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Abstract: In order to facilitate the transition between networks and the integration of heterogeneous
networks, the underlying link design of the current mainstream Information-Centric Networking
(ICN) still considers the characteristics of the general network and extends the customized ICN proto-
col on this basis. This requires that the network transmission equipment can not only distinguish
general network packets but also support the identification of ICN-specific protocols. However,
traditional network protocol parsers are designed for specific network application scenarios, and
it is difficult to flexibly expand new protocol parsing rules for different ICN network architectures.
For this reason, we propose a general dynamic extensible protocol parser deployed on FPGA, which
supports the real-time update of network protocol parsing rules by configuring extended protocol
descriptors. At the same time, the multi-queue protocol management mechanism is adopted to realize
the grouping management and rapid parsing of the extended protocol. The results demonstrate
that the method can effectively support the protocol parsing of 100 Gbps high-speed network data
packets and can dynamically update the protocol parsing rules under ultra-low latency. Compared
with the current commercial programmable network equipment, this solution improves the proto-
col update efficiency by several orders of magnitude and better supports the online updating of
network equipment.

Keywords: high-speed network; extensible protocol parser; multiple queue management; ultra-low
latency update

1. Introduction

In recent years, with the explosive growth of bandwidth-intensive industries, such
as video streaming and the industrial Internet of Things, efficient data distribution and
acquisition have gradually become the main requirements of internet applications. The
traditional TCP/IP network architecture is based on an end-to-end communication mech-
anism between hosts. Therefore, the network entity does not support multi-address and
variable address operations, which makes it difficult to meet the current content-based
internet application mode.

In contrast, Information-Centric Networking (ICN) [1] adopts the idea of information
identification and address separation, weakens the concept of the host, and allows naming
information at the network layer to improve the security and flexibility of information
transmission. As a new type of network, in order to facilitate the transition between
networks and the integration of heterogeneous networks, the current mainstream ICN
network architecture at home and abroad also considers compatibility with TCP/IP network
characteristics. For example, DONA [2] uses flat names to replace hierarchical URLs, uses
top-level resolution services to decouple content and host addresses, and uses IP routing
for data transmission.
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NetInf [3] published and analyzed information through the assembly interconnection
network and directly used the analysis node to request content, and the information
return was still based on the underlying network transmission. SEANet [4] is a network
architecture with on-site, flexible, and autonomous features. It adopts SeaDP, a transport
layer protocol that expands and supports ID-to-ID on the basis of IPV6, for efficient data
block transmission.

Therefore, these ICN network architectures are built on the basis of common network
protocols. By extending the customized ICN protocol on the basis of the general Ethernet
protocol or the IP-layer protocol, a transmission channel based on information identification
is established.

As the core module for protocol parsing in most network transmission devices, the
parser’s goal is to identify the protocol types in packet header fields and to allocate ap-
propriate processing logic according to the protocol types, such as protocol-based packet
filtering, more accurate routing and forwarding [5], etc. This article summarizes three key
features of a high-performance parser in ICN network architecture: first, it can support
efficient parsing of the general network protocols, which is the basis for integration with
existing IP networks; second, it can identify customized ICN protocols to ensure that net-
work equipment has better scalability; and third, packets can pass through the parser with
deterministic low latency, which is the fundamental guarantee for the best performance of
the system.

At present, the latency introduced by the pure software-designed parser is relatively
large, and it is difficult to achieve zero packet loss in a high-speed network. However,
the traditional ASIC-based hardware parser makes it difficult to flexibly expand the ICN
protocol parsing rules due to the fixed chip performance. Even if a hardware platform
that supports reconfiguration is used, it is often necessary to recompile the parsing logic to
update the protocol parsing rules, which makes it difficult to update the protocol parsing
rules in real-time.

The ICN is an important architecture of the future network that is mainly used in large-
scale and high-concurrency network environments; therefore, it has high requirements in
terms of the delay and throughput. In addition, with the continuous expansion of network
services, ICN networks designed for different application scenarios need to support more
network protocols. However, the current commercial network transmission equipment
supports a limited number of protocols and cannot flexibly expand new protocol parsing
rules according to the requirements of different ICN networks.

Therefore, in this paper, we propose a 100 Gbps dynamic extensible protocol parser
(DEPP) based on FPGA. DEPP supports the real-time expansion of new protocol pars-
ing rules based on common high-priority network protocols, thereby, facilitating flexible
deployment in various ICN networks. In addition, the real-time nature of the protocol
extension is beneficial to the online update of network equipment and ensures the normal
operation of the network. The main contributions of our work are as follows:

(1) We use an FPGA to implement packet parsing and protocol management. The data
transmission channel of the parser adopts a width of 512 bits and a clock frequency
of 200 MHz, which enables it to identify various packet protocols at a line rate of
100 Gbps.

(2) We propose a dynamic extension mechanism for the protocols, which allows extending
new protocol parsing rules in real-time at arbitrary locations in the existing parser tree
by passing descriptors containing protocol information.

(3) We also provide a multi-queue management mechanism for extended protocols, which
supports group management of extended protocol parsing rules. Different from
existing parsers designed with a hierarchical pipeline structure, this method can
manage the update and execution of various types of extended protocol parsing rules
under the same framework and support the storage of more protocol parsing rules.

(4) The bus protocol conversion module is used for stream mode data conversion from an
AXI4 bus to an Avalon bus. This module allows the parser to receive two bus protocol
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signals, making it more flexible to deploy on the mainstream FPGA platforms, such as
Intel and Xilinx.

The remaining part of the article is organized as follows: Section 2 briefly describes the
main work and innovation of this paper. Section 3 shows the related work of the current
software and hardware parsers. Section 4 describes the system architecture and main
features of DEPP. Section 5 elaborates the process of the protocol update and packet parsing
of DEPP in detail. Section 6 shows the deployment of DEPP on the Intel FPGA board and
related performance analysis. Finally, the research work is summarized.

2. Related Work

Currently, commercial fixed hardware parsers can parse complex protocols; however,
either they cannot effectively support the parsing of customized ICN protocols, or the
flexibility of supporting new protocols is low [6], and the update of parsing strategies often
requires high hardware design costs. In order to support the flexible expansion of the
protocol parsing rules, many researchers prefer to choose to design software switches [7–9]
to flexibly configure the parsing strategy, thereby, improving the scalability of the parser.
However, it is conceivable that the software data processing system completely mounted
on the CPU is not friendly in terms of the throughput and latency; therefore, this method is
not conducive to deployment in high-speed networks.

Compared with the hardware packet parsing module mounted on the commercial chip
and the software packet parsing program running on the server, the Field Programmable
Gate Array FPGA [10] has greater advantages in terms of flexibility and high throughput,
which allows designing circuits by writing (Verilog or VHDL) and other hardware descrip-
tion languages to generate binary executable files through simple synthesis and wiring and
then quickly burn them to FPGA for testing, thereby, realizing the redeployment of the
processing logic.

Furthermore, FPGA has the characteristics of low-latency and parallel data transmission
and supports the design of high-performance processing logic for data packets in high-
speed network communications. In particular, the introduction of the separation idea
of data plane and control plane of the SDN (Software Defined Network) [11] into FPGA
enables designers to realize the dynamic configuration of each processing unit deployed on
FPGA in userspace through southward interface protocols, such as Openflow [12], which
further improves the flexibility of FPGA.

Naous [13] and Liu [14], as well as the Blueswitch strategy proposed by Jong [15], have
deployed Openflow switches in NetFPGA and provided 10 G data flow analysis examples.
In these designs, users can update the protocol parsing policy through the southbound
interface; however, these protocols must be within the range supported by OpenFlow. For
example, OpenFlow V1.5 [16] can support up to 44 matching fields, while OpenFlow V1.0
can only support the parsing of 10 protocols. Therefore, its flexibility is limited. A more
flexible method is expressed through a programmable data plane, such as protocol fuzzy
forwarding [17] and protocol-insensitive P4 language [18], allowing designers to ignore
the binding relationship between the protocol and device and reconfigure the data plane
processing system on the software side.

RMT [19], developed in P4 language, uses an offline algorithm to store the protocol
identifiers of each node in the protocol parsing tree in ternary addressable memory (TCAM)
and then matches the protocol identifiers by cyclic look-up. When a packet arrives, the
header is separated and sent to the parser. According to a predetermined protocol parsing
process, the header is matched with the protocol information stored in TCAM, and the
corresponding action is triggered after the matching is successful. Then, we locate the
next packet header and repeat the operation, and the final output packet contains protocol
information.

In RMT, although the real-time expansion of the protocol can be achieved by building
a TCAM parser, the resource consumption and the delay brought by the layered look-up
table parsing will increase with the complexity of the parsing rules, which will reduce
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the data processing performance of the device. Furthermore, TCAM can only be used to
store protocol fields and their masks and thus can only be used for matching against fields
extracted at the same location in the packet, which also limits the flexibility of the parser.

Ref. [20] showed a high-speed FPGA-based packet parser through the introduction
of the PP (Packet Parsing) language and the corresponding compiler to achieve the pro-
grammability of the parsing module. In order to reduce network congestion, the solution
introduces a deep pipeline processing mechanism with a longer processing delay and
supports extending new protocol parsing rules but also requires a rewiring of the FPGA.

Refs. [21,22] also used deep pipelines to implement parsers. Through pipeline iterations,
header fields of any length can be effectively analyzed. However, the layer-by-layer parsing
method is more complex in high-bandwidth data transmission, and it is difficult to adapt to
data-intensive scenes and high throughput requirements. Ref. [23] provides an automatic
P4 to VHDL conversion method at a 100 Gbps line rate. In this scheme, in order to reduce
the delay uncertainty caused by branching, the data packet needs to traverse all the protocol
analysis structures, which makes the parser less flexible.

HyperParser [24] proposed a high-performance parser architecture for next-generation
programmable switches and FPGA-based SmartNIC. Its butterfly network is optimized
in terms of the packet parsing performance, logic resource occupancy, and device power.
It is widely used in the design of encryption circuits. This solution supports both ASIC
and FPGA deployment implementations, with low and deterministic latency, and adopts
LUT-oriented design strategies to reduce the FPGA deployment time.

Compared with the previous scheme design, this method has a great improvement in
performance, especially in the aspect of flexibility, supporting faster protocol update but
also takes at least tens of seconds of loading time. If it is deployed in a 100 Gbps high-speed
network, this time is enough to fill up the memory space of the network device, thereby,
resulting in packet loss.

After the above analysis, we found that FPGA is widely used in various high-speed
network devices due to its reconfigurable characteristics. However, the current design of
reconfigurable parsers often adopts the method of rewiring the parsing logic, which usually
requires several hours of compilation. Although some devices use TCAM to support
online update of protocol parsing rules, due to its structural characteristics, it can only
store protocol fields and mask information; thus, it does not support flexibly adding new
protocol parsing rules anywhere in the parser tree.

DEPP, as a general-purpose parser, allows the real-time addition of new protocol parsing
rules anywhere in the existing protocol parse tree through descriptors, thus, preventing
temporary network downtime or network congestion caused by parser updates. Further-
more, it has the characteristics of low latency and high throughput, which facilitates flexible
deployment on various types of ICN network transmission equipment.

Table 1 summarizes the brief methodology of existing parser techniques and our tech-
nique (described in § 3).Furthermore, we evaluate the performance of the parser in terms
of the flexibility, latency, and throughput using three levels of ’high’, ’middle’, and ’low’.
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Table 1. Protocol parser performance overview.

Type Method Flexibility Delay Throughput

software
parser

Parser designed in software
language on the host operating

system
high high low

ASIC parser Fixed-function commodity
hardware parser low low high

NetFPGA
A parser that supports the

openflow protocol deployed in
NetFPGA

low low high

RMT A reconfigurable parser
designed using P4 language middle low high

HyperParser A parser using butterfly
network middle low high

DEPP dynamic extensible protocol
parser based on FPGA high low high

3. The DEPP System Structure
3.1. Parsing Engine Architecture

The parsing system implemented in this article is used to extract the protocol informa-
tion of the network packets and to allocate different transmission channels for the packets
of different protocol types. Its implementation architecture is shown in Figure 1. The
system can be divided into control function development in userspace and the parsing
logic design in FPGA hardware devices.

When the data arrives at the parser, its protocol parsing process is divided into parsing
of the general network protocol and parsing of the extended ICN protocol, and then the
data packets are sent to different transmission channels according to the protocol type. The
extended ICN protocol parsing rule is updated in real time by the control plane through
the descriptor. The specific functions of each module in the figure are shown as follows:
Data input: Receive high-speed data streams come from the MAC layer and bus control
signal interface. This design uses an Avalon stream mode bus to transmit data at a 200 MHz
clock frequency with a bandwidth of 512 bits, thereby, effectively supporting 100 Gbps of
high-speed network data transmission.
Buffer module: The parser will generate a delay. The purpose of the buffer is to ensure
synchronous output packets and their corresponding parsing results.
Pre_parser: The function of the protocol pre-parsing module is to identify the high-priority
layer 2 to layer 4 network protocols in a packet, such as VLAN, QinQ, ARP, LLDP, IPV4,
IPV6, TCP, and UDP. Furthermore, we synchronously extract the 1024 bits header informa-
tion field within two clock cycles, which is convenient for further parsing the ICN extension
protocol in the packet.
Pro_queue_mgr: The extended protocol multi-queue management module, which stores
extended protocol parsing rules in the form of grouped multi-queues, supports the rapid
update of protocol parsing rules and efficient parsing of packets.
Pro_adapter: Extended protocol adaptation module. This module is used to handle ex-
tended protocol descriptors from userspace. We adjust the transmission frequency of
the descriptor to synchronize with the parser, and extract the extended protocol parsing
rules contained in the descriptor. After extraction, the protocol information is transferred
to pro_queue_mgr for storage. This module supports prefetching operations for multi-
level extended protocols with dependencies as well as multi-protocol updates based on
burst patterns.
Arbitration module: Receiving the protocol information extracted by the parser, the arbi-
tration module allocates different transmission channels for the data packet according to
the protocol type.
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Pro_configure: The userspace protocol configuration module. Responsible for encapsulat-
ing extended protocol information in descriptors and transferring them to the FPGA data
plane through the register interface.
Queue_monitor: The userspace queue monitoring module is used to monitor the protocol
information in the queue entries and visualize the index of the queue where the protocol
resides. As the protocol stored in the queue corresponds to the address of the queue, users
can use the address to uniquely identify the extended protocol information and use the ad-
dress index to delete invalid protocol information or allocate different packet transmission
channels.

Figure 1. The abstract module of DEPP.

3.2. Dynamic Extension Mechanism

Due to the limited I/O performance of the host and the high latency introduced by CPU-
based instruction set processing, it is difficult for software parsers to support high-speed
network data transfers. On the other hand, the scalability of the protocol parsers deployed
on programmable hardware facilities is poor. In order to update the protocol parsing rules,
tedious processes, such as logic development, synthesis, and wiring, are often required. In
order to enable the FPGA hardware parser to flexibly support new protocols, this paper
proposes a dynamic extension mechanism using descriptor update protocols.

This lightweight protocol extension mechanism considers the integration with existing
internet networks, allowing the dynamic adding of parsing rules of custom ICN protocols
through extension protocol descriptors on the basis of existing parser trees. The method
has high real-time performance and can upgrade the parser online without affecting the
normal operation of the network. The extended protocol descriptor structure is shown in
Table 2. It contains the reference protocol (Ref_pro), the valid field of the extended protocol
(Epro_field), the extended protocol prefix (Epro_prefix), the relative position (offset), the
next-layer extended protocol enable signal (next_en), and the level of the current extension
protocol (level).
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Table 2. Extended protocol descriptor.

Field Width (Bits) Purpose

Ref_pro 16 Reference protocol

Epro_field 16 Valid fields of extension
protocol

Epro_prefix 5 The field’s length

offset 8 The offset relative to the
reference protocol

next_en 1 Next-level extended protocol
enable signal

level 16 Level of the extension protocol

Figure 2 shows an example of a new protocol extension based on the IPV6 protocol. We
write the extended protocol descriptor according to the format in Table 1 and transmit it to
the FPGA data plane through the descriptor transfer interface. For new_protocol1, (Ref_pro
= 0x8003) indicates that the reference protocol is IPV6—that is, new_protocol1 is a protocol
added over IPV6. As the queue index is used to uniquely identify the protocol information
in the multi-queue protocol management, in order to prevent the conflict between the
protocol field and the queue index number, 0x8003 is used in the protocol descriptor to
represent the IPV6 protocol.

For new_protocol2, its reference protocol (Ref_pro) is the index of the queue where
new_protocol1 is located. The index is read by the queue monitor module or obtained
by the feedback mechanism inside the parser. Next, we fill the extended protocol field
(Epro_field) into a 32-bit register. If the field length does not meet 32 bits, we can fill in
’0’ and determine the actual valid field according to the mask information (Epro_prefix).
(offset) represents the relative distance in bytes between the extended protocol fields and
the IPv6 protocol identifier.

By specifying an offset, one can flexibly control the position of the new protocol. (level)
indicates the level of the current extended protocol. The protocol added on the basis of
general network protocols, such as VLAN and IPV6, is called the first-level extension
protocol, and the second-level extension protocol is extended on the basis of the first-level
extension protocol. Furthermore, (next_en) is used to determine whether there is an inner
layer protocol. For new_protocol1, (next_en = 1) indicates that there is a second-level
extension protocol over the current first-level extension protocol.

During parsing, the second-level extension protocol in the data packet can be further
matched according to this flag. If next_en is still 1, we continue to judge whether there is
a third-level extension protocol. The final output packet contains all levels of extended
protocols. Through the investigation, we found that two to three levels of expansion
protocols can meet the protocol expansion requirements of most of the existing ICN network
transmission equipment types.

The introduction of the extended protocol descriptor mechanism simplifies the protocol
update process and allows adding new protocol rules anywhere in the original protocol
parse tree, thus, making the parser highly scalable. At the same time, the descriptor
transmission interface encapsulated by the register can realize the real-time expansion of
the new protocol, which is convenient for the online updating of network equipment or for
testing the feasibility of the new protocol in an actual network environment.
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Figure 2. Protocol extension diagram.

3.3. Multi-Queue Protocol Management Mechanism

This solution manages extended protocol parsing rules in the form of grouped multi-
queues and supports dynamic storage and rapid parsing of extended protocols. As shown
in Figure 3, the queue space is divided into N groups according to the reference general
network protocol. The reference protocols supported by the current version are high-
priority network protocols, such as VLAN, IPV4, and IPV6, and the initial location of
Ethernet. We re-encode them from 0x8001. At the same time, contiguous queue storage
space is also allocated for all second-level extension protocols. Furthermore, we record the
status of the extended protocol information stored in each queue space through the queue
status indicator ’Indc’.

In the protocol update operation, we determine the queue group to which the new
protocol belongs by extending the Ref_pro information carried in the protocol descriptor
and determine the available queue entry sequentially from the lowest bit of the queue
group according to the queue status indicator. The new protocol information is then pushed
into the entry, and the corresponding queue status indicator is updated. In the process of
protocol parsing, we can similarly select the queue group that needs to be further retrieved
according to the general network protocol identifier output by the pre-parsing module.

If the invalid protocol parsing rule needs to be deleted, the status indicator ’Indc’ of
the queue entry where the protocol is located can be directly deactivated. This extended
protocol management method of packet multi-queue is beneficial to the efficient update
and storage of the ICN extended protocol. At the same time, a unified extension protocol
parsing logic is designed for queue management, which reduces the proportion of parser
resources and packet jump operations to ensure high-speed data transmission.
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Figure 3. Diagram of the queue.

3.4. On-Chip Bus Translation Mechanism

Currently, the mainstream FPGA products and bus transmission protocols in the market
are the AXI4 bus of Xilinx and Avalon bus of Intel, respectively. In order to facilitate more
flexible deployment of DEPP on a variety of FPGA platforms, this paper also proposes a
flow mode data conversion logic from the AXI4 bus to the Avalon bus, which is used for
the conversion of bus control signals and data streams. We load this module on the data
input end of DEPP so that the parser can support the parsing of AXI4 and Avalon bus data.

Comparing the structural characteristics of AXI4_st bus and Avalon_st bus in stream
mode, we designed the conversion relationship as shown in Figure 4. This module mainly
includes three parts: signal direct connection, control signal conversion, and high-speed
data stream conversion. In the signal direct connection, bus signals with the same functions
are directly transmitted: “ready”, “valid”, “last(eop)”, and “user(channel)”. According
to AXI4_st bus validity flag bit “valid” and last frame identifier “last”, the control signal
conversion module generates the corresponding Avalon_st bus protocol packet start and
stop signal “sop/eop”.

Furthermore, the number of “0” in the binary AXI4_st byte valid flag “strb” signal is
counted, and the Avalon_st bus invalid byte count signal “empty” is generated by the
thermometer encoder. The byte reading order of data in different bus protocols is different.
According to this characteristic, the high-speed data flow conversion logic is responsible for
adjusting the byte reading order of AXI4_st bus data flow to the big-endian transmission
structure, and zero-fill processing is performed for data packets that do not meet the bit
width to ensure the aligned transmission of the data and control signals.

Figure 4. Bus protocol transformation diagram.

4. Work Process

This section introduces DEPP’s dynamic protocol update and packet protocol parsing
process in detail.
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4.1. Protocol Update

Figure 5 shows the internal logic of the dynamic protocol update mechanism deployed
on FPGA in detail. It mainly includes the pro_adapter module for processing descriptors
and the pro_queue_mgr module used to manage protocol storage queues.

When a new descriptor arrives, it first enters the pro_adapter module, which is mainly
responsible for clock synchronization and the extraction of descriptor information. In order
to prevent timing instability caused by cross-clock domain operation, it is necessary to
convert the clock frequency of the descriptor signal interface to the 200 MHz operating
frequency used by the parser. Secondly, according to the known descriptor structure, we
sequentially extract valid information, such as protocol fields and masks, in this module.
Finally, along with the rising edge of the clock, the information is transmitted in parallel to
the multi-queue protocol management module for storage.

For the first-level extension protocol on the general network protocol or the second-level
extension protocol known to Ref_pro, we can directly extract the protocol parsing rules
from the descriptor, and the mask information is obtained from Epro_prefix through the
thermometer decoder. If the 16bits of Ref_pro are all 1, it means that we are updating
the second-level extension protocol under the conditions of without knowing the location
of the first-level extension protocol. At this time, the index of the queue where the first-
level extended protocol is located needs to be passed to Ref_pro through the feedback
mechanism to update the associated multilevel extension protocol.

When the protocol information reaches the pro_queue_mgr module, we first determine
which queue group the protocol belongs to according to the Eth_pro signal obtained in the
descriptor. Then, we determine the available queue entry in the group through the status
indicator ‘Indc’ to add the current extended protocol information to the entry and activate
the corresponding status indicator. The introduction of the queue status indicator facilitates
real-time monitoring of the protocol storage status by the queue_monitor module. At the
same time, invalid protocol information can be deleted by inactivating the corresponding
queue entry status in the ‘Indc’ register. To prevent competition risks, when new protocol
information arrives, the busy signal is asserted to suspend the packet parsing operation and
cache the packet header information to be parsed until the update operation is complete.

Figure 5. Protocol update microstructure.

4.2. Parsing Process

The packet protocol parsing process in this solution is divided into general protocol
parsing and ICN extension protocol parsing. For the general protocol with fixed parsing
rules, according to the sequence dependencies among the multi-level protocols, the combi-
national logic with no delay characteristic is used to parse all the commonly high-priority
protocols within two clock cycles, which guarantees that data passes through the parser
with minimal latency.

Figure 6 shows the parsing process of the extended ICN protocol in the multi-queue
management module. The input signal is the packet header (data_header) extracted by
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the preparse module and the general protocol tag (gen_pro_tag). First, according to the
busy signal, we judge whether the data needs to be cached until the protocol update is
completed. Secondly, according to the general protocol type in the packet, the multi-queue
grouping that needs to be further retrieved is selected. For example, if the packet contains
the IPV4 protocol, the queue group of (Ref_pro == IPV4) should be further retrieved to
determine whether the packet contains the extended protocol over IPV4.

Figure 6. The extended protocol detection process.

The specific parsing process is as follows: According to the relative offset between
the extended protocol and its reference protocol, we locate the position of the field to
be identified in the packet header. Then, we extract the 32 bits matching field from this
position and compare it with the protocol field and mask stored in the queue group in
turn; after the matching is successful, we judge whether we need to parse the second-level
extended protocol according to the next_en flag bit.

The parsing process of the second-level extension protocol is the same as the above
method. However, its Ref_pro is the address of the queue where the first-level extension
protocol is located. After the parsing is completed, the queue index where the extended
protocol is located is output, and the corresponding transmission channel is allocated for
the data.

5. Evaluation and Results

According to the overall framework of DEPP proposed before, we deployed it on Intel
Arrias 10, which is a programmable 100 Gbps FPGA board. The parser is designed with
SystemVerilog coding and uses C language to encapsulate the access control interface in
user space for delivering extended protocol descriptors and queue status detection. The
IXIA high-speed network traffic generation tool is used to generate test data streams to
evaluate the performance of DEPP in terms of protocol extension and parsing.

The device connection is shown in Figure 7. The data packets generated by IXIA device
are parsed by DEPP deployed on the FPGA and then distributed to different processing
units of the R730 server for a statistic. Finally, we loop the packet back to the IXIA device.
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Figure 7. Equipment connection diagram.

The most important feature of the scheme is its high flexibility in the protocol extension.
Using the descriptor mechanism, new protocol resolution rules can be added in any location
of packets in real-time without affecting the normal running of network devices. Here, we
test the average latency consumed by DEPP and TCAM parsers when adding new protocol
parsing rules, respectively, and the test results are shown in Figure 8.

Figure 8. The average update delay.

The delay mainly includes the time to deliver the descriptor from the host and the
time to process the descriptor in the hardware. In DEPP, we adopt a pipeline processing
mechanism so that the average update delay gradually decreases with the increase of
the number of burst transmission rules and is stable within 300 ns. In contrast, the time
required for a TCAM-based [25] parser to update each rule is about 3.3 ms, which is four
orders of magnitude higher than DEPP.

However, the current mainstream hardware reconfigurable parsers mainly rewrite
the parsing logic to add new protocols and then reload them into the hardware through
synthesis, wiring, and other operations. The overall time overhead is at least in minutes.
Secondly, compared with the protocol management method based on TCAM, only the
valid field of the protocol and its mask information can be stored in the TCAM, and the
protocol positioning logic is not included; however, the descriptor can add protocol parsing
rules of any length to any position of the data packet, which has higher flexibility.

In order to further verify DEPP’s processing performance and packet throughput of
the new protocol resolution rules, five protocol parsing rules as shown in Table 3 are
added by extending the protocol descriptor. Pro0 to Pr03 are first-level extension protocols
constructed based on high-priority general protocols, and Pro4 is a second-level extension
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protocol added on the basis of Pro3. Furthermore, we use the IXIA device for sending and
receiving packet test.

Table 3. Descriptor example.

Ref_pro Epro_field Epro_prefix Offset Next_en Level

Pro0 IPV4 0x00fe 8 0x09 0 1
Pro1 UDP 0x0087 8 0x0a 0 1
Pro2 IPV6 0x00dd 8 0x06 0 1
Pro3 VLAN 0x8989 8 0x02 1 1
Pro4 Pro3 0x009b 8 0x1f 0 2

First, the fixed packet size is 1024 bytes, and 10 million packets with the above five
protocols are randomly generated at a rate of 100 Gbps using IXIA equipment. The result
is shown in Figure 9a, where the blue represents the number of different protocol packets
sent by IXIA , and the orange represents the packets passing through the parser. It can be
seen from the figure that the number of sending and receiving is the same, indicating that
the parser can flexibly handle packets with different protocols . In Figure 9b, we fix the
protocol type to Pro0, test the rate of packets of different sizes, and show the percentage
of the actual received rate versus the theoretical value on the broken line. From the rate
statistics results, except for a small amount of packet loss in the transmission and reception
of line-rate small packets , stable packet reception of 100 Gbps can be achieved in other
cases. This shows that the parser has high throughput characteristics.

(a) Multiple protocol types (b) Multiple packet sizes

Figure 9. Statistics of sending and receiving.

In Figure 10, we show the transmission delay of DEPP and the software parser designed
with DPDK in a data forwarding system with fixed parsing rules. In order to show the
test results better, the software parser was deployed on the Dell R740 server equipped
with Mellanox ConnectX-5 NIC. The testing process is as follows: we randomly send data
packets containing four-level protocol parsing rules, such as VLAN, IPV4, UDP, and Pro1,
and forward them to the ixia device after passing through the parser.

Here, we use a fixed four-level protocol parse tree for evaluation, although both can sup-
port customizing more complex protocol parsing rules. From the delay test results, it can be
clearly seen that, even if the kernel protocol stack is bypassed and the DPDK development
kit with high-performance data packet processing is adopted, the transmission delay of
data packets is at least microseconds or even milliseconds. In contrast, the transmission
delay designed with the DEPP scheme is much smaller. Even if a data packet with a length
of 4096 bytes is transmitted, the average delay can be stabilized at about 1200 ns, which
greatly improves the processing efficiency of network data.
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Figure 10. Parsing latency variation.

Table 4 shows the resource usage of DEPP deployed in Arria10 with different queue
depths. The coverage of DEPP is small, leaving enough resource space for additional logic
development. Compared with Openflow’s limited support for 44 protocols, DEPP supports
more protocol extensions and can meet a wider range of network protocol extension
requirements.

Table 4. Resource utilization.

Queue Depth
LUT (Total: 427,200) Rigister (Total: 1,708,800) RAM (Total: 55,562,240)

Used Rate Used Rate Used Rate

32 5945 1.39% 5334 3.12‰ 22,656 4.07‱
64 10,375 2.43% 7222 4.23‰ 22,656 4.07‱
128 22,226 5.20% 10,777 6.31‰ 22,656 4.07‱

6. Conclusions

This paper proposes an ICN dynamically extensible protocol parser based on the FPGA
platform, which supports a flexible expansion of protocol parsing rules and high-speed
network packet parsing. It has a wide range of application values in data centers, computer
clusters, and other traffic-intensive environments. In this solution, we introduced the
extended protocol descriptor and multi-queue protocol management mechanism to realize
dynamic updates and the efficient parsing of the customized ICN protocol parsing rules,
which improved the flexibility and stability of the ICN network. Furthermore, the parser
can be flexibly deployed on a variety of FPGA platforms through bus protocol conversion.

The experimental results show that DEPP supports adding new protocol parsing rules in
real-time on the basis of the general protocol parsing tree and can, in a 100 Gbps high-speed
network, accurately identify packet protocols. The high scalability of the parser enables it
to be better deployed in various ICN network architectures and supports online updates of
network devices, thereby, reducing the network downtime or network congestion caused
by protocol updates and meeting future network requirements for high performance and
flexibility.

At present, DEPP can support the flexible expansion of new protocol parsing rules at
the end of the protocol parsing tree; however, it cannot support inserting new protocols in
the middle of the original parsing process or even at the root. This is also the focus of my
future work.
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