed hybrid model resulted in a recognition rate
of 98.63%.

5.4. Evaluation and Analysis of Results

To evaluate the model, cross validation was used as this is considered as the main
measure for the classifier performance and generalization. For the cross validation, the
obtained ROIs were organized in 10 folds keeping a balanced class distribution of Normal
and Pneumonia cases. The accuracy values for the cross-validation of all the 10-fold
experiments were recorded. In each run, one fold was used for testing and the other nine
folds were used for training and tuning. We then calculated the mean accuracy, accuracy,
sensitivity, and specificity and compared these with the performance of other models that
were applied to the same dataset, as seen in Table 3. It can be noted that our proposed
model achieved the highest accuracy (98.63%) between them.

Table 3. Comparison analysis of different methods for feature selection and classifiers.

Author Learning Technique Features Method Accuracy

[35] Deep Siamese based
neural network CNN 89.6%

[36] CNN CNN 96.65%

[37]

CNN

Multiple features

98.46%

Rain forest 97.6%

KNN 92.5%

Adaboost 95.6%

[38]

CNN + transfer
learning (AlexNet)

CNN

94.5%

ResNet18 96.4%

DenseNet201 98%

SqueezeNet 96.1%

Proposed model Hybrid of denoising
autoencoder + DRBM

Denoising
autoencoder 98.63%

The Confusion Matrix is another important measure for the evaluation of the hybrid
model. Accordingly, True Positive (TP: the correct classification of pneumonia existence),
True Negative (Tn: correct classification of normal), False Positive (FP: the misclassified
existence of pneumonia), and False Negative (Fn: the misclassified of normal cases) were
computed for the model. Next, sensitivity (Se), specificity (Sp), positive predictive value
(PPV) and classification accuracy (ACC) were calculated to provide deeper insight into the
performance of the classifier [see Equations (12)–(15)].

se =
Tp

Tp + Tn
× 100 (12)

sp =
Tn

Tn + Fp
× 100 (13)
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PPv =
Tp

Tp + Fp
× 100 (14)

ACC =
Tp + Tn

Tp + Tn + Fp + Fn
× 100 (15)

Figure 9 presents the hybrid model training and validation accuracy. The optimal
performance was reported at epoch #100 (each of 20 steps). Then, the classification accu-
racy, loss, validation accuracy and validation loss were written down for two cases (with
augmentation and without augmentation). An average accuracy of 94.71%, sensitivity of
93.3%, and specificity of 92.4% were obtained without augmentation. Data augmentation
enhanced the average accuracy as it allowed it to reach the value of 98.63%, sensitivity
of 96.5%, and specificity of 94.8%. Moreover, both values for val_loss and val_accuracy
were improved.
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6. Conclusions and Future Work

In this paper, we introduced a new hybrid deep convolution model for the diagnosis
of pneumonia infection from CT scans of patients’ lungs. The model integrates both the
DAE and the DRBM in the classification and prediction processes, and uses EMGMM
to extract the ROI segments. The dataset that was considered in this work consists of
5856 images with 1583 normal cases and 4273 pneumonia cases, and an IR of 0.46. An
augmentation process including rotation, flipping, shifting, and zooming was implemented
to enhance the balance of the data, which yielded 4273 images with a better IR of 0.028.
A 10-fold cross validation was used for testing and validation purposes. Accuracy, loss,
validation accuracy and validation loss were measured with and without augmentation.
Results showed an average accuracy of 94.71%, sensitivity of 93.3%, and specificity of 92.4%
without the augmentation process, and an average accuracy of 98.63%, sensitivity of 96.5%,
and specificity of 94.8% after augmentation. As seen previously in Table 3, our proposed
model achieved the highest accuracy value over other models that were applied to the
same dataset—among which the previously highest reported accuracy in the literature was
98.46% using regular CNN with hyperparameters. Possible applications of this model are
its integration into a computer-based system to detect and/or predict the type of infection
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with high accuracy—COVID-19 versus SARS-CoV-2 versus others. This model can also
be used in portable chest X-ray devices in airports as an in-time detector for COVID-19
instead of the PCR test, or used in athletics before competitions or training especially divers,
footballers, and other sports that require a healthy respiratory system to avoid serious
illness or catastrophic death.
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