

Electronics 2022, 11, 1489. https://doi.org/10.3390/electronics11091489 www.mdpi.com/journal/electronics

Article

BSTProv: Blockchain-Based Secure and Trustworthy Data

Provenance Sharing

Lian-Shan Sun 1,2,*, Xue Bai 1,2, Chao Zhang 1,2, Yang Li 1,2, Yong-Bin Zhang 1,2 and Wen-Qiang Guo 1,2

1 School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology,

Xi’an 710021, China; safiyyahcc@outlook.com (X.B.); sdtczc@outlook.com (C.Z.);

muziyangde@outlook.com (Y.L.); zhangyongbin@sust.edu.cn (Y.-B.Z.); guowenqiang@sust.edu.cn (W.-Q.G.)
2 Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology,

Xi’an 710021, China

* Correspondence: sunlianshan@sust.edu.cn

Abstract: In the Big Data era, data provenance has become an important concern for enhancing the

trustworthiness of key data that are rapidly generated and shared across organizations. Prevailing

solutions employ authoritative centers to efficiently manage and share massive data. They are not

suitable for secure and trustworthy decentralized data provenance sharing due to the inevitable

dishonesty or failure of trusted centers. With the advent of the blockchain technology, embedding

data provenance in immutable blocks is believed to be a promising solution. However, a provenance

file, usually a directed acyclic graph, cannot be embedded in blocks as a whole because its size may

exceed the limit of a block, and may include various sensitive information that can be legally ac-

cessed by different users. To this end, this paper proposed the BSTProv, a blockchain-based system

for secure and trustworthy decentralized data provenance sharing. It enables secure and trustwor-

thy provenance sharing by partitioning a large provenance graph into multiple small subgraphs

and embedding the encrypted subgraphs instead of raw subgraphs or their hash values into immu-

table blocks of a consortium blockchain; it enables decentralized and flexible authorization by al-

lowing each peer to define appropriate permissions for selectively sharing some sets of subgraphs

to specific requesters; and it enables efficient cross-domain provenance composition and tracing by

maintaining a high-level dependency structure among provenance graphs from different domains

in smart contracts, and by locally storing, decrypting, and composing subgraphs obtained from the

blockchain. Finally, a prototype is implemented on top of an Ethereum-based consortium block-

chain and experiment results show the advantages of our approach.

Keywords: blockchain; data provenance; secure and trustworthy data sharing; smart contract

1. Introduction

In the Big Data era, massive data are incessantly generated, shared, and used across

organizations, and have shown their huge potential in changing the way of industrial

production and social life [1]. The high trustworthiness of data is a precondition required

for making dependable decisions. Erroneous, fabricated, or falsified data could lead to

various undesired and unexpected aftermaths [2,3]. For example, in collaborative scien-

tific research project, multiple distributed organizations independently conduct re-

search activities and then share some datasets, computational methods, and research

results with each other. If some of these datasets or results which are accidentally or

intentionally fabricated or tampered, other organizations can be misled to make

wrong or even harmful decisions that may in turn jeopardize economy or public se-

curity. How can we improve the trustworthiness of data shared across organizations?
Data provenance is believed to be a promising solution [4].

Citation: Sun, L.-S.; Bai, X.; Zhang,

C.; Li, Y.; Zhang, Y.-B.; Guo, W.-Q.

BSTProv: Blockchain-Based Secure

and Trustworthy Data Provenance

Sharing. Electronics 2022, 11, 1489.

https://doi.org/10.3390/

electronics11091489

Academic Editor: George A. Tsih-

rintzis

Received: 11 April 2022

Accepted: 4 May 2022

Published: 6 May 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

mailto:guowenqiang@sust.edu.cn

Electronics 2022, 11, 1489 2 of 22

According to W3C, data provenance usually records the entities, processes, or agents

involved in producing a data object, and is usually structured as a directed acyclic graph,

called a provenance graph [5]. By analyzing the provenance graph of a data object, users

can trace historical causes that make the data object become what it is; thus, the trustwor-

thiness of the data object can be enhanced [4]. A provenance graph on the data object that

has evolved for a long time may be very large and may contain various sensitive pieces of

information [6]. It is neither efficient nor secure to share a provenance graph as a whole.

A provenance management system should be able to flexibly provide users with secure

and trustworthy provenance views, which are useful subsets of a provenance graph.

Nowadays, massive data are mainly stored and efficiently manipulated by some sort

of centralized systems that rely on authoritative centers with huge storage capacity and

very high throughput. However, these centralized solutions have several inherent draw-

backs, including single-point failure and dishonesty of authoritative centers. Once a cen-

tralized system is hijacked, the data are at high risk of leakage, tampering, and forgery;

thus, these centralized systems cannot be used to enable secure and trustworthy data

provenance sharing. Even worse, in many business collaborations, such as supply chain,

federated healthcare, or scientific workflow, multiple peers may not fully trust with each

other. It is very hard, even not impossible, to elect a trusted center that is acceptable for

all peers. A decentralized solution is expected to enable each peer to independently collect

and flexibly share provenance views with different users in a secure and trustworthy man-

ner.

A blockchain is a tamper-proof ledger as a chain of blocks. Replicas of the ledger are

consistently maintained by peers without mutual trust, enabling trustworthy transactions

among multiple peers not relying on a trusted center [7,8]. Some researchers have pro-

posed blockchain-based solutions for trustworthy data sharing by embedding raw data

with limited size or their hash values into blockchain transactions [9–11]. Similarly, block-

chain-based trustworthy provenance sharing is also feasible [12,13].

Furthermore, a provenance graph could be too large to be directly embedded in a

single blockchain transaction, and existing researches of embedding the hash value of a

provenance graph into a blockchain transaction or embedding each provenance record in

a single blockchain transaction still suffer the drawbacks of low trustworthiness or low

feasibility, respectively. First, when only embedding hash values into blockchain transac-

tions for saving storage cost, it is very difficult to maintain the consistency between the

hash values on-chain and the provenance graphs off-chain. Once a provenance graph is

intentionally redacted for removing sensitive information or maliciously tampered, the

evidences on-chain can soon become invalid, and the trustworthiness of data provenance

as well as the shared data cannot be verified anymore. Furthermore, provenance graphs

may contain various sensitive information that can only be accessed by different re-

questers with appropriate permissions. Computing provenance views and storing their

hash values on-chain after receiving requests leaves much room for provenance owners

to falsify the provenance views; therefore, the responsively created provenance views are

less trustworthy.

Second, a provenance graph consists of a set of provenance records. Some researchers

tried to directly embed each provenance record into a single blockchain transaction. How-

ever, when the number of provenance records increase, this method can lead to massive

transactions and can soon become infeasible because the cost of spreading and storing

these massive transactions on the blockchain network is usually very high, and the

throughput of mainstream blockchain platforms is usually too low to timely deal with

transactions that could arrive in a very fast speed.

To address the above drawbacks, we proposed the BSTProv, a blockchain-based sys-

tem for secure and trustworthy decentralized data provenance sharing. The BSTProv sys-

tem is designed with the following key ideas in mind. First, it embeds encrypted prove-

nance data, but not their hash values, into blockchain transactions to achieve higher trust-

worthiness at the cost of higher storage cost. To control the storage cost, users could only

Electronics 2022, 11, 1489 3 of 22

share trustworthiness-critical provenance graphs with a limited size using the proposed

system while dealing with other provenance graphs in traditional approaches. In this

sense, the proposed system complements the existing researches by providing users with

a new alternative. Second, it deals with a lot of provenance records that are newly ap-

pended onto the provenance graph in a batch mode. In this way, it enables users to adapt

the time interval between two consecutive activities of provenance graph sharing and the

number of subgraphs to be embedded into blocks to the throughput of underlying block-

chain platforms.

With this proposed BSTProv system, a provenance owner can selectively share useful

and insensitive provenance subgraphs to specific requesters to prevent sensitive infor-

mation leakage. Furthermore, a provenance requester can obtain trustworthy provenance

subgraphs from blockchain, and can decrypt and compose them into a partially complete

but useful provenance graph for further cross-domain provenance tracing and trustwor-

thy provenance-based data trustworthiness enhancement. Note that the proposed system

enables different peers to define authorization policies for provenance subgraphs shared

on-chain in an autonomous and flexible way.

The remainder of this paper is structured as follows. Section II briefly introduces the

preliminaries of blockchain and provenance. Section III describes the related work. Sec-

tion IV analyzes the fundamental requirements of decentralized provenance manage-

ment. Section V presents algorithms for provenance graph partitioning and subgraph

composition. Section VI presents the high-level architecture of the proposed BSTProv sys-

tem with emphasis on designing smart contracts and the on- and off-chain storage model.

Section VII implements a prototype and highlights the key data structures and algorithms.

Section VIII analyses and evaluates the prototype. Finally, Section VIIII concludes this pa-

per and envisions future works.

2. Preliminaries

2.1. Blockchain

Blockchain is initially the set of underpinning techniques of the Bitcoin introduced in

2008 [7], which is the first cryptocurrency system that solved the problem of double-

spending and transactions tampering. A blockchain consists of a series of cryptograph-

ically linked blocks. Each block has a header and a body that contains a set of transactions.

Each block is linked to its previous block by storing the hash of its previous block header.

A blockchain is a tamper-proof ledger running on a peer-to-peer network. Each peer

maintains an identical replica of the ledger according to a given consensus protocol, such

as proof of work, proof of stake, proof of authority, or practical byzantine fault tolerance;

thus, multiple peers can achieve consensus without trusted central authorities [8]. In a

blockchain network adopting the proof-of-work protocol, a malicious peer who wants to

forge a block has to possess more than 50% computational power of the whole network,

which is often believed impossible [7]. In this sense, every transaction in a block is immu-

table and thus, to some extent, trustworthy. Due to these attributes of blockchain, it is

possible to build a blockchain-based solution for secure and trustworthy provenance shar-

ing across domains without mutual trust by embedding provenance in blockchain trans-

actions.

Besides decentralized trust and tamper-resistance, newer blockchain systems further

provide a decentralized Turing-complete platform to run application codes called smart

contract in Ethereum [14] or chain code in Hyperledger [15]. A smart contract in Ethereum

is actually a piece of tamper-proof code stored on-chain. It is created and invoked via

transactions, and then independently executed by all nodes in the network when specific

conditions are met. The execution result of a smart contract obtained on one node is al-

ways identical to those obtained on other nodes. A smart contract is not allowed to call

codes running off-chain because they may return uncertain results and therefore break

Electronics 2022, 11, 1489 4 of 22

the consistency among the ledgers maintained by different nodes. In theory, any decen-

tralized applications with arbitrary complexity can be implemented as smart contracts. In

this paper, we use smart contracts to track the authorization policies and high-level de-

pendencies among provenance graphs. Whenever new policies or new graphs are up-

loaded onto the blockchain, corresponding smart contracts can execute and update the list

of authorization policies and the overall dependencies among provenance graphs.

A public blockchain system allows any user to join or exit the network at any time

[16]. There are two shortcomings of using a public blockchain for enterprise computing.

One shortcoming is the extremely high cost of storing data and executing codes on every

node in the public blockchain network. Note that each computational step in the public

Ethereum has a cost associated with it being called gas [14]. The initiator of each transac-

tion has to pay the gas price for each step executed in the transaction. The other shortcom-

ing is the low throughput of the public blockchain. Note that a necessary time interval,

such as ten minutes in the Bitcoin and fifteen seconds in the Ethereum, is necessary for all

nodes to achieve consensus. In order to meet requirements of high throughput and to

reduce the cost of storing data and executing codes on a public blockchain, some permis-

sioned blockchains, also named private blockchains or consortium blockchains in differ-

ent scenarios, were proposed for enterprise computing [15–17]. Users who want to join in

a permissioned blockchain have to obtain appropriate permissions from one or more au-

thoritative users. Note that some researchers have employed consortium blockchains to

meet high throughput requirements at a relatively low cost [18]. This paper adopts an

Ethereum-based consortium blockchain for efficient and cheap provenance storage and

tracing.

2.2. Provenance

According to W3C, data provenance records the evolutionary history of a data object,

and is usually structured into an append-only directed acyclic graph [5]. As shown in

Figure 1, a provenance graph contains three types of nodes: Entity, Activity, and Agent.

Entity represents intermediate artifacts involved in producing a data object. Activity rep-

resents processes that manipulated entities. Agent represents persons or organizations

that controlled activities. An edge <t, h> is a directed dependency among nodes and is

actually a provenance record with a timestamp that indicates an event from the past. For

example, an activity a1 can use a data object o1 as the input, a new data object o2 can be

generated by an activity a2, and one agent g1 can act on behalf of another agent g2. An edge

can be created and appended into a provenance graph whenever a concerned event hap-

pened. Two edges can be connected together when the head of one edge p = <t1, h1> is

equal to the tail of another edge q = <t2, h2>, i.e., h2 == t2. In this case, the event modeled by

p happened later than the event modeled by q. We can say that p is a downstream event

of q or that q is an upstream event of p.

Figure 1. Core structure of a provenance data model. Reprinted with permission from Ref. [14].

2014, Wood, G.

Electronics 2022, 11, 1489 5 of 22

Along the direction of edges in a provenance graph, one can trace and scrutinize the

historical nodes and events that directly or indirectly influenced a node. This process is

called provenance tracing, which is the main usage of a provenance graph. Provenance

tracing is the prerequisite for data trustworthiness verification, wrong data attribution,

and accountability. We use the term traceability to indicate the extent to which a prove-

nance graph facilitates provenance tracing. One objective of the proposed system is to

ensure traceability of a cross-domain provenance graph that is composed from some sub-

graphs shared on-chain.

3. Related Work

The locations where provenance is collected and stored lead to different techniques

for provenance sharing and therefore different challenges. In a centralized setting where

provenance is collected and stored in an authoritative center, the main concerns are secu-

rity and traceability because the trustworthiness of the shared provenance graphs is tacitly

ensured by the authoritative center. Most existing researches focused on ensuring prove-

nance security by techniques of encryption [19,20], sanitization [21], and access control

[22,23]. Some researches further considered the issue of achieving both security and trace-

ability [24]. However, the trustworthiness of the shared provenance is doubtful because

the centralized structure has downsides of inevitable single-point failure and center dis-

honesty. The malicious center can fabricate or falsify critical data and attribute its crime

to data providers. Even worse, it is hard to establish an authoritative center in collabora-

tions across organizations, such as supply chain and federated healthcare.

With the advent of blockchains, many researchers explored the possibility of block-

chain-based data sharing among peers without mutual trust. Liu et al. proposed a privacy-

preserving medical data sharing system based on blockchain [25], which stores the medi-

cal information on a cloud and its hash value on a consortium blockchain. Wei et al. built

a blockchain-based data integrity protection mechanism, which enables reliable data stor-

age, monitoring, and verification in cloud [26]. Xia et al. designed the MeDShare system,

which uses smart contracts and access control mechanisms to not only trace and control

data effectively, but also to minimize the risk of private data leakage [27]. RiFi et al. stored

data of Internet of Things by IPFS and controlled access by smart contracts [28], which can

protect privacy and sensitive data. Blockchain has shown great potential in addressing

privacy and security vulnerabilities in Internet of Things (IoT) and many researches have

been conducted concerning security challenges of smart contracts and the perfor-

mance evaluation [29–31]. Previous researches have shown that blockchain-based solu-

tions are feasible for secure and trustworthy data sharing if appropriate storage patterns,

smart contracts, and encryption technologies are well integrated.

Inspired by researches on blockchain-based data sharing, some researchers also ex-

plored the possibility of blockchain-based data provenance sharing in distributed envi-

ronments. Xu et al. proposed a provenance-provided data sharing model based on block-

chain [10], which has features of transparent authentication, privacy control, and audita-

ble provenance. Ramachandran et al. use smart contracts and an OPM model to record,

verify, and manage data provenance [32]. Chen et al. designed a block structure for storing

and retrieving data provenance [33], which certificates the primitive data on-chain and

saves them off-chain. Liang et al. proposed a ProvChain framework for collecting and

verifying cloud data provenance [12], which embeds the provenance of cloud files into

blockchain transactions. Jagadeesh et al. proposed an extensible framework based on

blockchain for capturing, storing, exploring, and analyzing software provenance [34]. Fer-

nando et al. developed a system called SciBlock that provides tamper-proof and undeni-

able storage for scientific workflow provenances [13]. Ruan et al. proposed a fine-grained,

secure, and efficient provenance system called LineageChain, which motivates the need

for adding native provenance support to blockchain [35].

Electronics 2022, 11, 1489 6 of 22

Besides the naïve and usually infeasible method of embedding the whole provenance

graph directly into a single blockchain transaction, existing blockchain-based provenance

sharing researches mainly fell into two categories. One is to embed a single provenance

record in a blockchain transaction. The other is to embed the hash value of the whole

provenance graph in a blockchain transaction. The researches of the first category are usu-

ally infeasible when a large number of provenance records emerge at a very fast speed.

First, a large number of transactions should be created and spread on the blockchain net-

work in a short time period, which cannot be facilitated by existing blockchain systems.

Second, what is used in provenance tracing is actually a provenance graph consisting of

multiple interconnected provenance records. Most existing researches did not address the

issue of efficiently integrating provenance records scattered in different blocks. Third,

managing access rights of a large number of provenance records is also very cumbersome

and error-prone.

The researches of the second category have two drawbacks of low trustworthiness

and inflexible authorization. First, they suffer the low trustworthiness of modified prove-

nance file off-chain because any modifications to a provenance graph off-chain cannot be

validated by the corresponding hash value stored on-chain. Furthermore, constructing

provenance views and their corresponding hash values according to requests leaves much

room for provenance owner cheating; thus, provenance views constructed in this way are

less trustworthy. Second, they suffer the inflexible authorization because a provenance

graph cannot be selectively shared and validated because only the hash value of the whole

provenance graph was on-chain. Users who only need a subset of the provenance graph

can acquire unnecessary or even sensitive information when the provenance was shared

as a whole. In addition, one still faces the challenges of constructing, processing, and

maintaining massive provenance views, which may contain only subtle differences with

each other in terms of sensitive information, and faces the challenges of distributing mas-

sive decryption keys to specific users.

The merits and demerits of existing researches are summarized in Table 1. Existing

centralized solutions focused on security and traceability; thus, they have the merits of

high security, efficiency, and traceability, but the demerit of low trustworthiness. Existing

blockchain-based solutions focused on trustworthiness and security, but not traceability;

therefore, they have the merits of high security, but the demerits of low trustworthiness,

high cost and complexity of managing a large number of provenance records and their

access policies, and low traceability.

Table 1. A comparison of schemes.

Schemes Research Focus Methods Merits Demerits

Centralized so-

lutions

Security and

traceability

Data encryption High security Low trustworthiness

Data sanitization
High dependabil-

ity
High risk of data forgery

access control High traceability Disputes of responsibility

Blockchain-

based solutions

Security and

trustworthiness

Smart contract High security

Low traceability when storing provenance rec-

ords separately

High cost of managing massive provenance

records

Data encryption Trustworthiness

High complexity of managing massive access

policies

Low dependability when only storing hashes

on-chain

Electronics 2022, 11, 1489 7 of 22

4. Blockchain-Based Decentralized Provenance Sharing

In a decentralized business collaboration across multiple organizations, such as sup-

ply chain, scientific workflow, or federated healthcare, peers may not fully trust each

other. Each peer may collect provenance records by itself and store them in a local data-

base. Along with the system running, each peer can capture a lot of provenance records

and structure them into a local provenance graph and then share them with other peers

when necessary. Some shared local provenance graphs can be composed into a cross-do-

main provenance graph for global provenance tracing.

A local provenance graph may include various sensitive or redundant information

for a specific requester to consume. If a peer shared its whole local provenance graph with

other peers without any modifications, they may not only suffer the high cost of transfer-

ring and processing a large provenance graph, but also the high risk of sensitive infor-

mation leakage. In practice, each peer needs to share only necessary subgraphs to specific

peers while ensuring that they are secure and trustworthy. If a data requester wants to

trace a given entity back to its origins, he/she can request provenance subgraphs shared

by multiple peers, verify their trustworthiness, and then compose them into a trustworthy

provenance graph. In general, data provenance sharing in decentralized settings mainly

has three objectives: security for preventing unauthorized users from reading and access-

ing sensitive information, traceability for retaining enough useful information in the cross-

domain provenance graph composed from shared subgraphs, and trustworthiness for

keeping the cross-domain provenance graph authentic.

As analyzed above, several fundamental requirements of decentralized provenance

sharing are identified as follows:

1. What a peer shares each time is not a single provenance record but a provenance

subgraph consisting of a bundle of interconnected provenance records.

2. Each peer should construct appropriate subgraphs, encrypt them, and define access

control policies for securely and flexibly sharing them with different users.

3. Provenance subgraphs shared by different peers should be efficiently composable

with each other for cross-domain provenance tracing.

4. Provenance subgraphs shared by a peer should be trustworthy and dependable even

when the provenance graph locally maintained by the peer is damaged or tampered

accidentally or intentionally.

This paper proposes a blockchain-based secure and trustworthy data provenance

(BSTProv) sharing system. With the BSTProv system, a provenance owner first works lo-

cally to partition a provenance graph into multiple subgraphs, to encrypt each subgraph

using a unique symmetrical encryption key, to embed each encrypted subgraph instead

of its hash value into a blockchain transaction, and to submit the transactions onto the

blockchain network. Second, the blockchain network spreads the transactions. Third, the

miner elected according to some consensus protocol, such PoS, packages these transac-

tions into a block and spreads the block across the network. Fourth, provenance owners

can independently define and submit policies onto the blockchain network to authorize a

requester to access a set of subgraphs. Meanwhile, provenance requesters can inde-

pendently define and submit requests onto the blockchain network to request a set of sub-

graphs. Note that provenance owners and provenance requesters can work independently

and simultaneously. At last, each provenance requester can retrieve his/her permissions

and download corresponding subgraphs from the blockchain. He/she can then compose

these subgraphs obtained from the blockchain into a cross-domain provenance graph.

The following sections introduce in detail the provenance partitioning and composi-

tion mechanisms, the overall architecture, and the implementation of the BSTProv system,

respectively.

Electronics 2022, 11, 1489 8 of 22

5. Provenance Partitioning and Composition

In this paper, a local provenance graph maintained by a peer should be partitioned

into multiple subgraphs, which are then be encrypted and uploaded onto the blockchain.

Different users can then obtain a subset of provenance subgraphs from the blockchain and

compose them into a partially complete provenance graph for cross-domain provenance

tracing. This section introduces a breadth-first search-based provenance graph partition-

ing algorithm and a hash-node based provenance graph expansion algorithm for re-com-

position of inner-domain provenance subgraphs or intra-domain provenance graphs.

5.1. Partitioning

Graph partitioning is generally the first step of distributed graph computing tasks.

The objective is to find balanced partitions of a graph while minimizing the number of

edge cut [36,37]. In this paper, a large provenance graph should be partitioned into mul-

tiple small subgraphs so that they can be embedded into blockchain transactions with

limited capacity and flexibly authorized to different users. Thus, each provenance sub-

graph should be small enough and should only include sensitive elements that can be

authorized to a user together. This represents a graph partitioning problem with security

constraints. A provenance graph may contain various sensitive information in its nodes,

edges, or even indirect dependencies among two nodes connected via a path. A security

constraint to provenance graph partitioning could tell that each sensitive node, edge, or

endpoint of an indirect dependency in a provenance graph should be encapsulated in an

independent subgraph so that one can authorize specific users to access a sensitive ele-

ment by authorizing them to access the subgraph including it.

Graph partitioning is a combinatorial optimization problem that has been exhaust-

ively studied [36]. Existing graph partitioning algorithms cannot be straightforwardly

used for provenance graph partitioning with security constraints. A directed edge or arc

in a provenance graph usually indicates an informal casual dependency with an arc tail

as the effect and an arc head as the cause. In order to respect the traceability of provenance

subgraphs, this paper introduces a breadth-first search-based provenance graph partition-

ing algorithm. It creates a subgraph by grouping a node or an effect with some of its recent

causes that are upstream nodes within given hops from the node.

The proposed algorithm takes the provenance graph G, the maximum length of paths

in a subgraph N, and the set of sensitive elements S as the input, and produces a set of

subgraphs Gi, i = 1, …, |S| as the output. After starting a breadth-first search from a node

with indegree zero, any newly reached nodes, as well as the edges reaching them, can be

added into a subgraph Gi, unless a path whose length exceeds the given value N or the

new node or the new edge is sensitive. In this way, the algorithm ensures that each Gi

includes only one sensitive element in S. One can define authorization policies to protect

a subgraph from being accessed by unauthorized users. When a subgraph Gi is created, 1

should be subtracted from the indegree of each node when it is reached from Gi via an

untouched edge. Then, the next subgraph Gi+1 can be computed by starting another

breadth-first search from a node with indegree zero. The proposed algorithm stops when

all nodes in G are added into some subgraphs.

Figure 2 shows a partial provenance graph of an entity EmailC. In Figure 2, the edge

<EmailC, Send2> means that the entity EmailC was generated by the activity Send2. The

edge <addContent, file> means that the activity addContent manipulated the file. Assume

that the entity EmailA is sensitive to the provenance requester A, that the entity file is

sensitive to the provenance requester B, and that the maximum length of paths in a sub-

graph is set as 2. Executing the proposed partitioning algorithm starting from the entity

EmailC can produce three provenance subgraphs S1, S2, and S3, as shown in Figure 2. The

data owner can share only S1 and S2 to the data requester A to avoid the leakage of the

sensitive EmailA in S1.

Electronics 2022, 11, 1489 9 of 22

Figure 2. A provenance graph of email.

Note that the proposed algorithm is not necessarily optimal. Many other graph par-

titioning algorithms can be applied. Exploring new provenance graph partitioning algo-

rithms is important in and of itself, and out of the scope of this paper. For example, a

subgraph was shared to a user as a whole may become partially available to another user

when authorization policies change in the future. However, our approach does not divide

a submitted subgraph to keep it trustworthy. Enabling adaptable and trustworthy parti-

tioning to a submitted subgraph is very interesting and is left as our future work.

5.2. Composition

Provenance graphs maintained by different peers in a business collaboration usually

share some nodes which are the data objects transferred across different domains; thus,

they can be composed into a cross-domain provenance graph for global provenance trac-

ing by merging these common nodes. According to the above algorithm, a provenance

graph can be partitioned into multiple non-overlapping subgraphs connected via only one

or more cut edges, for example <addContent, EmailA> between S2 and S3. Simply remov-

ing the cut edges can not only lose the information on these edges, but also totally disjoint

subgraphs that cannot be composed again. To this end, this paper proposed a hash-node-

based provenance graph expansion algorithm for both inner-domain subgraph composi-

tion and intra-domain graph composition. It expands a provenance graph by introducing

a few dumb nodes and incident edges so that the expanded provenance graph can be

composed with other expanded provenance graphs via common dumb nodes. Each dumb

node is actually the hash value of either a common node of two graphs or a cut edge

connecting two subgraphs.

In order to compose two subgraphs without common nodes but connected via a cut

edge, the proposed algorithm first removes the cut edge; adds a dumb node and a dumb

edge, connecting the dumb node and one of two endpoints of the cut edge in each sub-

graph, respectively; and finally attaches the edge information, if it exists, to the dumb edge

incident with the tail of the cut edge. Here, the dumb node is actually the hash value of

the cut edge. As a result, each subgraph is equipped with an array of input dumb nodes

and an array of output dumb nodes which are composable with other downstream or

upstream subgraphs, respectively. Two expanded subgraphs can then be composed to-

gether by merging their common dumb nodes and incident dumb edges into a cut edge.

In this way, the algorithm enables the inner-domain subgraph composition without intro-

ducing significant storage cost.

For example, Figure 3 shows the expansions of subgraphs S2 and S3 in Figure 2. The

hash value of the cut edge <addContent, EmailA> is added as the dumb node rNode1, and

its two incident dumb edges (<addContent, rNode1> and <rNode1, EmailA>) are also

added. Edge information on <addContent, EmailA> is attached to the edge <addContent,

rNode1>. The dumb node rNode1 and two incident dumb edges (<addContent, rNode1>

and <rNode1, EmailA>) in Figure 3 can be merged into <addContent, EmailA> later.

Electronics 2022, 11, 1489 10 of 22

Figure 3. Expansion of provenance subgraphs of Figure 2.

In order to compose two provenance graphs sharing a common node, the proposed

algorithm introduces into the two provenance graphs, i.e., a dumb node that is actually

the hash value of the common node, and an incident dumb edge that connects the dumb

node and the common node. Specifically, in a given provenance graph, it introduces dumb

nodes for nodes with indegree zero to form the array of nextIndex, and dumb nodes for

nodes with outdegree zero to form the array priorIndex, respectively. Both priorIndex and

nextIndex can then be stored in a smart contract and serve as its cross-domain hooks to

other provenance graphs maintained by different peers.

By matching common dumb nodes, the proposed algorithm enables efficient and

trustworthy cross-domain composition of provenance graphs and provenance tracing

even when some peers did not share some of their subgraphs. This will be discussed in

detail in the next section. By using hash values as hooks, the proposed algorithm avoids

the unnecessary leakage of sensitive information in the original common nodes. If a peer

A sends a data object D to another peer B in a business collaboration, the transferred data

object D is certainly available to both its sender A and its receiver B. Both A and B can

compute the hash value of D independently. However, other peers involved in the busi-

ness collaboration are informed that a message is passed from A to B while they do not

know the content of the data object D.

6. Architecture

As shown in Figure 4, the BSTProv system consists of four types of modules: users,

prov service, local database, and consortium blockchain. Users are the people or organi-

zations that deal with business tasks by some centralized systems which collect and share

various business data objects and provenance with other users for various purposes. Users

served by a centralized business system belong to an administrative domain and are ab-

stracted as a peer here; thus, we view users and peers as two interchangeable terms in the

rest of this paper. Multiple peers in a business collaboration may exist. Each peer needs to

maintain a trusted prov service and a trusted blockchain node so that it can process its

own provenance independently and efficiently and join the consortium blockchain net-

work for trustworthy provenance sharing among peers.

Figure 4. An architecture of the BSTProv system.

Electronics 2022, 11, 1489 11 of 22

A prov service usually runs in a trusted zone for a specific peer and consists of a

provenance process unit, a blockchain interface, a database interface, and a set of tools.

The provenance process unit is used to partition a local provenance graph into multiple

small subgraphs and compose multiple subgraphs obtained from the blockchain into a

cross-domain provenance view. The blockchain interface and the local database interface

is used to interact with the underlying blockchain and the local database, respectively. A

set of tools is used to manage local asymmetric encryption key pairs, and to encrypt and

decrypt provenance subgraphs.

The consortium blockchain stores provenance subgraphs, as well as the overall de-

pendency structure about how cross-domain provenance graphs can be composed with

each other. It selectively shares provenance subgraphs with appropriately designed smart

contracts.

To ensure efficient data storage and query, the local database stores the local prove-

nance graph collected and maintained by each user, provenance subgraphs (either the

partitions of the local provenance graph or those shared by other users), the information

of the transaction and block where a subgraph is embedded in, and access control policies

defined for requesters.

In the process of provenance sharing, a provenance owner first sends a provenance

graph to the trusted prov service. Then, the prov service partitions the provenance graph

into multiple subgraphs and computes cross-domain dependencies, i.e., the priorIndex ar-

ray and the nextIndex array of the provenance graph, according to the proposed algo-

rithms for provenance graph partitioning and expansion. Thirdly, the prov service sends

the priorIndex array and the nextIndex array onto a predefined smart contract running on

the consortium blockchain. The smart contract parses the transaction and links the current

provenance graph to existing ones. Finally, the prov service sends the encrypted sub-

graphs onto the blockchain one by one and stores the transaction receipts in the local da-

tabase.

In the process of provenance requesting, a provenance requester can first send a

provenance request to the trusted prov service. The prov service then retrieves the user’s

permissions in a smart contract running on the consortium blockchain, and further down-

loads the shared provenance subgraphs according to the retrieved permissions. It then

decrypts and composes the subgraphs and stores them in the user’s local database. Note

that smart contracts and on-and-off storage patterns are two important design issues that

we be introduced in detail in the rest of this section.

6.1. Smart Contract

Existing researches have built consortium blockchains on top of the Ethereum in dif-

ferent applications [38,39]; therefore, we adopted the Ethereum as the underlying plat-

form to build our system and used smart contracts to implement the on-chain computa-

tions. A smart contract has a unique address and a corresponding storage tree, which is a

part of the global state of the Ethereum. A data-storing transaction can be sent to a smart

contract and the appended data objects can be extracted and stored in the storage tree.

In the BSTProv system, we designed three smart contracts to manage authorization

policies and high-level dependencies among multiple provenance graphs from different

domains for decentralized authorization and cross-domain provenance composition, in-

cluding the identity controller contract (ICC), the provenance association contract (PAC),

and the authority controller contract (ACC).

The ICC records the identifications of users and registers new users by voting. The

ICC consists of the identity storage smart contract (ISSC) and the identity register voting

contract (IRVC). The ISSC stores the unique identifications and the corresponding public

keys of registered users. The IRVC creates a vote request whenever a new user registration

request arrives. When receiving more than half the number of votes in a given time period,

the ICC grants the user’s registration request and stores the user’s address and its public

key on-chain.

file:///D:/è½¯/Youdao/Dict/7.5.0.0/resultui/dict/?keyword=customized

Electronics 2022, 11, 1489 12 of 22

The PAC manages the overall dependency structure among provenance graphs

maintained by different peers, which is key to facilitating cross-domain provenance trac-

ing. The PAC consists of the provenance graph indexing contract (PGIC), the provenance

graph associating contract (PGAC), and the provenance upload smart contract (PUSC).

The PUSC parses the transactions with the embedded index information of a provenance

graph and then invokes the smart contracts PGIC and PGAC. The PGIC stores the index

information of a provenance graph, including the graph number, the owner, and the ar-

rays of priorIndex and nextIndex. The two arrays are stored in the PGIC for keeping cross-

domain dependencies among provenance graphs. It uses the hash value of a node instead

of the raw node itself to avoid the leakage of sensitive information. The PGAC stores the

overall dependency structure of provenance graphs for efficient cross-domain graph com-

position.

The ACC enables a provenance owner to define access policies for requesters and

accepts provenance requests issued by data requesters. The ACC consists of the prove-

nance request smart contract (PRSC) and the access control smart contract (ACSC). The

PRSC stores provenance requests issued by requesters. The ACSC stores access policies

published by provenance owners. A provenance owner can define who can access which

subgraphs of a provenance graph as an access policy. Note that an access policy only refers

to the public key of a provenance requester for preserving privacy.

6.2. Storage On-Chain and Off-Chain

Properly off-chaining data and computation can save the high cost of storing a large

amount of data and of conducting complex computations on blockchain [40]. By carefully

storing provenance-related information on-chain or off-chain, the BSTProv system guar-

antees the security and trustworthiness of the shared provenance while limiting the oper-

ation cost for provenance-related storage and computation. On-chain storage will be dis-

cussed in detail in the next section along with the on-chain computations, i.e., smart con-

tracts. The rest of this section elaborates off-chain storage.

In the BSTProv system, each peer maintains a local database that not only stores the

local provenance graph, corresponding provenance subgraphs, access control policies,

provenance requests that are sent onto the blockchain, the subgraphs, and transaction re-

ceipts that are obtained from the blockchain, but also all other information that is useful

for accelerating related computation. Three key tables in the local database are shown in

Figure 5. The provenance_data table is used to store the local provenance graph and cross-

domain dependencies to be uploaded onto the blockchain, i.e., the arrays of priorIndex

and nextIndex. The blockchain_storage table is used to store a provenance subgraph, its

symmetric encryption key, and its location on the blockchain. The permission_allow table

is used to store the set of permissions defined by provenance owners for flexibly sharing

different combinations of provenance subgraphs to different provenance requesters.

Figure 5. Relations in the local database of a provenance owner.

In the process of data provenance sharing, the fields in these tables can change dy-

namically. A provenance owner first uploads a provenance graph and the prov service

then stores it into the provenance_data table. The prov service then partitions the prove-

nance graph into several subgraphs, encrypts them symmetrically, and stores them in the

blockchain_storage table. Fields location and flag are left empty temporarily.

provenance_data blockchain_storage permission_allow

pId

proveFile

remark

datetime

dId

disProvFile

flag

location

key

datetime

aId

demander

permission

datetime

Electronics 2022, 11, 1489 13 of 22

The prov service then sends the encrypted provenance subgraphs onto the block-

chain. When the provenance subgraph is successfully stored on the blockchain, the prov

service sets the flag field as true and the location field as the location of the provenance

subgraph on the blockchain in the blockchain_storage table. If a provenance subgraph

fails to be stored on the blockchain, the prov service can set the flag field as false and the

location field as empty in the blockchain_storage table.

After successfully sending provenance subgraphs onto the blockchain, the prove-

nance owner can define permissions for different data requesters according to the related

information in the local database. The prov service can then store these permissions into

an on-chain smart contract and into the local permission_allow table, respectively. Note

that users without permissions cannot decrypt the encrypted provenance subgraphs em-

bedded in blockchain transactions therefore the security of provenance on-chain is en-

sured.

7. Implementation

We built a prototype of the BSTProv system on the Ethereum platform, using solidity

0.4.24, node.js and truffle framework, and used the Geth v1.10.13 as the Ethereum client

to set up an Ethereum test network. The rest of this section elaborates how main functions

of the BSTProv system are implemented.

7.1. Identity Registration

Different peers that want to exchange trustworthiness-critical data objects in a decen-

tralized business collaboration can join the BSTProv system for trustworthy provenance

sharing. A registration request is granted or denied by the ICC smart contract that sup-

ports majority voting [41]. No third parties can intervene in the process or the voting be-

cause different peers may vote via their local node, and the result of voting is stored and

counted by the public and immutable codes in the smart contract ICC.

Specifically, a user first sets a private string and uses it to generate an asymmetric

key pair. Then, he/she logs into the prov service through the public key and sends a reg-

istration request to the ICC. The ICC accepts the request and initiates a voting proposal

for it. Each authenticated user can evaluate the registration request and make a decision

for or against it independently. Finally, the ICC can collect and verify each vote in the

given voting period. When the voting period ends, the ICC stores the user’s address and

the public key if the total number of votes is greater than the required number of votes.

The ICC is shown in Algorithm 1 as follows.

Algorithm 1: ICC.

Procedure Registration (user, pk, request)

issc = web3.eth.Contract (ISSC_ADDRESS)

irvc = web3.eth.Contract (IRVC_ADDRESS)

allUsers[] = issc.methods.getUser()

if (allUsers.contain (user, pk))//user existed

return;

irvc.methods.vote(user, pk, request)//notify authenticated users to vote

sleep (VOTING_TIME); //waiting for users voting

proposal = irvc.methods.getvotes (user, pk)

if (proposal.winnerVotes > proposal.totalVotes*0.5) then

issc.methods.register (user, pk);

return;

End procedure

Electronics 2022, 11, 1489 14 of 22

7.2. Provenance Uploading

The process of provenance uploading includes a series of operations which are as

follows.

Step 1: A provenance owner first sends his/her provenance graph to a trusted prov

service. The prov service then computes the hash values of input and output nodes in the

provenance graph and stores them in the array priorIndex and array nextIndex, respec-

tively.

Step 2: The prov service partitions the provenance graph with the proposed parti-

tioning algorithm. The provenance owner can declare appropriate parameters to adjust

the partitioning results, including a set of sensitive elements and the maximum length of

paths in a subgraph. The prov service can randomly generate a unique encryption key for

each provenance subgraph and encrypt it symmetrically.

Step 3: The prov service then sends a transaction with the cross-domain dependen-

cies of the provenance graph to the smart contract PUSC. The PUSC parses the transac-

tions and calls the smart contract PGIC to extract and store the index information of the

provenance graph, including the graph number, the address of its owner, and its hooks to

other graphs (two arrays of priorIndex and nextIndex). Then, the PUSC invokes the smart

contract PGAC to link the current provenance graph to other existing ones.

Step 4: The prov service sends transactions to upload encrypted provenance sub-

graphs onto the blockchain one by one. When the blockchain state is globally updated, the

prov service can retrieve transaction receipts to extract the locations of the provenance

subgraphs and store them together with corresponding secret keys into the local database

of provenance owners. Note that sufficient gas price should be set to each transaction in

order to upload the embedded provenance subgraph successfully.

Figure 6 shows the state of the smart contracts PGIC and PGAC after a series of prov-

enance uploading requests were processed. The PGIC stored the index information of

provenance graphs that are numbered p-1 and are shared by the provenance owners John,

Alen, and Able, respectively. Note that the name of a provenance owner can be replaced

with his/her public key or blockchain address for preserving privacy in practice. When-

ever the index information of a provenance graph is stored in the PGIC, the PGAC is in-

voked to link the newly added provenance graph to existing provenance graphs by trav-

ersing and matching their priorIndex and nextIndex, or to create a new cross-domain

provenance graph when necessary. For example, g-1 is created when the graph p-1 is up-

loaded. Then, p-2 is added into g1 because of the prior index of p-2 is h3 that is identical

to the next index of p-1. Furthermore, g-2 is created when the graph p-5 that cannot be

linked to any existing graphs is uploaded. The smart contract PUSC is shown in Algorithm

2.

Figure 6. Snapshots of the storage of the smart contracts PGIC and PGAC.

p rovID owner priorIndex[] nextIndex[]

p-1 John h1,h2 h3

p-2 Alen h3 h4,h5

p-3 Able h4 h6,h7

p-4 Alen h5 h8

p-5 John h11 h1

 gId provRecord [] association []

g-1 p-1, p-2, p-3, p-4 [p-1, p-2], [p-2, p-3], [p-2, p-4]

g-2 p-5

p-1

p-2

p-3 p-4

PGAC

PGIC

Provenance graph g-1

Electronics 2022, 11, 1489 15 of 22

Algorithm 2: PUSC.

Procedure UploadProvIndex (owner, graphNum, address, priorIndex [], nextIndex [])

pgic = web3.eth.Contract (PGIC_ADDRESS)

pgac = web3.eth.Contract (PGAC_ADDRESS)

graphNums [] = pgic.methods.getgraphNum()

if (graphNums.contain (graphNum))//provenance graph existed

return;

//save overall dependencies among provenance graph

pgic.methods.saveProvIndex (graphNum, owner, priorIndex, nextIndex)

pgac.methods.updateAssociation (graphNum, owner, priorIndex, nextIndex)

End

7.3. Provenance Authorizing

After uploaded onto blockchain, provenance subgraphs can be authorized to differ-

ent peers. Provenance owners can define appropriate permissions to grant or deny prov-

enance requests of different requesters. The specific process of provenance authorizing is

as follows.

Step 1: A provenance requester sends a provenance request to the smart contract

ACC.

Step 2: The ACC verifies the identity of the requester and broadcasts the request to

all the provenance owners in the blockchain network.

Step 3: A provenance owner analyzes the provenance request and identifies the re-

quired provenance subgraphs that can be shared to the requester, and then defines and

stores appropriate permissions in both the ACC on the blockchain and the local database.

In practice, a provenance owner can also define permissions in advance to grant specific

requesters to access some provenance subgraphs before the requesters submit requests.

Figure 7 shows the state of the smart contract ACC after a series of provenance re-

quests were processed and authorized. A permission in ACC includes four fields: the

provenance owner, the provenance requester, the pairs of the location and key of shared

targets, and the number of the provenance graph. When a provenance owner John re-

ceives the request issued by Mary, he first selects some provenance subgraphs required

by Mary in the local database and then defines a permission with pairs of locations and

keys [location, key] in the authAssign field in the local database. He uses the public key

registered by Mary in ISSC to encrypt the authAssign field and then submits the permis-

sion with the encrypted authAssign field into the smart contract ACSC so that this permis-

sion can only be decrypted by Mary.

Figure 7. Snapshots of the storage of the smart contract ACC.

owner demander authAssign provID

John Mary [loaction1, key1], [loaction2, key2],... p-1

Alen Mary [loaction3, key3], [loaction4,key4],... p-2

Able Mary [loaction6, key6], [loaction7, key7],... p-3

Alen John [loaction9, key9] p-4

ACSC

userID require

John Express Number

Mary Milk produced on Aug.1,2021

PRSC

Electronics 2022, 11, 1489 16 of 22

7.4. Provenance Retrieval

After provenance owners upload necessary permissions to the smart contract ACC,

each requester can then retrieve appropriate permissions from ACC. The specific process

of provenance retrieval and composition is as follows:

Step 1: A provenance requester retrieves his/her permissions from the smart contract

ACC.

Step 2: The ACC verifies the identity of the requester and returns permissions issued

to the requester by different provenance owners.

Step 3: The prov service decrypts the permissions using the private key of the re-

quester to obtain locations and symmetrical decryption keys of the encrypted provenance

subgraphs on-chain. Then, it retrieves the encrypted provenance subgraphs from the

blockchain and decrypts them.

Step 4: The prov service retrieves the overall dependency structure on how cross-

domain provenance graphs can be composed together from the smart contract PAC.

Guided by the high-level blueprint, it can compose the acquired provenance subgraphs

into a cross-domain provenance graph even when some requested provenance subgraphs

are not available. Thus, the proposed system enables the cross-domain provenance trac-

ing. Figure 8 shows the sequence diagram of provenance retrieval.

For example, Mary can find the overall dependency structure of the cross-domain

provenance graph g-1 in PGAC, as shown in Figure 6. Then, she can acquire the permis-

sions related to p-1, p-2, and p-3 from ACSC; retrieve corresponding subgraphs of p-1, p-

2, and p-3 at given locations; and compose them into a global provenance graph. If the

graph p-2 is not granted by Alen and, therefore, is not available to Mary, Mary still knows

how to compose subgraphs of p-1 and those of p-3 together for partially global prove-

nance tracing, according to the overall structure of g-1 in Figure 6.

Figure 8. Sequence diagram of provenance retrieval.

8. Evaluation and Analysis

We evaluated the proposed BSTProv system in terms of its trustworthiness, security,

traceability, and storage cost by conducting experiments using the NCFS dataset [42], a

dataset from Indiana University simulating the real scientific workflow. We also com-

pared the proposed BSTProv system with existing solutions to show its advantages.

We set up an Ethereum test network with three virtual hosts configured with 16G

RAM Intel Core i7 CPU 3.5 GHz running windows. By configuring the Ethereum test net-

work locally, we avoided possible network failures during experiments. We used the PoS

consensus mechanism to reduce the performance overhead of block mining. In Ethereum,

the default block-out time was 12–14 s and the default block size was 15 million gases.

However, these default configurations of Ethereum cannot meet the requirements of deal-

ing with the NCFS dataset. We defined a genesis block that sets the block-out time as 5 s

and the block size as 40 million gases to avoid possible transaction delay in our experi-

ments.

LocalDB User Prov Service Blockchain

PROV Request Request

Encrypted Data

Data Decryption

 and Combine SProv

PROV Data

CheckAuth

PROV Data

Electronics 2022, 11, 1489 17 of 22

8.1. Trustworthiness

Trustworthiness of the shared provenance is a key concern of decentralized prove-

nance sharing. The BSTProv system enhances provenance trustworthiness in three ways.

First, it stores encrypted provenance subgraphs on blockchain, which keeps them immu-

table. Once any intentional or accidental falsifications to a provenance subgraph are iden-

tified, the peer who uploaded the erroneous provenance subgraph can be easily identified

and punished according to predefined business contracts.

Second, the BSTProv system partitions the raw provenance graph into multiple sub-

graphs, and then stores encrypted subgraphs on blockchain instead of their hash values.

In this way, the proposed BSTProv system ensures that provenance graphs are available

and trustworthy even when some trustless peers failed or their local databases were tam-

pered or damaged.

Third, a requester may only request a subgraph of a provenance graph to fulfill their

business tasks. In the BSTProv system, a provenance owner can only define access policies

after uploading provenance graphs onto the blockchain; however, it cannot fabricate a

provenance view and store its hash value onto the blockchain chain to cheat requesters.

In this way, it enhances the trustworthiness of provenance by preventing malicious prov-

enance owners from falsifying provenance views.

Note that the BSTProv system promises high trustworthiness of shared provenance

subgraphs with a relatively high cost of storage. In practice, each peer can selectively share

some of critical subgraphs of a provenance graph and leave other uncritical subgraphs

shared in a low-cost solution, such as a traditional centralized solution. In this way, the

proposed solution complements the existing approaches by providing a method for shar-

ing critical provenance in a trustworthy manner.

8.2. Security

Security is an important concern in decentralized provenance sharing. The BSTProv

system implements functional security by three means. First, it symmetrically encrypts

subgraphs and embeds them onto the blockchain so that requesters without permissions

cannot decrypt them. Second, it asymmetrically encrypts permissions using the public key

of requesters registered in the smart contract ICC so that only authorized requesters can

obtain the symmetric keys for decrypting the encrypted subgraphs. Third, it honors the

least privilege principle by allowing a provenance owner to define access policies, to au-

thorize a specific requester, and to access a specific set of provenance subgraphs, therefore

preventing a requester from acquiring unnecessary and even sensitive information.

In practice, each peer joining the provenance sharing network is not fully trustwor-

thy. As discussed in Section 8.1, malicious provenance owners can be punished once any

intentional or accidental falsifications to a provenance subgraph are identified. However,

the BSTProv system still cannot prevent authorized but malicious requesters to leak sen-

sitive subgraphs legitimately obtained from the blockchain. Even worse, multiple mali-

cious requesters can collude to reconstruct the provenance graph from subgraphs ob-

tained from the blockchain by simply sharing their private keys with each other. Further

research is expected to address these issues in the future.

In addition, privacy is another important concern in general data sharing. However,

in the scenario of provenance sharing, a more important requirement is to clarify the iden-

tities of users who are responsible for some activities or entities. This paper focuses on

sharing critical provenance information in a secure and trustworthy manner, but does not

pay extra attention to the issue of privacy protection. In fact, the proposed system still

provides the basic capability for privacy protection because the underlying blockchain

network uses a public key as an anonymized user identity.

Electronics 2022, 11, 1489 18 of 22

8.3. Traceability

Provenance traceability is the extent to which a provenance graph facilitates prove-

nance tracing. The proposed system only shares a set of subgraphs to a specific requester.

It maintains the overall dependency structure among subgraphs so that a requester can

compose subgraphs obtained from the blockchain into a global provenance graph for later

provenance tracing. Note that by introducing appropriate dumb nodes hooking different

provenance graphs, the proposed system can guarantee the composability of provenance

subgraphs, even with some provenance subgraphs missing.

Figure 9 simulates a portion of a cross-domain provenance graph. The provenance

graphs g1, g2, and g3 were uploaded by three provenance owners. Each round rectangle

in each provenance graph represents a partitioned subgraph. For example, g1 was parti-

tioned into A1, A2, and A3. Suppose that a user obtained subgraphs A1, A3, C1, C2, and

C3, while no subgraphs of g2 were shared. He/she can then compose all obtained sub-

graphs into a partially connected provenance graph through the overall dependency

structure among all uploaded graphs stored in the smart contract PGAC, even when g2 is

missing.

Figure 9. Traceability analysis.

8.4. Cost of Storage and Communication

The storage cost is the amount of gas consumed by the blockchain network for storing

a provenance graph. Suppose that n is the number of elements, including all nodes or

edges, of a local provenance graph, and that m is the average number of elements of a

subgraph that can be embedded in a transaction. The storage cost of storing each element

of the provenance graph on-chain is Costelement. The cost of each transaction for storing a

subgraph is Costblock. The cost of executing corresponding smart contracts to extract and

establish dependencies among provenance graphs, as well as storing the index infor-

mation of a local provenance graph, is Costsmart. The total storage cost Costgas can be com-

puted in Formula (1).

𝐶𝑜𝑠𝑡𝑔𝑎𝑠 = 𝑛 ∗ 𝐶𝑜𝑠𝑡𝑒𝑙𝑒𝑚𝑒𝑛𝑡 + [
𝑛

𝑚
] ∗ 𝐶𝑜𝑠𝑡𝑏𝑙𝑜𝑐𝑘 + 𝐶𝑜𝑠𝑡𝑠𝑚𝑎𝑟𝑡 (1)

In practice, when the consortium blockchain starts, m is usually defined by each peer

independently as 𝑚 ∗ 𝑐 < 𝑏, where 𝑐 is the average size of each element in a provenance

graph and 𝑏 is the block size limit predefined in the genesis block. The cost of storage

Costgas varies when the total number of nodes n and the number of subgraphs [
𝑛

𝑚
]

changes. In our experiments, we set the parameter c to 0.4 kb and b to 40 kb, and the num-

ber of elements in a provenance graph n to 200, 400, or 1000. Then, we explore how the

storage cost Costgas changes when the number of subgraphs changes. As shown in Figure

10, if the number of nodes in a provenance graph to be uploaded is fixed, the gas con-

sumption for storing it onto the blockchain increases along with an increase in the number

of subgraphs in the provenance graph. Thus, less provenance elements embedded in a

transaction can lead to a higher overall storage cost. At an extreme, our approach can

degenerate to the one that embeds one provenance record in a single transaction. In fact,

A1

A2

A3

B1

B2

B3

B4

B5

C1

C2

C3

C4

Provenance graph g1 Provenance graph g2 Provenance graph g3

Electronics 2022, 11, 1489 19 of 22

when the number of subgraphs is low, the main gas consumption is used for storing the

provenance graph itself. However, when the number of subgraphs is high, the total gas

consumption [
𝑛

𝑚
] ∗ 𝐶𝑜𝑠𝑡𝑏𝑙𝑜𝑐𝑘 for transactions of uploading a lot of subgraphs becomes

non-trivial. In addition, we can see from Figure 10 that when the number of elements in-

creases, the minimal number of subgraphs increases.

Figure 10. Correlations between the storage cost and the number of subgraphs.

Assume there are K peers in the provenance sharing network. Each peer needs to

partition a provenance graph Gi with equal n elements into [
𝑛

𝑚
] subgraphs with m ele-

ments. The total number of transactions for uploading these subgraphs is 𝐾 ∗ [
𝑛

𝑚
]. These

transactions need to spread across the network in a given time period. Note that if 𝐾 ∗ [
𝑛

𝑚
]

is greater than the number of transactions that can be processed by the underlying con-

sortium blockchain in that time period, provenance uploading is delayed. In order to

avoid any accumulation of transactions in the transaction pool, one can tune the average

block time and transaction gas limit according to domain-specific requirements.

8.5. Comparison Analysis

We compare the BSTProv system with two categories of blockchain-based prove-

nance sharing solutions. One is the so-called “single-record-on-chain” solutions that em-

bed each provenance record in a single blockchain transaction; the other is the so-called

“hashes-on-chain” solutions that embed the hash value of a provenance graph in a single

blockchain transaction while storing the original provenance graph off-chain.

As shown in Table 2, our approach achieves higher trustworthiness and higher secu-

rity at the relatively higher cost of storage and communication than the “hashes-on-chain”

solutions. Note that “hashes-on-chain” solutions can easily conduct flexible authorization,

privilege management, and provenance tracing by storing and managing the provenance

graph off-chain, for example in some relational databases. However, they suffer from low

trustworthiness and security, which cannot be tolerated in trustworthiness-critical scenar-

ios. Our approach achieves trustworthiness and security as high as what the “single-rec-

ord-on-chain” solutions achieve while significantly saves the cost of storing and spread-

ing a large number of transactions used for enveloping a large number of provenance

records. Although the “single-record-on-chain” solutions enables more flexible authori-

zation that our approach, they suffer the complexity of defining and verifying access con-

trol policies for a large number of provenance records, and of integrating provenance rec-

ords scattered in different blockchain transactions to enable global provenance tracing,

Electronics 2022, 11, 1489 20 of 22

while our approach addresses these issues by dealing with provenance records in a batch

mode.

Table 2. A comparison of solutions.

Solution Trustworthiness Security
Flexible

Authorization
Privilege

Management
Traceability

Storage

Cost
Communication

Cost

Single record on-

chain
High High High Hard Hard High K × n

Hashes on-chain Low Low Easy Easy Easy Low K

Our approach High High Mid Easy Mid Mid K × [n/m]

9. Conclusion and Future Work

This paper presents the BSTProv, i.e., a blockchain-based secure and trustworthy

data provenance sharing system. It enables secure provenance sharing by partitioning the

local provenance graph into multiple subgraphs and embedding the encrypted subgraphs

into blockchain transactions. It enables flexible authorization and cross-domain prove-

nance tracing by storing the overall dependency structures among provenance graphs and

the encrypted permissions to different requesters in smart contracts. It enables efficient

and trustworthy provenance storage and tracing by a consortium blockchain and local

databases. The evaluation experiment showed that the proposed system enables secure

and trustworthy provenance sharing with limited storage cost, high dependability, high

traceability, and flexible authorization. Future work should optimize a provenance graph

partitioning algorithm and enable adaptable and trustworthy re-partitioning to a submit-

ted subgraph.

Author Contributions: Conceptualization and methodology, L.-S.S.; software, validation, and for-

mal analysis, C.Z. and Y.L.; writing—original draft preparation and writing—review and editing,

L.-S.S. and X.B.; writing—review and editing, Y.-B.Z. and W.-Q.G. All authors have read and agreed

to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gudivada, V.N.; Baeza-Yates, R.; Raghavan, V.V. Big data: Promises and problems. Computer 2015, 48, 20–23.

2. Heck, S.; Bianchini, F.; Souren, N.Y.; Wilhelm, C.; Plass, C. Fake data, paper mills, and their authors: The International Journal

of Cancer reacts to this threat to scientific integrity. Int. J. Cancer 2021, 149, 492–493.

3. Baesens, B.; Höppner, S.; Verdonck, T. Data engineering for fraud detection. Decis. Support Syst. 2021, 150, 113492.

4. Stoldt, J.P.; Weber, J.H. Provenance-based Trust Model for Assessing Data Quality during Clinical Decision Making. In Pro-

ceedings of the 2021 IEEE/ACM 3rd International Workshop on Software Engineering for Healthcare (SEH), Madrid, Spain, 3

June 2021; pp. 24–31.

5. Li, Y. The W3C PROV family of specifications for modelling provenance metadata. Comput. Rev. 2014, 55, 310–310.

6. Lu, R.; Lin, X.; Liang, X.; Shen, X.S. Secure provenance: The essential of bread and butter of data forensics in cloud computing.

In Proceedings of the ACM Symposium on Information, Beijing, China, 13 April 2010; pp. 282–292.

7. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260. Available online:

https://bitcoin.org/bitcoin.pdf (accessed on 10 April 2022).

8. Crosby, M.; Kalyanaraman, V. Blockchain technology: Beyond bitcoin. Appl. Innov. 2016, 2, 6–10.

9. Narayanan, U.; Paul, V.; Joseph, S. Decentralized blockchain based authentication for secure data sharing in Cloud-IoT. J. Am-

bient Intell. Humaniz. Comput. 2021, 13, 769–787.

10. Xu, Z.; Wang, Q.; Wang, Z.; Liu, D.; Wen, S. PPM: A Provenance-Provided Data Sharing Model for Open Banking via Blockchain.

In Proceedings of the ACSW ‘20: Australasian Computer Science Week 2020, Melbourne, Australia, 4 February 2020; pp. 1–8.

11. Nakasumi, M. Information sharing for supply chain management based on block chain technology. In Proceedings of the 2017

IEEE 19th Conference on Business Informatics (CBI), Luxembourg, 21 August 2017; pp. 140–149.

12. Liang, X.; Shetty, S.S.; Tosh, D.K.; Kamhoua, C.A.; Kwiat, K.A. Provchain: A blockchain-based data provenance architecture in

cloud environment with enhanced privacy and availability. In Proceedings of the IEEE/ACM CCGRID, Madrid, Spain, 16 May

2017; pp. 468–477.

Electronics 2022, 11, 1489 21 of 22

13. Fernando, D.; Kulshrestha, S.; Herath, J.D.; Mahadik, N. SciBlock: A blockchain-based tamper-proof non-repudiable storage for

scientific workflow provenance. In Proceedings of the 2019 IEEE 5th International Conference on Collaboration and Internet

Computing (CIC), Los Angeles, CA, USA, 12–14 December 2019; pp. 81–90.

14. Wood, G. Ethereum: A secure decentralized generalized transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.

15. Androulaki, E.; Manevich, Y.; Muralidharan, S.; Murthy, C.; Laventman, G. Hyperledger fabric: A distributed operating system

for permissioned blockchains. In Proceedings of the 13th EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

16. Sai, A.R.; Buckley, J.; Fitzgerald, B.; Gear, A.L. Taxonomy of centralization in public blockchain systems: A systematic literature

review. Inf. Process. Manag. 2021, 58, 102584.

17. Dib, O.; Brousmiche, K.L.; Durand, A. Consortium blockchains: Overview, applications and challenges. Int. J. Adv. Telecommun.

2018, 11, 51–64.

18. Zhang, A.; Lin, X. Towards secure and privacy-preserving data sharing in e-health systems via consortium blockchain. J. Med.

Syst. 2018, 42, 1–18.

19. Syalim, A.; Nishide, T.; Sakurai, K. Preserving integrity and confidentiality of a directed acyclic graph model of provenance. In

Proceedings of the IFIP Annual Conference on Data and Applications Security and Privacy, Rome, Italy, 21–23 June 2010; pp.

311–318.

20. Porkodi, S.; Kesavaraja, D. Secure Data Provenance in Internet of Things using Hybrid Attribute based Crypt Technique. Wirel.

Pers. Commun. 2021, 118, 2821–2842.

21. Missier,P.; Bryans, J.; Gamble, C.; Curcin, V. Abstracting PROV provenance graphs: A validity-preserving approach. Future

Gener. Comput. Syst. 2020, 111, 352–367.

22. Danger, R.; Curcin, V.; Missier, P.; Bryans, J. Access control and view generation for provenance graphs. Future Gener. Comput.

Syst. 2015, 49, 8–27.

23. Sun, L.; Park, J.; Dang, N.; Sandhu, R. A Provenance-Aware Access Control Framework with Typed Provenance. IEEE Trans.

Dependable Secur. Comput. 2015, 13, 411–423.

24. Deutch, D.; Frankenthal, A.; Gilad, A.; Moskovitch, Y. On optimizing the trade-off between privacy and utility in data prove-

nance. In Proceedings of the 2021 International Conference on Management of Data, Xi’an, Shaanxi, China, 20–25 June 2021; pp.

379–391.

25. Liu, J.; Li, X.; Ye, L.; Zhang, H.; Du, X.; Guizani, M. BPDS: A blockchain based privacy-preserving data sharing for electronic

medical records. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab

Emirates, 9–13 December 2018; pp. 1–6.

26. Wei, P.; Wang, D.; Zhao, Y.; Tyagi, S.K.; Kumar, N. Blockchain data-based cloud data integrity protection mechanism. Future

Gener. Comput. Syst. 2020, 102, 902–910.

27. Xia, Q.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-less medical data sharing among cloud service

providers via blockchain. IEEE Access 2017, 5, 14757–14767.

28. Rifi, N.; Rachkidi, E.; Agoulmine, N.; Taher, N.C. Towards using blockchain technology for IoT data access protection. In Pro-

ceedings of the IEEE International Conference on Ubiquitous Wireless Broadband, Salamanca, Spain, 5 May 2017; pp. 1–5.

29. Peng, K.; Li, M.; Huang, H.; Wang, C.; Choo, KKR. Security Challenges and Opportunities for Smart Contracts in Internet of

Things: A Survey. IEEE Internet Things J. 2021, 8, 12004–12020.

30. Dai, H.N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2019, 6, 8076–8094.

31. Ferrag, M.A.; Lei, S. The Performance Evaluation of Blockchain-based Security and Privacy Systems for the Internet of Things:

A Tutorial. IEEE Internet Things J. 2021, 8, 17236–17260.

32. Ramachandran, A.; Kantarcioglu, M. Smart provenance: A distributed, blockchain based data provenance system. In Proceed-

ings of the 8th ACM Conference, Tempe, AZ, USA, 13 March 2018; pp. 35–42.

33. Chen, W.; Liang, X.; Li, J.; Qin, H.; Mu, Y.; Wang, J. Blockchain based provenance sharing of scientific workflows. In Proceedings

of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3814–3820.

34. Bose, R.J.; Phokela, K.; Kaulgud, V. Podder Blinker: A blockchain-enabled framework for software provenance. In Proceedings

of the 2019 26th Asia-Pacific Software Engineering Conference (APSEC), Putrajaya, Malaysia, 2–5 December 2019; pp. 1–8.

35. Ruan, P.; Dinh, T.T.A.; Lin, Q.; Zhang, M.; Chen, G.; Ooi, B.C. LineageChain: A fine-grained, secure and efficient data prove-

nance system for blockchain. VLDB J. 2021, 30, 3–24.

36. Bischi, A.; Basile, M.; Poli, D.; Vallati, C.; Desideri, U. Enabling low-voltage, peer-to-peer, quasi-real-time electricity markets

through consortium blockchains. Appl. Energy. 2021, 288, 116265.

37. Buluc, A.; Meyerhenke, H.; Safro, I.; Sanders, P.; Schulz, C. Recent advances in graph partitioning. Algorithm Eng. 2013, 117–158.

https://doi.org/10.1007/978-3-319-49487-64.

38. Zulfiqar, M.; Tariq, F.; Janjua, M.U.; Mian, A.N.; Qayyum, A.; Qadir, J.; Sher, F.; Hassan, M. EthReview: An Ethereum-based

Product Review System for Mitigating Rating Frauds. Comput. Secur. 2021, 100, 102094.

39. Nazi, A.; Hang, W.; Goldie, A.; Ravi, S.; Mirhoseini, A. Gap: Generalizable approximate graph partitioning framework. arXiv

2019, arXiv:1903.00614v1.

40. Eberhardt, J.; Tai, S. On or off the blockchain? Insights on off-chaining computation and data. Serv. Oriented Cloud Comput. 2017,

3–15. https://doi.org/10.1007/978-3-319-67262-51.

41. Hjalmarsson, F.P.; Hreioarsson, G.K.; Hamdaqa, M.; Hjalmtysson, G. Blockchain-based e-voting system. In Proceedings of the

2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 1 July 2018; pp. 983–986.

Electronics 2022, 11, 1489 22 of 22

42. Cheah, Y.W.; Plale, B.; Morwick, J.K.; Leake, D.; Ramakrishnan, L. A noisy 10GB provenance database. In Proceedings of the

Business Process Management Workshops—BPM 2011 International Workshops, Clermont-Ferrand, France, 29 August 2011;

pp. 370–381.

