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Abstract: In the Big Data era, data provenance has become an important concern for enhancing the 

trustworthiness of key data that are rapidly generated and shared across organizations. Prevailing 

solutions employ authoritative centers to efficiently manage and share massive data. They are not 

suitable for secure and trustworthy decentralized data provenance sharing due to the inevitable 

dishonesty or failure of trusted centers. With the advent of the blockchain technology, embedding 

data provenance in immutable blocks is believed to be a promising solution. However, a provenance 

file, usually a directed acyclic graph, cannot be embedded in blocks as a whole because its size may 

exceed the limit of a block, and may include various sensitive information that can be legally ac-

cessed by different users. To this end, this paper proposed the BSTProv, a blockchain-based system 

for secure and trustworthy decentralized data provenance sharing. It enables secure and trustwor-

thy provenance sharing by partitioning a large provenance graph into multiple small subgraphs 

and embedding the encrypted subgraphs instead of raw subgraphs or their hash values into immu-

table blocks of a consortium blockchain; it enables decentralized and flexible authorization by al-

lowing each peer to define appropriate permissions for selectively sharing some sets of subgraphs 

to specific requesters; and it enables efficient cross-domain provenance composition and tracing by 

maintaining a high-level dependency structure among provenance graphs from different domains 

in smart contracts, and by locally storing, decrypting, and composing subgraphs obtained from the 

blockchain. Finally, a prototype is implemented on top of an Ethereum-based consortium block-

chain and experiment results show the advantages of our approach. 
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1. Introduction 

In the Big Data era, massive data are incessantly generated, shared, and used across 

organizations, and have shown their huge potential in changing the way of industrial 

production and social life [1]. The high trustworthiness of data is a precondition required 

for making dependable decisions. Erroneous, fabricated, or falsified data could lead to 

various undesired and unexpected aftermaths [2,3]. For example, in collaborative scien-

tific research project, multiple distributed organizations independently conduct re-

search activities and then share some datasets, computational methods, and research 

results with each other. If some of these datasets or results which are accidentally or 

intentionally fabricated or tampered, other organizations can be misled to make 

wrong or even harmful decisions that may in turn jeopardize economy or public se-

curity. How can we improve the trustworthiness of data shared across organizations? 
Data provenance is believed to be a promising solution [4]. 
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According to W3C, data provenance usually records the entities, processes, or agents 

involved in producing a data object, and is usually structured as a directed acyclic graph, 

called a provenance graph [5]. By analyzing the provenance graph of a data object, users 

can trace historical causes that make the data object become what it is; thus, the trustwor-

thiness of the data object can be enhanced [4]. A provenance graph on the data object that 

has evolved for a long time may be very large and may contain various sensitive pieces of 

information [6]. It is neither efficient nor secure to share a provenance graph as a whole. 

A provenance management system should be able to flexibly provide users with secure 

and trustworthy provenance views, which are useful subsets of a provenance graph. 

Nowadays, massive data are mainly stored and efficiently manipulated by some sort 

of centralized systems that rely on authoritative centers with huge storage capacity and 

very high throughput. However, these centralized solutions have several inherent draw-

backs, including single-point failure and dishonesty of authoritative centers. Once a cen-

tralized system is hijacked, the data are at high risk of leakage, tampering, and forgery; 

thus, these centralized systems cannot be used to enable secure and trustworthy data 

provenance sharing. Even worse, in many business collaborations, such as supply chain, 

federated healthcare, or scientific workflow, multiple peers may not fully trust with each 

other. It is very hard, even not impossible, to elect a trusted center that is acceptable for 

all peers. A decentralized solution is expected to enable each peer to independently collect 

and flexibly share provenance views with different users in a secure and trustworthy man-

ner. 

A blockchain is a tamper-proof ledger as a chain of blocks. Replicas of the ledger are 

consistently maintained by peers without mutual trust, enabling trustworthy transactions 

among multiple peers not relying on a trusted center [7,8]. Some researchers have pro-

posed blockchain-based solutions for trustworthy data sharing by embedding raw data 

with limited size or their hash values into blockchain transactions [9–11]. Similarly, block-

chain-based trustworthy provenance sharing is also feasible [12,13]. 

Furthermore, a provenance graph could be too large to be directly embedded in a 

single blockchain transaction, and existing researches of embedding the hash value of a 

provenance graph into a blockchain transaction or embedding each provenance record in 

a single blockchain transaction still suffer the drawbacks of low trustworthiness or low 

feasibility, respectively. First, when only embedding hash values into blockchain transac-

tions for saving storage cost, it is very difficult to maintain the consistency between the 

hash values on-chain and the provenance graphs off-chain. Once a provenance graph is 

intentionally redacted for removing sensitive information or maliciously tampered, the 

evidences on-chain can soon become invalid, and the trustworthiness of data provenance 

as well as the shared data cannot be verified anymore. Furthermore, provenance graphs 

may contain various sensitive information that can only be accessed by different re-

questers with appropriate permissions. Computing provenance views and storing their 

hash values on-chain after receiving requests leaves much room for provenance owners 

to falsify the provenance views; therefore, the responsively created provenance views are 

less trustworthy. 

Second, a provenance graph consists of a set of provenance records. Some researchers 

tried to directly embed each provenance record into a single blockchain transaction. How-

ever, when the number of provenance records increase, this method can lead to massive 

transactions and can soon become infeasible because the cost of spreading and storing 

these massive transactions on the blockchain network is usually very high, and the 

throughput of mainstream blockchain platforms is usually too low to timely deal with 

transactions that could arrive in a very fast speed. 

To address the above drawbacks, we proposed the BSTProv, a blockchain-based sys-

tem for secure and trustworthy decentralized data provenance sharing. The BSTProv sys-

tem is designed with the following key ideas in mind. First, it embeds encrypted prove-

nance data, but not their hash values, into blockchain transactions to achieve higher trust-

worthiness at the cost of higher storage cost. To control the storage cost, users could only 
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share trustworthiness-critical provenance graphs with a limited size using the proposed 

system while dealing with other provenance graphs in traditional approaches. In this 

sense, the proposed system complements the existing researches by providing users with 

a new alternative. Second, it deals with a lot of provenance records that are newly ap-

pended onto the provenance graph in a batch mode. In this way, it enables users to adapt 

the time interval between two consecutive activities of provenance graph sharing and the 

number of subgraphs to be embedded into blocks to the throughput of underlying block-

chain platforms. 

With this proposed BSTProv system, a provenance owner can selectively share useful 

and insensitive provenance subgraphs to specific requesters to prevent sensitive infor-

mation leakage. Furthermore, a provenance requester can obtain trustworthy provenance 

subgraphs from blockchain, and can decrypt and compose them into a partially complete 

but useful provenance graph for further cross-domain provenance tracing and trustwor-

thy provenance-based data trustworthiness enhancement. Note that the proposed system 

enables different peers to define authorization policies for provenance subgraphs shared 

on-chain in an autonomous and flexible way. 

The remainder of this paper is structured as follows. Section II briefly introduces the 

preliminaries of blockchain and provenance. Section III describes the related work. Sec-

tion IV analyzes the fundamental requirements of decentralized provenance manage-

ment. Section V presents algorithms for provenance graph partitioning and subgraph 

composition. Section VI presents the high-level architecture of the proposed BSTProv sys-

tem with emphasis on designing smart contracts and the on- and off-chain storage model. 

Section VII implements a prototype and highlights the key data structures and algorithms. 

Section VIII analyses and evaluates the prototype. Finally, Section VIIII concludes this pa-

per and envisions future works. 

2. Preliminaries 

2.1. Blockchain 

Blockchain is initially the set of underpinning techniques of the Bitcoin introduced in 

2008 [7], which is the first cryptocurrency system that solved the problem of double-

spending and transactions tampering. A blockchain consists of a series of cryptograph-

ically linked blocks. Each block has a header and a body that contains a set of transactions. 

Each block is linked to its previous block by storing the hash of its previous block header. 

A blockchain is a tamper-proof ledger running on a peer-to-peer network. Each peer 

maintains an identical replica of the ledger according to a given consensus protocol, such 

as proof of work, proof of stake, proof of authority, or practical byzantine fault tolerance; 

thus, multiple peers can achieve consensus without trusted central authorities [8]. In a 

blockchain network adopting the proof-of-work protocol, a malicious peer who wants to 

forge a block has to possess more than 50% computational power of the whole network, 

which is often believed impossible [7]. In this sense, every transaction in a block is immu-

table and thus, to some extent, trustworthy. Due to these attributes of blockchain, it is 

possible to build a blockchain-based solution for secure and trustworthy provenance shar-

ing across domains without mutual trust by embedding provenance in blockchain trans-

actions. 

Besides decentralized trust and tamper-resistance, newer blockchain systems further 

provide a decentralized Turing-complete platform to run application codes called smart 

contract in Ethereum [14] or chain code in Hyperledger [15]. A smart contract in Ethereum 

is actually a piece of tamper-proof code stored on-chain. It is created and invoked via 

transactions, and then independently executed by all nodes in the network when specific 

conditions are met. The execution result of a smart contract obtained on one node is al-

ways identical to those obtained on other nodes. A smart contract is not allowed to call 

codes running off-chain because they may return uncertain results and therefore break 
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the consistency among the ledgers maintained by different nodes. In theory, any decen-

tralized applications with arbitrary complexity can be implemented as smart contracts. In 

this paper, we use smart contracts to track the authorization policies and high-level de-

pendencies among provenance graphs. Whenever new policies or new graphs are up-

loaded onto the blockchain, corresponding smart contracts can execute and update the list 

of authorization policies and the overall dependencies among provenance graphs. 

A public blockchain system allows any user to join or exit the network at any time 

[16]. There are two shortcomings of using a public blockchain for enterprise computing. 

One shortcoming is the extremely high cost of storing data and executing codes on every 

node in the public blockchain network. Note that each computational step in the public 

Ethereum has a cost associated with it being called gas [14]. The initiator of each transac-

tion has to pay the gas price for each step executed in the transaction. The other shortcom-

ing is the low throughput of the public blockchain. Note that a necessary time interval, 

such as ten minutes in the Bitcoin and fifteen seconds in the Ethereum, is necessary for all 

nodes to achieve consensus. In order to meet requirements of high throughput and to 

reduce the cost of storing data and executing codes on a public blockchain, some permis-

sioned blockchains, also named private blockchains or consortium blockchains in differ-

ent scenarios, were proposed for enterprise computing [15–17]. Users who want to join in 

a permissioned blockchain have to obtain appropriate permissions from one or more au-

thoritative users. Note that some researchers have employed consortium blockchains to 

meet high throughput requirements at a relatively low cost [18]. This paper adopts an 

Ethereum-based consortium blockchain for efficient and cheap provenance storage and 

tracing. 

2.2. Provenance 

According to W3C, data provenance records the evolutionary history of a data object, 

and is usually structured into an append-only directed acyclic graph [5]. As shown in 

Figure 1, a provenance graph contains three types of nodes: Entity, Activity, and Agent. 

Entity represents intermediate artifacts involved in producing a data object. Activity rep-

resents processes that manipulated entities. Agent represents persons or organizations 

that controlled activities. An edge <t, h> is a directed dependency among nodes and is 

actually a provenance record with a timestamp that indicates an event from the past. For 

example, an activity a1 can use a data object o1 as the input, a new data object o2 can be 

generated by an activity a2, and one agent g1 can act on behalf of another agent g2. An edge 

can be created and appended into a provenance graph whenever a concerned event hap-

pened. Two edges can be connected together when the head of one edge p = <t1, h1> is 

equal to the tail of another edge q = <t2, h2>, i.e., h2 == t2. In this case, the event modeled by 

p happened later than the event modeled by q. We can say that p is a downstream event 

of q or that q is an upstream event of p. 

 

Figure 1. Core structure of a provenance data model. Reprinted with permission from Ref. [14]. 

2014, Wood, G. 
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Along the direction of edges in a provenance graph, one can trace and scrutinize the 

historical nodes and events that directly or indirectly influenced a node. This process is 

called provenance tracing, which is the main usage of a provenance graph. Provenance 

tracing is the prerequisite for data trustworthiness verification, wrong data attribution, 

and accountability. We use the term traceability to indicate the extent to which a prove-

nance graph facilitates provenance tracing. One objective of the proposed system is to 

ensure traceability of a cross-domain provenance graph that is composed from some sub-

graphs shared on-chain. 

3. Related Work 

The locations where provenance is collected and stored lead to different techniques 

for provenance sharing and therefore different challenges. In a centralized setting where 

provenance is collected and stored in an authoritative center, the main concerns are secu-

rity and traceability because the trustworthiness of the shared provenance graphs is tacitly 

ensured by the authoritative center. Most existing researches focused on ensuring prove-

nance security by techniques of encryption [19,20], sanitization [21], and access control 

[22,23]. Some researches further considered the issue of achieving both security and trace-

ability [24]. However, the trustworthiness of the shared provenance is doubtful because 

the centralized structure has downsides of inevitable single-point failure and center dis-

honesty. The malicious center can fabricate or falsify critical data and attribute its crime 

to data providers. Even worse, it is hard to establish an authoritative center in collabora-

tions across organizations, such as supply chain and federated healthcare. 

With the advent of blockchains, many researchers explored the possibility of block-

chain-based data sharing among peers without mutual trust. Liu et al. proposed a privacy-

preserving medical data sharing system based on blockchain [25], which stores the medi-

cal information on a cloud and its hash value on a consortium blockchain. Wei et al. built 

a blockchain-based data integrity protection mechanism, which enables reliable data stor-

age, monitoring, and verification in cloud [26]. Xia et al. designed the MeDShare system, 

which uses smart contracts and access control mechanisms to not only trace and control 

data effectively, but also to minimize the risk of private data leakage [27]. RiFi et al. stored 

data of Internet of Things by IPFS and controlled access by smart contracts [28], which can 

protect privacy and sensitive data. Blockchain has shown great potential in addressing 

privacy and security vulnerabilities in Internet of Things (IoT) and many researches have 

been conducted concerning security challenges of smart contracts and the perfor-

mance evaluation [29–31]. Previous researches have shown that blockchain-based solu-

tions are feasible for secure and trustworthy data sharing if appropriate storage patterns, 

smart contracts, and encryption technologies are well integrated. 

Inspired by researches on blockchain-based data sharing, some researchers also ex-

plored the possibility of blockchain-based data provenance sharing in distributed envi-

ronments. Xu et al. proposed a provenance-provided data sharing model based on block-

chain [10], which has features of transparent authentication, privacy control, and audita-

ble provenance. Ramachandran et al. use smart contracts and an OPM model to record, 

verify, and manage data provenance [32]. Chen et al. designed a block structure for storing 

and retrieving data provenance [33], which certificates the primitive data on-chain and 

saves them off-chain. Liang et al. proposed a ProvChain framework for collecting and 

verifying cloud data provenance [12], which embeds the provenance of cloud files into 

blockchain transactions. Jagadeesh et al. proposed an extensible framework based on 

blockchain for capturing, storing, exploring, and analyzing software provenance [34]. Fer-

nando et al. developed a system called SciBlock that provides tamper-proof and undeni-

able storage for scientific workflow provenances [13]. Ruan et al. proposed a fine-grained, 

secure, and efficient provenance system called LineageChain, which motivates the need 

for adding native provenance support to blockchain [35]. 
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Besides the naïve and usually infeasible method of embedding the whole provenance 

graph directly into a single blockchain transaction, existing blockchain-based provenance 

sharing researches mainly fell into two categories. One is to embed a single provenance 

record in a blockchain transaction. The other is to embed the hash value of the whole 

provenance graph in a blockchain transaction. The researches of the first category are usu-

ally infeasible when a large number of provenance records emerge at a very fast speed. 

First, a large number of transactions should be created and spread on the blockchain net-

work in a short time period, which cannot be facilitated by existing blockchain systems. 

Second, what is used in provenance tracing is actually a provenance graph consisting of 

multiple interconnected provenance records. Most existing researches did not address the 

issue of efficiently integrating provenance records scattered in different blocks. Third, 

managing access rights of a large number of provenance records is also very cumbersome 

and error-prone. 

The researches of the second category have two drawbacks of low trustworthiness 

and inflexible authorization. First, they suffer the low trustworthiness of modified prove-

nance file off-chain because any modifications to a provenance graph off-chain cannot be 

validated by the corresponding hash value stored on-chain. Furthermore, constructing 

provenance views and their corresponding hash values according to requests leaves much 

room for provenance owner cheating; thus, provenance views constructed in this way are 

less trustworthy. Second, they suffer the inflexible authorization because a provenance 

graph cannot be selectively shared and validated because only the hash value of the whole 

provenance graph was on-chain. Users who only need a subset of the provenance graph 

can acquire unnecessary or even sensitive information when the provenance was shared 

as a whole. In addition, one still faces the challenges of constructing, processing, and 

maintaining massive provenance views, which may contain only subtle differences with 

each other in terms of sensitive information, and faces the challenges of distributing mas-

sive decryption keys to specific users. 

The merits and demerits of existing researches are summarized in Table 1. Existing 

centralized solutions focused on security and traceability; thus, they have the merits of 

high security, efficiency, and traceability, but the demerit of low trustworthiness. Existing 

blockchain-based solutions focused on trustworthiness and security, but not traceability; 

therefore, they have the merits of high security, but the demerits of low trustworthiness, 

high cost and complexity of managing a large number of provenance records and their 

access policies, and low traceability. 

Table 1. A comparison of schemes. 

Schemes Research Focus Methods Merits Demerits 

Centralized so-

lutions 

Security and 

traceability 

Data encryption High security Low trustworthiness 

Data sanitization 
High dependabil-

ity 
High risk of data forgery 

access control High traceability Disputes of responsibility 

Blockchain-

based solutions 

Security and 

trustworthiness 

Smart contract High security 

Low traceability when storing provenance rec-

ords separately 

High cost of managing massive provenance 

records 

Data encryption Trustworthiness 

High complexity of managing massive access 

policies 

Low dependability when only storing hashes 

on-chain 
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4. Blockchain-Based Decentralized Provenance Sharing 

In a decentralized business collaboration across multiple organizations, such as sup-

ply chain, scientific workflow, or federated healthcare, peers may not fully trust each 

other. Each peer may collect provenance records by itself and store them in a local data-

base. Along with the system running, each peer can capture a lot of provenance records 

and structure them into a local provenance graph and then share them with other peers 

when necessary. Some shared local provenance graphs can be composed into a cross-do-

main provenance graph for global provenance tracing. 

A local provenance graph may include various sensitive or redundant information 

for a specific requester to consume. If a peer shared its whole local provenance graph with 

other peers without any modifications, they may not only suffer the high cost of transfer-

ring and processing a large provenance graph, but also the high risk of sensitive infor-

mation leakage. In practice, each peer needs to share only necessary subgraphs to specific 

peers while ensuring that they are secure and trustworthy. If a data requester wants to 

trace a given entity back to its origins, he/she can request provenance subgraphs shared 

by multiple peers, verify their trustworthiness, and then compose them into a trustworthy 

provenance graph. In general, data provenance sharing in decentralized settings mainly 

has three objectives: security for preventing unauthorized users from reading and access-

ing sensitive information, traceability for retaining enough useful information in the cross-

domain provenance graph composed from shared subgraphs, and trustworthiness for 

keeping the cross-domain provenance graph authentic. 

As analyzed above, several fundamental requirements of decentralized provenance 

sharing are identified as follows: 

1. What a peer shares each time is not a single provenance record but a provenance 

subgraph consisting of a bundle of interconnected provenance records. 

2. Each peer should construct appropriate subgraphs, encrypt them, and define access 

control policies for securely and flexibly sharing them with different users. 

3. Provenance subgraphs shared by different peers should be efficiently composable 

with each other for cross-domain provenance tracing. 

4. Provenance subgraphs shared by a peer should be trustworthy and dependable even 

when the provenance graph locally maintained by the peer is damaged or tampered 

accidentally or intentionally. 

This paper proposes a blockchain-based secure and trustworthy data provenance 

(BSTProv) sharing system. With the BSTProv system, a provenance owner first works lo-

cally to partition a provenance graph into multiple subgraphs, to encrypt each subgraph 

using a unique symmetrical encryption key, to embed each encrypted subgraph instead 

of its hash value into a blockchain transaction, and to submit the transactions onto the 

blockchain network. Second, the blockchain network spreads the transactions. Third, the 

miner elected according to some consensus protocol, such PoS, packages these transac-

tions into a block and spreads the block across the network. Fourth, provenance owners 

can independently define and submit policies onto the blockchain network to authorize a 

requester to access a set of subgraphs. Meanwhile, provenance requesters can inde-

pendently define and submit requests onto the blockchain network to request a set of sub-

graphs. Note that provenance owners and provenance requesters can work independently 

and simultaneously. At last, each provenance requester can retrieve his/her permissions 

and download corresponding subgraphs from the blockchain. He/she can then compose 

these subgraphs obtained from the blockchain into a cross-domain provenance graph. 

The following sections introduce in detail the provenance partitioning and composi-

tion mechanisms, the overall architecture, and the implementation of the BSTProv system, 

respectively. 
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5. Provenance Partitioning and Composition 

In this paper, a local provenance graph maintained by a peer should be partitioned 

into multiple subgraphs, which are then be encrypted and uploaded onto the blockchain. 

Different users can then obtain a subset of provenance subgraphs from the blockchain and 

compose them into a partially complete provenance graph for cross-domain provenance 

tracing. This section introduces a breadth-first search-based provenance graph partition-

ing algorithm and a hash-node based provenance graph expansion algorithm for re-com-

position of inner-domain provenance subgraphs or intra-domain provenance graphs. 

5.1. Partitioning 

Graph partitioning is generally the first step of distributed graph computing tasks. 

The objective is to find balanced partitions of a graph while minimizing the number of 

edge cut [36,37]. In this paper, a large provenance graph should be partitioned into mul-

tiple small subgraphs so that they can be embedded into blockchain transactions with 

limited capacity and flexibly authorized to different users. Thus, each provenance sub-

graph should be small enough and should only include sensitive elements that can be 

authorized to a user together. This represents a graph partitioning problem with security 

constraints. A provenance graph may contain various sensitive information in its nodes, 

edges, or even indirect dependencies among two nodes connected via a path. A security 

constraint to provenance graph partitioning could tell that each sensitive node, edge, or 

endpoint of an indirect dependency in a provenance graph should be encapsulated in an 

independent subgraph so that one can authorize specific users to access a sensitive ele-

ment by authorizing them to access the subgraph including it. 

Graph partitioning is a combinatorial optimization problem that has been exhaust-

ively studied [36]. Existing graph partitioning algorithms cannot be straightforwardly 

used for provenance graph partitioning with security constraints. A directed edge or arc 

in a provenance graph usually indicates an informal casual dependency with an arc tail 

as the effect and an arc head as the cause. In order to respect the traceability of provenance 

subgraphs, this paper introduces a breadth-first search-based provenance graph partition-

ing algorithm. It creates a subgraph by grouping a node or an effect with some of its recent 

causes that are upstream nodes within given hops from the node. 

The proposed algorithm takes the provenance graph G, the maximum length of paths 

in a subgraph N, and the set of sensitive elements S as the input, and produces a set of 

subgraphs Gi, i = 1, …, |S| as the output. After starting a breadth-first search from a node 

with indegree zero, any newly reached nodes, as well as the edges reaching them, can be 

added into a subgraph Gi, unless a path whose length exceeds the given value N or the 

new node or the new edge is sensitive. In this way, the algorithm ensures that each Gi 

includes only one sensitive element in S. One can define authorization policies to protect 

a subgraph from being accessed by unauthorized users. When a subgraph Gi is created, 1 

should be subtracted from the indegree of each node when it is reached from Gi via an 

untouched edge. Then, the next subgraph Gi+1 can be computed by starting another 

breadth-first search from a node with indegree zero. The proposed algorithm stops when 

all nodes in G are added into some subgraphs. 

Figure 2 shows a partial provenance graph of an entity EmailC. In Figure 2, the edge 

<EmailC, Send2> means that the entity EmailC was generated by the activity Send2. The 

edge <addContent, file> means that the activity addContent manipulated the file. Assume 

that the entity EmailA is sensitive to the provenance requester A, that the entity file is 

sensitive to the provenance requester B, and that the maximum length of paths in a sub-

graph is set as 2. Executing the proposed partitioning algorithm starting from the entity 

EmailC can produce three provenance subgraphs S1, S2, and S3, as shown in Figure 2. The 

data owner can share only S1 and S2 to the data requester A to avoid the leakage of the 

sensitive EmailA in S1. 
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Figure 2. A provenance graph of email. 

Note that the proposed algorithm is not necessarily optimal. Many other graph par-

titioning algorithms can be applied. Exploring new provenance graph partitioning algo-

rithms is important in and of itself, and out of the scope of this paper. For example, a 

subgraph was shared to a user as a whole may become partially available to another user 

when authorization policies change in the future. However, our approach does not divide 

a submitted subgraph to keep it trustworthy. Enabling adaptable and trustworthy parti-

tioning to a submitted subgraph is very interesting and is left as our future work. 

5.2. Composition 

Provenance graphs maintained by different peers in a business collaboration usually 

share some nodes which are the data objects transferred across different domains; thus, 

they can be composed into a cross-domain provenance graph for global provenance trac-

ing by merging these common nodes. According to the above algorithm, a provenance 

graph can be partitioned into multiple non-overlapping subgraphs connected via only one 

or more cut edges, for example <addContent, EmailA> between S2 and S3. Simply remov-

ing the cut edges can not only lose the information on these edges, but also totally disjoint 

subgraphs that cannot be composed again. To this end, this paper proposed a hash-node-

based provenance graph expansion algorithm for both inner-domain subgraph composi-

tion and intra-domain graph composition. It expands a provenance graph by introducing 

a few dumb nodes and incident edges so that the expanded provenance graph can be 

composed with other expanded provenance graphs via common dumb nodes. Each dumb 

node is actually the hash value of either a common node of two graphs or a cut edge 

connecting two subgraphs. 

In order to compose two subgraphs without common nodes but connected via a cut 

edge, the proposed algorithm first removes the cut edge; adds a dumb node and a dumb 

edge, connecting the dumb node and one of two endpoints of the cut edge in each sub-

graph, respectively; and finally attaches the edge information, if it exists, to the dumb edge 

incident with the tail of the cut edge. Here, the dumb node is actually the hash value of 

the cut edge. As a result, each subgraph is equipped with an array of input dumb nodes 

and an array of output dumb nodes which are composable with other downstream or 

upstream subgraphs, respectively. Two expanded subgraphs can then be composed to-

gether by merging their common dumb nodes and incident dumb edges into a cut edge. 

In this way, the algorithm enables the inner-domain subgraph composition without intro-

ducing significant storage cost. 

For example, Figure 3 shows the expansions of subgraphs S2 and S3 in Figure 2. The 

hash value of the cut edge <addContent, EmailA> is added as the dumb node rNode1, and 

its two incident dumb edges (<addContent, rNode1> and <rNode1, EmailA>) are also 

added. Edge information on <addContent, EmailA> is attached to the edge <addContent, 

rNode1>. The dumb node rNode1 and two incident dumb edges (<addContent, rNode1> 

and <rNode1, EmailA>) in Figure 3 can be merged into <addContent, EmailA> later. 
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Figure 3. Expansion of provenance subgraphs of Figure 2. 

In order to compose two provenance graphs sharing a common node, the proposed 

algorithm introduces into the two provenance graphs, i.e., a dumb node that is actually 

the hash value of the common node, and an incident dumb edge that connects the dumb 

node and the common node. Specifically, in a given provenance graph, it introduces dumb 

nodes for nodes with indegree zero to form the array of nextIndex, and dumb nodes for 

nodes with outdegree zero to form the array priorIndex, respectively. Both priorIndex and 

nextIndex can then be stored in a smart contract and serve as its cross-domain hooks to 

other provenance graphs maintained by different peers. 

By matching common dumb nodes, the proposed algorithm enables efficient and 

trustworthy cross-domain composition of provenance graphs and provenance tracing 

even when some peers did not share some of their subgraphs. This will be discussed in 

detail in the next section. By using hash values as hooks, the proposed algorithm avoids 

the unnecessary leakage of sensitive information in the original common nodes. If a peer 

A sends a data object D to another peer B in a business collaboration, the transferred data 

object D is certainly available to both its sender A and its receiver B. Both A and B can 

compute the hash value of D independently. However, other peers involved in the busi-

ness collaboration are informed that a message is passed from A to B while they do not 

know the content of the data object D. 

6. Architecture 

As shown in Figure 4, the BSTProv system consists of four types of modules: users, 

prov service, local database, and consortium blockchain. Users are the people or organi-

zations that deal with business tasks by some centralized systems which collect and share 

various business data objects and provenance with other users for various purposes. Users 

served by a centralized business system belong to an administrative domain and are ab-

stracted as a peer here; thus, we view users and peers as two interchangeable terms in the 

rest of this paper. Multiple peers in a business collaboration may exist. Each peer needs to 

maintain a trusted prov service and a trusted blockchain node so that it can process its 

own provenance independently and efficiently and join the consortium blockchain net-

work for trustworthy provenance sharing among peers. 

 

Figure 4. An architecture of the BSTProv system. 
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A prov service usually runs in a trusted zone for a specific peer and consists of a 

provenance process unit, a blockchain interface, a database interface, and a set of tools. 

The provenance process unit is used to partition a local provenance graph into multiple 

small subgraphs and compose multiple subgraphs obtained from the blockchain into a 

cross-domain provenance view. The blockchain interface and the local database interface 

is used to interact with the underlying blockchain and the local database, respectively. A 

set of tools is used to manage local asymmetric encryption key pairs, and to encrypt and 

decrypt provenance subgraphs. 

The consortium blockchain stores provenance subgraphs, as well as the overall de-

pendency structure about how cross-domain provenance graphs can be composed with 

each other. It selectively shares provenance subgraphs with appropriately designed smart 

contracts. 

To ensure efficient data storage and query, the local database stores the local prove-

nance graph collected and maintained by each user, provenance subgraphs (either the 

partitions of the local provenance graph or those shared by other users), the information 

of the transaction and block where a subgraph is embedded in, and access control policies 

defined for requesters. 

In the process of provenance sharing, a provenance owner first sends a provenance 

graph to the trusted prov service. Then, the prov service partitions the provenance graph 

into multiple subgraphs and computes cross-domain dependencies, i.e., the priorIndex ar-

ray and the nextIndex array of the provenance graph, according to the proposed algo-

rithms for provenance graph partitioning and expansion. Thirdly, the prov service sends 

the priorIndex array and the nextIndex array onto a predefined smart contract running on 

the consortium blockchain. The smart contract parses the transaction and links the current 

provenance graph to existing ones. Finally, the prov service sends the encrypted sub-

graphs onto the blockchain one by one and stores the transaction receipts in the local da-

tabase. 

In the process of provenance requesting, a provenance requester can first send a 

provenance request to the trusted prov service. The prov service then retrieves the user’s 

permissions in a smart contract running on the consortium blockchain, and further down-

loads the shared provenance subgraphs according to the retrieved permissions. It then 

decrypts and composes the subgraphs and stores them in the user’s local database. Note 

that smart contracts and on-and-off storage patterns are two important design issues that 

we be introduced in detail in the rest of this section. 

6.1. Smart Contract 

Existing researches have built consortium blockchains on top of the Ethereum in dif-

ferent applications [38,39]; therefore, we adopted the Ethereum as the underlying plat-

form to build our system and used smart contracts to implement the on-chain computa-

tions. A smart contract has a unique address and a corresponding storage tree, which is a 

part of the global state of the Ethereum. A data-storing transaction can be sent to a smart 

contract and the appended data objects can be extracted and stored in the storage tree. 

In the BSTProv system, we designed three smart contracts to manage authorization 

policies and high-level dependencies among multiple provenance graphs from different 

domains for decentralized authorization and cross-domain provenance composition, in-

cluding the identity controller contract (ICC), the provenance association contract (PAC), 

and the authority controller contract (ACC). 

The ICC records the identifications of users and registers new users by voting. The 

ICC consists of the identity storage smart contract (ISSC) and the identity register voting 

contract (IRVC). The ISSC stores the unique identifications and the corresponding public 

keys of registered users. The IRVC creates a vote request whenever a new user registration 

request arrives. When receiving more than half the number of votes in a given time period, 

the ICC grants the user’s registration request and stores the user’s address and its public 

key on-chain. 

file:///D:/è½¯/Youdao/Dict/7.5.0.0/resultui/dict/?keyword=customized
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The PAC manages the overall dependency structure among provenance graphs 

maintained by different peers, which is key to facilitating cross-domain provenance trac-

ing. The PAC consists of the provenance graph indexing contract (PGIC), the provenance 

graph associating contract (PGAC), and the provenance upload smart contract (PUSC). 

The PUSC parses the transactions with the embedded index information of a provenance 

graph and then invokes the smart contracts PGIC and PGAC. The PGIC stores the index 

information of a provenance graph, including the graph number, the owner, and the ar-

rays of priorIndex and nextIndex. The two arrays are stored in the PGIC for keeping cross-

domain dependencies among provenance graphs. It uses the hash value of a node instead 

of the raw node itself to avoid the leakage of sensitive information. The PGAC stores the 

overall dependency structure of provenance graphs for efficient cross-domain graph com-

position. 

The ACC enables a provenance owner to define access policies for requesters and 

accepts provenance requests issued by data requesters. The ACC consists of the prove-

nance request smart contract (PRSC) and the access control smart contract (ACSC). The 

PRSC stores provenance requests issued by requesters. The ACSC stores access policies 

published by provenance owners. A provenance owner can define who can access which 

subgraphs of a provenance graph as an access policy. Note that an access policy only refers 

to the public key of a provenance requester for preserving privacy. 

6.2. Storage On-Chain and Off-Chain 

Properly off-chaining data and computation can save the high cost of storing a large 

amount of data and of conducting complex computations on blockchain [40]. By carefully 

storing provenance-related information on-chain or off-chain, the BSTProv system guar-

antees the security and trustworthiness of the shared provenance while limiting the oper-

ation cost for provenance-related storage and computation. On-chain storage will be dis-

cussed in detail in the next section along with the on-chain computations, i.e., smart con-

tracts. The rest of this section elaborates off-chain storage. 

In the BSTProv system, each peer maintains a local database that not only stores the 

local provenance graph, corresponding provenance subgraphs, access control policies, 

provenance requests that are sent onto the blockchain, the subgraphs, and transaction re-

ceipts that are obtained from the blockchain, but also all other information that is useful 

for accelerating related computation. Three key tables in the local database are shown in 

Figure 5. The provenance_data table is used to store the local provenance graph and cross-

domain dependencies to be uploaded onto the blockchain, i.e., the arrays of priorIndex 

and nextIndex. The blockchain_storage table is used to store a provenance subgraph, its 

symmetric encryption key, and its location on the blockchain. The permission_allow table 

is used to store the set of permissions defined by provenance owners for flexibly sharing 

different combinations of provenance subgraphs to different provenance requesters. 

 

Figure 5. Relations in the local database of a provenance owner. 

In the process of data provenance sharing, the fields in these tables can change dy-

namically. A provenance owner first uploads a provenance graph and the prov service 

then stores it into the provenance_data table. The prov service then partitions the prove-

nance graph into several subgraphs, encrypts them symmetrically, and stores them in the 

blockchain_storage table. Fields location and flag are left empty temporarily. 
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The prov service then sends the encrypted provenance subgraphs onto the block-

chain. When the provenance subgraph is successfully stored on the blockchain, the prov 

service sets the flag field as true and the location field as the location of the provenance 

subgraph on the blockchain in the blockchain_storage table. If a provenance subgraph 

fails to be stored on the blockchain, the prov service can set the flag field as false and the 

location field as empty in the blockchain_storage table. 

After successfully sending provenance subgraphs onto the blockchain, the prove-

nance owner can define permissions for different data requesters according to the related 

information in the local database. The prov service can then store these permissions into 

an on-chain smart contract and into the local permission_allow table, respectively. Note 

that users without permissions cannot decrypt the encrypted provenance subgraphs em-

bedded in blockchain transactions therefore the security of provenance on-chain is en-

sured. 

7. Implementation 

We built a prototype of the BSTProv system on the Ethereum platform, using solidity 

0.4.24, node.js and truffle framework, and used the Geth v1.10.13 as the Ethereum client 

to set up an Ethereum test network. The rest of this section elaborates how main functions 

of the BSTProv system are implemented. 

7.1. Identity Registration 

Different peers that want to exchange trustworthiness-critical data objects in a decen-

tralized business collaboration can join the BSTProv system for trustworthy provenance 

sharing. A registration request is granted or denied by the ICC smart contract that sup-

ports majority voting [41]. No third parties can intervene in the process or the voting be-

cause different peers may vote via their local node, and the result of voting is stored and 

counted by the public and immutable codes in the smart contract ICC. 

Specifically, a user first sets a private string and uses it to generate an asymmetric 

key pair. Then, he/she logs into the prov service through the public key and sends a reg-

istration request to the ICC. The ICC accepts the request and initiates a voting proposal 

for it. Each authenticated user can evaluate the registration request and make a decision 

for or against it independently. Finally, the ICC can collect and verify each vote in the 

given voting period. When the voting period ends, the ICC stores the user’s address and 

the public key if the total number of votes is greater than the required number of votes. 

The ICC is shown in Algorithm 1 as follows. 

Algorithm 1: ICC. 

Procedure Registration (user, pk, request) 

issc = web3.eth.Contract (ISSC_ADDRESS) 

irvc = web3.eth.Contract (IRVC_ADDRESS) 

allUsers[] = issc.methods.getUser() 

if (allUsers.contain (user, pk))//user existed 

return; 

irvc.methods.vote(user, pk, request)//notify authenticated users to vote 

sleep (VOTING_TIME); //waiting for users voting 

proposal = irvc.methods.getvotes (user, pk) 

if (proposal.winnerVotes > proposal.totalVotes*0.5) then 

issc.methods.register (user, pk); 

return; 

End procedure 
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7.2. Provenance Uploading 

The process of provenance uploading includes a series of operations which are as 

follows. 

Step 1: A provenance owner first sends his/her provenance graph to a trusted prov 

service. The prov service then computes the hash values of input and output nodes in the 

provenance graph and stores them in the array priorIndex and array nextIndex, respec-

tively. 

Step 2: The prov service partitions the provenance graph with the proposed parti-

tioning algorithm. The provenance owner can declare appropriate parameters to adjust 

the partitioning results, including a set of sensitive elements and the maximum length of 

paths in a subgraph. The prov service can randomly generate a unique encryption key for 

each provenance subgraph and encrypt it symmetrically. 

Step 3: The prov service then sends a transaction with the cross-domain dependen-

cies of the provenance graph to the smart contract PUSC. The PUSC parses the transac-

tions and calls the smart contract PGIC to extract and store the index information of the 

provenance graph, including the graph number, the address of its owner, and its hooks to 

other graphs (two arrays of priorIndex and nextIndex). Then, the PUSC invokes the smart 

contract PGAC to link the current provenance graph to other existing ones. 

Step 4: The prov service sends transactions to upload encrypted provenance sub-

graphs onto the blockchain one by one. When the blockchain state is globally updated, the 

prov service can retrieve transaction receipts to extract the locations of the provenance 

subgraphs and store them together with corresponding secret keys into the local database 

of provenance owners. Note that sufficient gas price should be set to each transaction in 

order to upload the embedded provenance subgraph successfully. 

Figure 6 shows the state of the smart contracts PGIC and PGAC after a series of prov-

enance uploading requests were processed. The PGIC stored the index information of 

provenance graphs that are numbered p-1 and are shared by the provenance owners John, 

Alen, and Able, respectively. Note that the name of a provenance owner can be replaced 

with his/her public key or blockchain address for preserving privacy in practice. When-

ever the index information of a provenance graph is stored in the PGIC, the PGAC is in-

voked to link the newly added provenance graph to existing provenance graphs by trav-

ersing and matching their priorIndex and nextIndex, or to create a new cross-domain 

provenance graph when necessary. For example, g-1 is created when the graph p-1 is up-

loaded. Then, p-2 is added into g1 because of the prior index of p-2 is h3 that is identical 

to the next index of p-1. Furthermore, g-2 is created when the graph p-5 that cannot be 

linked to any existing graphs is uploaded. The smart contract PUSC is shown in Algorithm 

2. 

 

Figure 6. Snapshots of the storage of the smart contracts PGIC and PGAC. 

p rovID owner priorIndex[] nextIndex[]

p-1 John h1,h2 h3

p-2 Alen h3 h4,h5

p-3 Able h4 h6,h7

p-4 Alen h5 h8

p-5 John h11 h1

 gId provRecord [] association []

g-1 p-1, p-2, p-3, p-4 [p-1, p-2], [p-2, p-3], [p-2, p-4]

g-2 p-5

p-1

p-2

p-3 p-4

PGAC

PGIC

Provenance graph g-1
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Algorithm 2: PUSC. 

Procedure UploadProvIndex (owner, graphNum, address, priorIndex [], nextIndex []) 

pgic = web3.eth.Contract (PGIC_ADDRESS) 

pgac = web3.eth.Contract (PGAC_ADDRESS) 

graphNums [] = pgic.methods.getgraphNum() 

if (graphNums.contain (graphNum))//provenance graph existed 

return; 

//save overall dependencies among provenance graph 

pgic.methods.saveProvIndex (graphNum, owner, priorIndex, nextIndex) 

pgac.methods.updateAssociation (graphNum, owner, priorIndex, nextIndex) 

End 

7.3. Provenance Authorizing 

After uploaded onto blockchain, provenance subgraphs can be authorized to differ-

ent peers. Provenance owners can define appropriate permissions to grant or deny prov-

enance requests of different requesters. The specific process of provenance authorizing is 

as follows. 

Step 1: A provenance requester sends a provenance request to the smart contract 

ACC. 

Step 2: The ACC verifies the identity of the requester and broadcasts the request to 

all the provenance owners in the blockchain network. 

Step 3: A provenance owner analyzes the provenance request and identifies the re-

quired provenance subgraphs that can be shared to the requester, and then defines and 

stores appropriate permissions in both the ACC on the blockchain and the local database. 

In practice, a provenance owner can also define permissions in advance to grant specific 

requesters to access some provenance subgraphs before the requesters submit requests. 

Figure 7 shows the state of the smart contract ACC after a series of provenance re-

quests were processed and authorized. A permission in ACC includes four fields: the 

provenance owner, the provenance requester, the pairs of the location and key of shared 

targets, and the number of the provenance graph. When a provenance owner John re-

ceives the request issued by Mary, he first selects some provenance subgraphs required 

by Mary in the local database and then defines a permission with pairs of locations and 

keys [location, key] in the authAssign field in the local database. He uses the public key 

registered by Mary in ISSC to encrypt the authAssign field and then submits the permis-

sion with the encrypted authAssign field into the smart contract ACSC so that this permis-

sion can only be decrypted by Mary. 

 

Figure 7. Snapshots of the storage of the smart contract ACC. 

owner demander authAssign provID

John Mary [loaction1, key1], [loaction2, key2],... p-1

Alen Mary [loaction3, key3], [loaction4,key4],... p-2

Able Mary [loaction6, key6], [loaction7, key7],... p-3

Alen John [loaction9, key9] p-4

ACSC

userID require

John Express Number

Mary Milk produced on Aug.1,2021

PRSC
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7.4. Provenance Retrieval 

After provenance owners upload necessary permissions to the smart contract ACC, 

each requester can then retrieve appropriate permissions from ACC. The specific process 

of provenance retrieval and composition is as follows: 

Step 1: A provenance requester retrieves his/her permissions from the smart contract 

ACC. 

Step 2: The ACC verifies the identity of the requester and returns permissions issued 

to the requester by different provenance owners. 

Step 3: The prov service decrypts the permissions using the private key of the re-

quester to obtain locations and symmetrical decryption keys of the encrypted provenance 

subgraphs on-chain. Then, it retrieves the encrypted provenance subgraphs from the 

blockchain and decrypts them. 

Step 4: The prov service retrieves the overall dependency structure on how cross-

domain provenance graphs can be composed together from the smart contract PAC. 

Guided by the high-level blueprint, it can compose the acquired provenance subgraphs 

into a cross-domain provenance graph even when some requested provenance subgraphs 

are not available. Thus, the proposed system enables the cross-domain provenance trac-

ing. Figure 8 shows the sequence diagram of provenance retrieval. 

For example, Mary can find the overall dependency structure of the cross-domain 

provenance graph g-1 in PGAC, as shown in Figure 6. Then, she can acquire the permis-

sions related to p-1, p-2, and p-3 from ACSC; retrieve corresponding subgraphs of p-1, p-

2, and p-3 at given locations; and compose them into a global provenance graph. If the 

graph p-2 is not granted by Alen and, therefore, is not available to Mary, Mary still knows 

how to compose subgraphs of p-1 and those of p-3 together for partially global prove-

nance tracing, according to the overall structure of g-1 in Figure 6. 

 

Figure 8. Sequence diagram of provenance retrieval. 

8. Evaluation and Analysis 

We evaluated the proposed BSTProv system in terms of its trustworthiness, security, 

traceability, and storage cost by conducting experiments using the NCFS dataset [42], a 

dataset from Indiana University simulating the real scientific workflow. We also com-

pared the proposed BSTProv system with existing solutions to show its advantages. 

We set up an Ethereum test network with three virtual hosts configured with 16G 

RAM Intel Core i7 CPU 3.5 GHz running windows. By configuring the Ethereum test net-

work locally, we avoided possible network failures during experiments. We used the PoS 

consensus mechanism to reduce the performance overhead of block mining. In Ethereum, 

the default block-out time was 12–14 s and the default block size was 15 million gases. 

However, these default configurations of Ethereum cannot meet the requirements of deal-

ing with the NCFS dataset. We defined a genesis block that sets the block-out time as 5 s 

and the block size as 40 million gases to avoid possible transaction delay in our experi-

ments. 
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8.1. Trustworthiness 

Trustworthiness of the shared provenance is a key concern of decentralized prove-

nance sharing. The BSTProv system enhances provenance trustworthiness in three ways. 

First, it stores encrypted provenance subgraphs on blockchain, which keeps them immu-

table. Once any intentional or accidental falsifications to a provenance subgraph are iden-

tified, the peer who uploaded the erroneous provenance subgraph can be easily identified 

and punished according to predefined business contracts. 

Second, the BSTProv system partitions the raw provenance graph into multiple sub-

graphs, and then stores encrypted subgraphs on blockchain instead of their hash values. 

In this way, the proposed BSTProv system ensures that provenance graphs are available 

and trustworthy even when some trustless peers failed or their local databases were tam-

pered or damaged. 

Third, a requester may only request a subgraph of a provenance graph to fulfill their 

business tasks. In the BSTProv system, a provenance owner can only define access policies 

after uploading provenance graphs onto the blockchain; however, it cannot fabricate a 

provenance view and store its hash value onto the blockchain chain to cheat requesters. 

In this way, it enhances the trustworthiness of provenance by preventing malicious prov-

enance owners from falsifying provenance views. 

Note that the BSTProv system promises high trustworthiness of shared provenance 

subgraphs with a relatively high cost of storage. In practice, each peer can selectively share 

some of critical subgraphs of a provenance graph and leave other uncritical subgraphs 

shared in a low-cost solution, such as a traditional centralized solution. In this way, the 

proposed solution complements the existing approaches by providing a method for shar-

ing critical provenance in a trustworthy manner. 

8.2. Security 

Security is an important concern in decentralized provenance sharing. The BSTProv 

system implements functional security by three means. First, it symmetrically encrypts 

subgraphs and embeds them onto the blockchain so that requesters without permissions 

cannot decrypt them. Second, it asymmetrically encrypts permissions using the public key 

of requesters registered in the smart contract ICC so that only authorized requesters can 

obtain the symmetric keys for decrypting the encrypted subgraphs. Third, it honors the 

least privilege principle by allowing a provenance owner to define access policies, to au-

thorize a specific requester, and to access a specific set of provenance subgraphs, therefore 

preventing a requester from acquiring unnecessary and even sensitive information. 

In practice, each peer joining the provenance sharing network is not fully trustwor-

thy. As discussed in Section 8.1, malicious provenance owners can be punished once any 

intentional or accidental falsifications to a provenance subgraph are identified. However, 

the BSTProv system still cannot prevent authorized but malicious requesters to leak sen-

sitive subgraphs legitimately obtained from the blockchain. Even worse, multiple mali-

cious requesters can collude to reconstruct the provenance graph from subgraphs ob-

tained from the blockchain by simply sharing their private keys with each other. Further 

research is expected to address these issues in the future. 

In addition, privacy is another important concern in general data sharing. However, 

in the scenario of provenance sharing, a more important requirement is to clarify the iden-

tities of users who are responsible for some activities or entities. This paper focuses on 

sharing critical provenance information in a secure and trustworthy manner, but does not 

pay extra attention to the issue of privacy protection. In fact, the proposed system still 

provides the basic capability for privacy protection because the underlying blockchain 

network uses a public key as an anonymized user identity. 
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8.3. Traceability 

Provenance traceability is the extent to which a provenance graph facilitates prove-

nance tracing. The proposed system only shares a set of subgraphs to a specific requester. 

It maintains the overall dependency structure among subgraphs so that a requester can 

compose subgraphs obtained from the blockchain into a global provenance graph for later 

provenance tracing. Note that by introducing appropriate dumb nodes hooking different 

provenance graphs, the proposed system can guarantee the composability of provenance 

subgraphs, even with some provenance subgraphs missing. 

Figure 9 simulates a portion of a cross-domain provenance graph. The provenance 

graphs g1, g2, and g3 were uploaded by three provenance owners. Each round rectangle 

in each provenance graph represents a partitioned subgraph. For example, g1 was parti-

tioned into A1, A2, and A3. Suppose that a user obtained subgraphs A1, A3, C1, C2, and 

C3, while no subgraphs of g2 were shared. He/she can then compose all obtained sub-

graphs into a partially connected provenance graph through the overall dependency 

structure among all uploaded graphs stored in the smart contract PGAC, even when g2 is 

missing. 

 

Figure 9. Traceability analysis. 

8.4. Cost of Storage and Communication 

The storage cost is the amount of gas consumed by the blockchain network for storing 

a provenance graph. Suppose that n is the number of elements, including all nodes or 

edges, of a local provenance graph, and that m is the average number of elements of a 

subgraph that can be embedded in a transaction. The storage cost of storing each element 

of the provenance graph on-chain is Costelement. The cost of each transaction for storing a 

subgraph is Costblock. The cost of executing corresponding smart contracts to extract and 

establish dependencies among provenance graphs, as well as storing the index infor-

mation of a local provenance graph, is Costsmart. The total storage cost Costgas can be com-

puted in Formula (1). 

𝐶𝑜𝑠𝑡𝑔𝑎𝑠  =  𝑛 ∗  𝐶𝑜𝑠𝑡𝑒𝑙𝑒𝑚𝑒𝑛𝑡   +  [
𝑛

𝑚
] ∗  𝐶𝑜𝑠𝑡𝑏𝑙𝑜𝑐𝑘  +  𝐶𝑜𝑠𝑡𝑠𝑚𝑎𝑟𝑡 (1) 

In practice, when the consortium blockchain starts, m is usually defined by each peer 

independently as 𝑚 ∗ 𝑐 <  𝑏, where 𝑐 is the average size of each element in a provenance 

graph and 𝑏 is the block size limit predefined in the genesis block. The cost of storage 

Costgas varies when the total number of nodes n and the number of subgraphs [
𝑛

𝑚
] 

changes. In our experiments, we set the parameter c to 0.4 kb and b to 40 kb, and the num-

ber of elements in a provenance graph n to 200, 400, or 1000. Then, we explore how the 

storage cost Costgas changes when the number of subgraphs changes. As shown in Figure 

10, if the number of nodes in a provenance graph to be uploaded is fixed, the gas con-

sumption for storing it onto the blockchain increases along with an increase in the number 

of subgraphs in the provenance graph. Thus, less provenance elements embedded in a 

transaction can lead to a higher overall storage cost. At an extreme, our approach can 

degenerate to the one that embeds one provenance record in a single transaction. In fact, 
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when the number of subgraphs is low, the main gas consumption is used for storing the 

provenance graph itself. However, when the number of subgraphs is high, the total gas 

consumption [
𝑛

𝑚
] ∗  𝐶𝑜𝑠𝑡𝑏𝑙𝑜𝑐𝑘 for transactions of uploading a lot of subgraphs becomes 

non-trivial. In addition, we can see from Figure 10 that when the number of elements in-

creases, the minimal number of subgraphs increases. 

 

Figure 10. Correlations between the storage cost and the number of subgraphs. 

Assume there are K peers in the provenance sharing network. Each peer needs to 

partition a provenance graph Gi with equal n elements into [
𝑛

𝑚
] subgraphs with m ele-

ments. The total number of transactions for uploading these subgraphs is 𝐾 ∗ [
𝑛

𝑚
]. These 

transactions need to spread across the network in a given time period. Note that if 𝐾 ∗ [
𝑛

𝑚
] 

is greater than the number of transactions that can be processed by the underlying con-

sortium blockchain in that time period, provenance uploading is delayed. In order to 

avoid any accumulation of transactions in the transaction pool, one can tune the average 

block time and transaction gas limit according to domain-specific requirements. 

8.5. Comparison Analysis 

We compare the BSTProv system with two categories of blockchain-based prove-

nance sharing solutions. One is the so-called “single-record-on-chain” solutions that em-

bed each provenance record in a single blockchain transaction; the other is the so-called 

“hashes-on-chain” solutions that embed the hash value of a provenance graph in a single 

blockchain transaction while storing the original provenance graph off-chain. 

As shown in Table 2, our approach achieves higher trustworthiness and higher secu-

rity at the relatively higher cost of storage and communication than the “hashes-on-chain” 

solutions. Note that “hashes-on-chain” solutions can easily conduct flexible authorization, 

privilege management, and provenance tracing by storing and managing the provenance 

graph off-chain, for example in some relational databases. However, they suffer from low 

trustworthiness and security, which cannot be tolerated in trustworthiness-critical scenar-

ios. Our approach achieves trustworthiness and security as high as what the “single-rec-

ord-on-chain” solutions achieve while significantly saves the cost of storing and spread-

ing a large number of transactions used for enveloping a large number of provenance 

records. Although the “single-record-on-chain” solutions enables more flexible authori-

zation that our approach, they suffer the complexity of defining and verifying access con-

trol policies for a large number of provenance records, and of integrating provenance rec-

ords scattered in different blockchain transactions to enable global provenance tracing, 
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while our approach addresses these issues by dealing with provenance records in a batch 

mode. 

Table 2. A comparison of solutions. 

Solution Trustworthiness Security 
Flexible 

Authorization 
Privilege 

Management 
Traceability 

Storage 

Cost 
Communication 

Cost 

Single record on-

chain 
High High High Hard Hard High K × n 

Hashes on-chain Low Low Easy Easy Easy Low K 

Our approach High High Mid Easy Mid Mid K × [n/m] 

9. Conclusion and Future Work 

This paper presents the BSTProv, i.e., a blockchain-based secure and trustworthy 

data provenance sharing system. It enables secure provenance sharing by partitioning the 

local provenance graph into multiple subgraphs and embedding the encrypted subgraphs 

into blockchain transactions. It enables flexible authorization and cross-domain prove-

nance tracing by storing the overall dependency structures among provenance graphs and 

the encrypted permissions to different requesters in smart contracts. It enables efficient 

and trustworthy provenance storage and tracing by a consortium blockchain and local 

databases. The evaluation experiment showed that the proposed system enables secure 

and trustworthy provenance sharing with limited storage cost, high dependability, high 

traceability, and flexible authorization. Future work should optimize a provenance graph 

partitioning algorithm and enable adaptable and trustworthy re-partitioning to a submit-

ted subgraph. 
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