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Abstract: This paper presents an adaptive neural network (NN) control approach for an electro-
hydraulic system. The friction and internal leakage are nonlinear uncertainties, and the states in
the considered electro-hydraulic system are fully constrained. In the control design, the NNs are
utilized to approximate the nonlinear uncertainties. Then, by constructing barrier Lyapunov functions
and based on the adaptive backstepping control design technique, a novel adaptive NN control
scheme is formulated. It has been proven that the developed adaptive NN control scheme can sustain
the controlled electro-hydraulic system to be stable and make the system output track the desired
reference signal. Furthermore, the system states do not surpass the given bounds. The computer
simulation results verify the effectiveness of the proposed controller.

Keywords: adaptive neural network control; electro-hydraulic system; nonlinear uncertainties;
state constraints

1. Introduction

Electro-hydraulic systems are widely employed in sundry industrial applications
such as robotic manipulators, active suspensions, precision machine tools, and aerospace
systems. They provide many advantages over electric motors, including a high force to
weight ratio, fast response time, and compact size. With the increasing applications of
hydraulic mechanisms, the issue of stabilizing electro-hydraulic systems has attracted
tremendous attention in recent years. To handle this issue, many control methods were
developed. For instance, [1] presented a nonlinear adaptive robust control method for a
single-rod electro-hydraulic actuator with unknown nonlinear parameters. By employing
the control method and constructing a novel-type Lyapunov function, [2] developed an
adaptive sliding mode control controller. In [3], an active fault-tolerant control (FTC) system
is proposed against the valve faults of an independent metering valve. Backstepping
control [4] was also widely used in EHS in handling mismatched disturbances. In [5],
an output feedback nonlinear control is proposed for EHS, in which an extended state
observer (ESO) and a nonlinear robust controller are synthesized via backstepping. In
order to solve the uncertain nonlinearity and parameter uncertainty in hydraulic systems
simultaneously, a nonlinear adaptive robust control method is presented in [6]. Further, a
robust integral of the sign of the error controller and an adaptive controller is synthesized
via the backstepping method for motion control of a hydraulic rotary actuator in [7],
which theoretically guaranteed asymptotic tracking performance in the presence of various
uncertainties. In [8], a practical nonlinear adaptive repetitive controller is proposed for
motion control of hydraulic servo-mechanisms to learn and compensate for the periodic
modeling uncertainties.

It should be mentioned that since the tolerance of the hydraulic rotary actuator is
finite, the load pressure should be limited to a feasible boundary, and the rate limit of
the hydraulic rotary actuator’s response cannot be that large. To ensure that all the state
variables are not violating their constraints and the normal operation of the controlled
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system, it is important to investigate the issue of state constraints in the control problem
of EHS. In [9], a high-gain disturbance observer (HGDOB)-based backstepping controller
was proposed for electro-hydraulic systems with position tracking error constraints. To
suppress the violation of tracking error constraints, a barrier Lyapunov function-based
dynamic surface control method was proposed for the position tracking control of the
ammunition manipulator in [10].

Note that the control schemes mentioned above all require precise structural informa-
tion of the considered hydraulic system. Especially, the frictions and internal leakage are
both required to be known. Therefore, they do not effectively control the hydraulic systems
with nonlinear uncertainties. Fuzzy systems [11] and neural networks [12–15] have good
approximation performance, and thus they are frequently utilized to deal with uncertainties
in nonlinear systems. In [16], the authors integrated fuzzy learning mechanisms into the
modeling of EHS and proposed a kind of fuzzy PI controller. In [17], a neural adaptive
control was developed for single-rod EHS to improve the dynamic tracking performance
of the cylinder position under lumped uncertainties. Although these control methods
improved the position tracking performance without precise knowledge of the EHS, they
did not consider the control problem of EHS with state constraints.

Inspired by the above observations, this paper investigates the adaptive tracking
control problem for an electro-hydraulic system with nonlinear uncertainties and full
state constraints. By utilizing neural networks to model the nonlinear uncertainties, and
constructing the barrier Lyapunov functions, an adaptive NN control approach is developed
in the framework of adaptive backstepping control design. The main advantages of the
proposed adaptive NN control scheme are as follows: it can ensure the controlled electro-
hydraulic system is stable and make the system output track the desired reference signal.
Furthermore, the system states are confined within the given compact sets and do not
surpass their bounds. Note that the previous adaptive NN controller [17] also addressed
the control problem for electro-hydraulic systems with lumped uncertainties by neural
network approximation. However, detailed information such as the frictions and internal
leakage was still required, the neural networks were merely utilized to approximate the
lumped uncertainties composed of parameter uncertainties and the external disturbance.
Furthermore, it did not consider the control problem for electro-hydraulic systems with
state constraints. On the other hand, although [9] studied the control problem for electro-
hydraulic systems with state constraints, it required the nonlinear dynamics of the electro-
hydraulic system to be exactly known.

2. Problem Formulation and Preliminaries
2.1. Hydraulic System Model

The hydraulic system [5] under study is illustrated in Figure 1. On the left in Figure 1,
an inertia load is driven by a servo valve-controlled hydraulic rotary actuator, whose
schematic structure is presented on the right in Figure 1. The motion dynamics of the
inertia load can be described by

J
..
y = PLDm − F(y,

.
y) + f (t) (1)

where J and y represent the moment of inertia and the angular displacement of the load,
respectively; PL = P1 − P2 is the load pressure of the hydraulic actuator, P1 and P2 are the
pressures inside the two chambers of the actuator; Dm is the radian displacement of the
actuator; F represents any continuous differentiable friction model, and f represents other
disturbances. The load pressure dynamics can be written as

Vt

4βe

.
PL = −Dm

.
y−Qt(PL) + Q(t) + QL (2)

where Vt is the total control volume of the actuator; βe is the effective oil bulk modulus;
Qt(PL) is the total internal leakage of the actuator due to pressure; Q(t) is the time-varying
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disturbances and external leakage; QL = (Q1 + Q2)/2 is the load flow, Q1 is the supplied
flow rate to the forward chamber, and Q2 is the return flow rate of the return chamber. QL
is related to the spool valve displacement of the servo valve, i.e., xV , by

QL = kqxv

√
Ps − sign(xv)PL (3)

where kq = Cdω
√

1/ρ is the flow gain, and sign(xv) is given as

sign(xv) =

{
1, i f xv ≥ 0
−1, i f xv < 0

(4)

where Cd is the discharge coefficient; ω is the spool valve area gradient; ρ is the density of
oil; Ps is the supply pressure of the fluid with respect to the return pressure Pr.
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Although the model of servo valve dynamics is actually nonlinear, which has been con-
sidered by some researchers [6], only minimal performance improvement can be achieved
for motion tracking, and additional sensors are required to obtain the spool position. There-
fore, many studies neglect servo valve dynamics. So, in this paper, the relationship between
the control applied to the servo valve and the spool position is defined as xv = kiu, i.e., the
control applied to the servo valve is directly proportional to the spool position, where xv is
the spool position and u is the control input voltage, since a high-response servo valve is
used here. Thus, (3) can be transformed to

QL = ktu
√

Ps − sign(u)PL (5)

Since only variables y,
.
y and PL are necessary to be controlled for hydraulic motion

systems, so defining the state variables as X = [x1, x2, x3]
T = [y,

.
y, DmPL/J]T is sufficient

for controller design. Then, the considered electro-hydraulic system can be expressed in a
state-space form as 

.
x1 = x2.
x2 = x3 + φ1(x2) + d1(t).
x3 = g(x3, u)u + φ2(x2, x3) + d2(t)

(6)

where, φ1(x2) = −F(x2)/J, d1(t) = f (t)/J, and

φ2(x2, x3) = −
4D2

mβe

JVt
x2 −

4βe

Vt
Qt(x3) (7)

d2(t) = 4βeDmQ(t)/(Vt J) (8)
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g(x3, u) =
4Dmβekt

JVt

√
PS − sign(u)Jx3/Dm (9)

Remark 1. It should be pointed out that the nonlinear friction models and the nonlinear internal
leakage models used in this study are not considered by the previous studies. The nonlinear friction
F(x2) and the nonlinear internal leakage Qt(x3) are both considered nonlinear uncertainties. Thus,
φ1(x2) and φ2(x2, x3) in (6) are all unknown nonlinear functions.

Assumption 1 [18]. There exist positive constants A0, A1 and A2 such that the given reference yd

and its derivatives satisfy |yd| ≤ A0 < kc1 and
∣∣∣y(i)d

∣∣∣ ≤ Ai(i = 1, 2).

Assumption 2. There exist positive constants kci such that the system states satisfy the restrictions:
|xi| < kci, i = 1, 2, 3.

Control Objective. The objective of this study is to propose an adaptive NN control
scheme. The proposed adaptive NN control scheme can make the controlled electro-
hydraulic system stable and y track the desired trajectory yd. Moreover, the system states
do not violate their bounds.

2.2. Radial Basis Function Neural Networks

A radial basis function neural network (RBFNN) [19] can be expressed as

f̂ (X
∣∣∣W) = WTS(X) (10)

where X ∈ Rm is the input vector, W ∈ Rr is the weight vector with neurons number
r. S(X) = [s1(X), . . . , sr(X)]T , where si(X) is a Gaussian-type basis function, which can be
selected as

si(X) = exp

{
− (X− oi)

T(X− oi)

ρ2
i

}
(11)

where ρi and oi ∈ Rm are the width of the Gaussian function and the center vector, respectively.
It is well known that an RBFNN can be used to approximate any a continuous function

F(X) as [20]
F(X) = W∗TS(X) + ε(X) (12)

where W∗ is the ideal constant vector and ε(X) is the approximation error.

3. The Controller Design and Stability Analysis
3.1. Controller Design

Make the following variable transformation:
z1 = x1 − yd
z2 = x2 − α1
z3 = x3 − α2

(13)

where yd represents the desired trajectory, α1 and α2 represent the virtual control variables
to be designed later.

Based on the above variable transformation, we will give the detailed three-step
backstepping control [21] design procedures for the electro-hydraulic system (6).

Step 1: Noting (6), the time derivative of tracking error z1 is

.
z1 = x2 −

.
yd (14)
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Construct a barrier Lyapunov function candidate as

V1 =
1
2

ln
k2

b1
k2

b1 − z1
2

(15)

where kb1 is a positive constant. It is obvious that in Ωz1 : = {z1 : |z1| < kb1}, V1 is a
continuous differentiable. Then, the time derivative of V1 can be derived as follows

.
V1 = z1

.
z1

k2
b1−z2

1
= z1

k2
b1−z2

1

(
x2 −

.
yd
)

= z1
k2

b1−z2
1

(
z2 + α1 −

.
yd
) (16)

Design the virtual controller α1 as

α1 =
.
yd − c1z1 (17)

where c1 is a positive design parameter.
Step 2: From (6), the derivative of z2 = x2 − α1 with respect to time is given by

.
z2 = x3 + φ1(x2) + d1(t)−

.
α1

= z3 + α2 + φ1(x2) + d1(t)−
.
α1

(18)

Based on the neural approximation, we can assume that

φ1(x2) = W∗1
TS1(x2) + ε1(x2) (19)

where W∗1 denotes the ideal weight vector, S1(x2) = [s1(x2), . . . , sr1(x2)]
T is the radial

basis vector with Gaussian function sj(x2), j = 1, 2, . . . , r1. ε1 is the approximation error
satisfying |ε1| ≤ ε1 with the constant ε1 > 0. Then (17) becomes

.
z2 = z3 + α2 + W∗1

TS1(x2) + ε1(x2) + d1(t)−
.
α1 (20)

Construct a barrier Lyapunov function candidate as

V2 =
1
2

ln
k2

b2
k2

b2(t)− z22
+

1
2

σ1W̃T
1 W̃1 (21)

where σ1 is a positive design parameter, and kb2 is a positive constant. In
Ωz2 : = {z2 : |z2| < kb2}, V2 is a continuous differentiable. Then the time derivative of V2 can
be derived as

.
V2 =

z2
.
z2

k2
b2 − z2

2
+ σ1

.
W̃

T

1 W̃1 (22)

From (20) and (22), the following equation can be obtained

.
V2 =

z2

k2
b2 − z2

2
(z3 + α2 + W∗1

TS1(x2) + ε1(Z1) + d1(t)−
.
α1) + σ1

.
Ŵ

T

1 W̃1 (23)

The virtual controller α2 and the adaptive law of Ŵ1 are designed as

α2 = −c2z2 − Ŵ1
TS1(x2)−

z2

k2
b2 − z2

2
−

k2
b2 − z2

2

k2
b1 − z2

1
z1 +

.
α1 (24)

.
Ŵ1 =

1
σ1

(
z2

k2
b2 − z2

2
S1(x2)− τ1Ŵ1

)
(25)
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where c2 and τ1 are positive design parameters. Ŵ1 is the estimation of W∗1 and defined
W̃1 = Ŵ1 −W∗1 .

Step 3: Noting (6), the time derivative of error z3 = x3 − α2 is

.
z3 = g(x3, u)u + φ2(x2, x3) + d2(t)−

.
α2 (26)

Based on the virtual controller design in step 2,
.
α2 is given by

.
α2 =

∂α2

∂x1
x2 +

∂α2

∂x2
x3 +

∂α2

∂Ŵ1

.
Ŵ1 +

∂α2

∂yd

.
yd +

∂α2

∂
.
yd

..
yd + h (27)

where
h =

∂α2

∂x2
φ1(x2) +

∂α2

∂x2
d1(t) (28)

Based on the neural approximation, it can be assumed that

φ2(Z2) = W∗2
TS2(Z2) + ε2(Z2) (29)

where Z2 = [x2, x3]
T, and W∗2 denotes the ideal weight vector. S2(Z2) = [s1(Z2), . . . , sr2(Z2)]

T

is the radial basis vector with Gaussian function sj(Z2), j = 1, 2, . . . , r2. ε2 is the approximation
error satisfying |ε2| ≤ ε2 with the constant ε2 > 0. Then (26) becomes

.
z3 = g(x3, u)u + W∗2

TS2(Z2) + ε2(Z2) + d2(t)−
.
α2 (30)

Construct the barrier Lyapunov function candidate as

V3 =
1
2

ln
k2

b3
k2

b3(t)− z32
+

1
2

σ2W̃T
2 W̃2 (31)

Similar to Step 2, the time derivative of V3 is

.
V3 =

z3
.
z3

k2
b3 − z2

3
+ σ2

.
W̃

T

2 ξ̃2 (32)

where σ2 is a positive design parameter, and kb3 is a positive constant. In
Ωz3 : = {z3 : |z3| < kb3}, V3 is a continuous differentiable. Substituting (30) into (32)
leads to

.
V3 =

z3

k2
b3 − z2

3
(g(x3, u)u + W∗2

TS2(Z2) + ε2(Z2) + d2(t)−
.
α2) + σ2

.
Ŵ

T

2 W̃2 (33)

The actual controller V3 and the adaptive law are designed as follows.

u = − 1
g(x3, u)

[
c3z3 + Ŵ2

TS2(Z2) +
z3

k2
b3 − z2

3
+

(
k2

b3 − z2
3
)(

k2
b2 − z2

2
) z2 + Ξ

]
(34)

where
Ξ = ∂α2

∂x1
x2 +

∂α2
∂x2

x3 +
∂α2
∂Ŵ1

.
Ŵ1 +

∂α2
∂yd

.
yd +

∂α2
∂

.
yd

..
yd

− z3
k2

b3−z2
3

(
∂α2
∂x2

)2
− z3

2(k2
b3−z2

3)

(
∂α2
∂x2

)2
‖S1(x2)‖2

.
Ŵ2 =

1
σ2

(
z3

k2
b3 − z2

3
S2(Z2)− τ2Ŵ2

)
(35)

where c3 and τ2 are positive design parameters. Ŵ3 is the estimation of W∗3 and defined
W̃3 = Ŵ3 −W∗3 . In practice, P1 and P2 are both bounded by Ps and |PL| is sufficiently
smaller than Ps to ensure that the positive function g(x3, u) is far away from zero [5].
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The developed adaptive NN backstepping control scheme via the above three-step
backstepping control design procedures are shown in Figure 2.
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3.2. Stability Analysis

The properties of the proposed adaptive NN backstepping control method are given
by the following Theorem.

Theorem 1. Consider electro-hydraulic system (6) under Assumptions 1–2, if we adopt the virtual
controllers (17), (24), the actual controller (34), and parameter adaptive laws (25), (35), then the
following properties can be guaranteed:

1. All the variables in the closed-loop system are bounded and are always confined in their respective
compact sets;

2. The tracking error converges to a neighborhood of zero, which can be made arbitrarily small by
appropriately selecting design parameters.

Proof of Theorem 1. Considering Lyapunov function as V =
3
∑

i=1
Vi. With (16), (23), and

(33) we have

.
V = z3

k2
b3−z2

3
(g(x3, u)u + W∗2

TS2(Z2) + ε2(Z2) + d2(t)−
.
α2)

+ z2
k2

b2−z2
2
(z3 + α2 + W∗1

TS1(Z1) + ε1(Z1) + d1(t)−
.
α1)

+ z1
k2

b1−z2
1

(
z2 + α1 −

.
yd
)
+ σ1

.
Ŵ

T

1 W̃1 + σ2

.
Ŵ

T

2 W̃2

(36)

Substituting (17), (24), (25), (34), and (35) into (36), the following inequality can
be derived

.
V ≤ −

3
∑

i=1

ciz2
i

k2
bi−z2

i
−

2
∑

i=1
τiŴT

i W̃i

+ ε2
1 + d

2
1 +

1
2 ε2

2 +
1
2 d

2
2 +

1
2

∥∥W∗1
∥∥2

(37)

By applying Young’s inequality, it has

− τiW̃T
i Ŵi ≤

−τi

∥∥∥W̃i

∥∥∥2

2
+

τi
∥∥W∗i

∥∥2

2
(38)
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Based on (38), (37) can be derived as

.
V ≤ −

3
∑

i=1

ciz2
i

k2
bi−z2

i
− 1

2

2
∑

i=1
τi

∥∥∥W̃i

∥∥∥2
+ 1

2

2
∑

i=1
τi
∥∥W∗i

∥∥2

+ε2
1 + d

2
1 +

1
2 ε2

2 +
1
2 d

2
2 +

1
2

∥∥W∗1
∥∥2

(39)

From (15), (21), and (31), we can obtain

V =
1
2

3

∑
i=1

ln
k2

bi
k2

bi(t)− zi
2
+

1
2

2

∑
i=1

σiW̃T
i W̃i (40)

In [22], it has been proven that ln k2
bi

k2
bi−z2

i
≤ z2

i
k2

bi−z2
i
. Thus, we have

V ≤ 1
2

3

∑
i=1

z2
i

k2
bi − z2

i
+

1
2

2

∑
i=1

σiW̃T
i W̃i (41)

Define a = min{2c1, 2c2, 2c3, τ1/σ1, τ2/σ2} and b = ε2
1 + d

2
1 +

1
2 ε2

2 +
1
2 d

2
2 +

1
2

∥∥W∗1
∥∥2

+

1
2

2
∑

i=1
τi
∥∥W∗i

∥∥2. Therefore, the following inequality holds

.
V ≤ −aV + b (42)

From (42) and similar to [23,24] we obtain that all the signals of the closed-loop system
are bounded.

Further, based on (42), it can be obtained

ln
k2

b1
k2

b1 − z2
1
≤ 2V(0)e−at + 2b/a (43)

That is,
k2

b1
k2

b1 − z2
1
≤ e2V(0)e−at+2b/a (44)

From (44), it yields

|z1| ≤ kb1

√
1− e−2(V(0)e−at+b/a) (45)

As t→ ∞ , we can obtain |z1| ≤ kb1
√

1− e−2b/a, thus z1 can be made arbitrarily small
by selecting the design parameters appropriately.

Additionally, from z1 = x1 − yd and |yd| ≤ A0 in Assumption 1, we can obtain
|x1| < kb1 + A0. Define kc1 = kb1 + A0, then |x1| < kc1. Moreover, from (17), (24), there
must exist constants Bi−1 > 0 such that |αi−1| ≤ Bi−1, i = 2, 3. Then, according to
zi = xi − αi−1, it can be derived that |xi| < Bi−1 + kbi. Define kc1 = kb1 + A0, then we can
also obtain |xi| ≤ kci, i = 2, 3. Therefore, we can conclude that all the states do not violate
their prescribed bounds. �

4. Simulation Studies

In order to verify the effectiveness of the proposed neural adaptive controller, computer
simulations are carried out. In the simulations, parameters of the electro-hydraulic system
to be controlled are chosen with reference to a previous study [5], which are listed in Table 1.
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Table 1. Parameters of the Simulation System.

Physical Parameter Value

J(kg ·m2) 0.2
Dm(m3/rad) 5.8× 10−5

Ct(m3/s/Pa) 1.0× 10−12

kt(m3/s/V/Pa−1/2) 1.1969× 10−8

B(N ·m · s/rad) 90
βe(Pa) 7.0× 108

Vt(m3) 1.16× 10−4

Ps(Pa) 1.0× 107

The two layers’ RBFNNs f̂1(x2

∣∣∣Ŵ1) = ŴT
1 S1(x2) and f̂2(Z2

∣∣∣Ŵ1) = ŴT
2 S2(Z2) con-

tain five nodes with the centers spaced in the interval [−2, 2] and the widths of the Gaussian
function are selected as 5. The radial basis functions are chosen as follows.

s1,j(x2) = exp

[
−
(x2 − o1,j)

2

5

]
(46)

s2,j(x2, x3) = exp

[
−
(x2 − o2,j)

2

5

]
× exp

[
−
(x3 − o2,j)

2

5

]
(47)

where o1,j = −3 + j, j = 1, . . . , 5 are centers of the nodes in RBFNN f̂1(x2

∣∣∣Ŵ1) = ŴT
1 S1(x2) ,

o2,j = −3 + j, j = 1, . . . , 5 are centers of the nodes in RBFNN f̂2(Z2

∣∣∣Ŵ1) = ŴT
2 S2(Z2) .

The virtual control laws and the actual controller are designed as follows

α1 =
.
yd − c1z1 (48)

α2 = −c2z2 − Ŵ1
TS1(Z1)−

z2

k2
b2 − z2

2
−

k2
b2 − z2

2

k2
b1 − z2

1
z1 +

.
α1 (49)

u = − 1
g(x3, u)

[
k3z3 + Ŵ2

TS2(Z2) +
z3

k2
b3 − z2

3
+

(
k2

b3 − z2
3
)(

k2
b2 − z2

2
) z2 + Ξ

]
(50)

where
Ξ = ∂α2

∂x1
x2 +

∂α2
∂x2

x3 +
∂α2
∂Ŵ1

.
Ŵ1 +

∂α2
∂yd

.
yd +

∂α2
∂

.
yd

..
yd

− z3
k2

b3−z2
3

(
∂α2
∂x2

)2
− z3

2(k2
b3−z2

3)

(
∂α2
∂x2

)2
‖S1(x2)‖2

The parameter adaptive laws are given as

.
Ŵ1 =

1
σ1

(
z2

k2
b2 − z2

2
S1(x2)− τ1Ŵ1

)
(51)

.
Ŵ2 =

1
σ2

(
z3

k2
b3 − z2

3
S2(Z2)− τ2Ŵ2

)
(52)

The design parameters in (48)–(52) are listed in Table 2.
The desired trajectory is selected as yd(t) = (8 sin(3.28t) + 2 cos(6.28t))◦, and the

state constraints are given as |x1| ≤ kc1 = 11◦, |x2| ≤ kc2 = 40◦/s and |x3| ≤ kc3 =
18000 N/(rad · kg ·m).
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Table 2. Design Parameters.

Parameters Values

Parameters of the virtual and
actual controllers

c1 226
c2 215
c3 256

Parameters of parameter
adaptive laws

σ−1
1 1.7

σ−1
2 1.5
τ1 2.6
τ2 2.3

In the simulation, the initial values of the state variables are given as x1(0) = 2◦,
x2(0) = 10◦/s, x3(0) = 10000 N/(rad · kg ·m), while the initial values of the adaptive
parameters W1 and W2 are selected as W1(0) = [1, 2, 3, 8, 2]T , W2(0) = [10, 8, 1, 7, 15]T .

The simulation results are shown in Figures 3–7. Figure 3 shows the trajectories of
the output and tracking signals. It can be seen from Figure 3 that the proposed scheme
has a good tracking performance. Figures 4 and 5 draw the trajectories of x2 and x3.
Figures 3–5 illustrate that the given constraint bounds of the state variables are not violated.
Figures 6 and 7 depict the trajectories of the actual controller u(t), parameters Ŵ1 and
Ŵ2, respectively.
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Furthermore, to illustrate the effectiveness of the proposed adaptive NN control
scheme, we made a simulation comparison with an adaptive control scheme without the
state constraints. In the simulation, all the design parameters and initial conditions of the
states and parameters are chosen the same as in the above simulation. The simulation
results are shown in Figures 8–11.

Comparing Figures 3 and 8, it is easy to find that the two control schemes can both
guarantee good tracking performance, but the proposed scheme has a more satisfactory
performance. By analyzing Figures 3–5 and 8–10 we can find that the proposed control
scheme can sustain the states xi, i = 1, 2, 3 not to surpass their bounds kci. While the
states of the adaptive NN scheme without state constraint violate their bounds in transient
conditions. In fact, the state variables surge in the beginning and slightly surpass the con-
straints, which means that the angular velocity and the load pressure surge too high in the
transient conditions, which will do harm to the normal operation of EHS. In addition, from
Figures 6 and 11, we can see that the control signal of the proposed adaptive NN control
scheme is kept in a reasonable scope of [−3, 3]. However, the input voltage in the adap-
tive NN control scheme without state constraints spreads in the interval of [14,21], which
indicates that the adaptive NN control scheme with state constraints requires less control
energy to stabilize the electro-hydraulic system than the one without state constraints.
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5. Conclusions

This paper investigated an adaptive NN backstepping control problem for an electro-
hydraulic system driven by a dual-vane hydraulic rotary actuator, in which the states are
fully constrained, and the friction and internal leakage are nonlinear uncertainties. The
neural networks are exploited to approximate the unknown nonlinear uncertainties, and
by constructing suitable barrier Lyapunov functions, a novel adaptive NN backstepping
control scheme has been developed, which can guarantee the controlled electro-hydraulic
system to be stable and the tracking error to converge to a smaller neighborhood of zero.
Meanwhile, the state variables are constrained in bounded compact sets. Comparative
simulation results have checked the effectiveness of the proposed control method. Our
further research work will focus on the finite-time intelligent output control design for
electro-hydraulic systems with unmeasurable states.
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