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Abstract: For the purpose of overcoming the random permutation ambiguity of the frequency-
domain-independent component analysis (FDICA) for blind separation of convolutive mixtures, this
paper proposes an independent vector analysis (IVA) detection receiver for blindly deconvolving the
convolutive mixtures of digitally modulated signals for wireless communications. The foundation
of IVA is through jointly carrying out separation work for different frequency bin data fusion, and
the dependencies of frequency bins are exploited in solving the random permutation problem of
separation signals. In addition, IVA uses multivariate prior distributions instead of the univariate
distribution used in FDICA. Multivariate prior distribution is employed to preserve the interfrequency
dependencies for individual sources, which can give rise to separation performance enhancement.
Simulation results and analysis corroborate the effectiveness of the proposed detection method.

Keywords: independent vector analysis; independent component analysis; permutation ambiguity;
digital modulation; wireless communications

1. Introduction

With the sharply exploding advent of wireless transmission data, the spectrum band
resources have become increasingly urgent and congested. A multitude of mixed signals are
widespread existing in wireless receivers. This phenomenon has resulted in the difficulties
of the conventional receiving processing technology. The prior information of wireless
channel is also especially hard to acquire. If the channel state information (CSI) is unknown,
and only the received mixture signals can be utilized, the blind adaptive processing will
be a promising scheme for source recovery. Thus far, this processing mechanism has
received great attention and will be a promising scheme for future intelligent and green
communications, known as latent data analysis or unsupervised learning methods [1,2].

Blind source separation (BSS) is a typical latent data analysis method, which has
solid theoretical foundations and extensive potential applications [1,3,4]. It can achieve
the latent source separation only from the received mixture signals, depending on the
statistical features of source signals. One of the representative BSS methods is relying on
the independent principle of source to implement separating assignment, i.e., independent
component analysis (ICA). To the best of our knowledge, ICA-assisted wireless receiving
processing has attracted remarkable attention from home and abroad. There are many
scholars engaged in investigating these interesting areas [1,3–17]. These typical related
works are given below for discussion.

In the wireless communication systems, the received signals model is always con-
structed as the instantaneous mixture of source signals and channel effects. Then, the ICA
methods can be used for source signal separation or extraction. From the perspective of
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the processing mechanism, the time-domain ICA methods are the main detection tools,
such as in [6,7]. The time-domain ICA-based detection schemes are for wireless receiv-
ing mixture modulation signals. However, in real applications, suffering the multipath
fading channel effects, the wireless receiving model should be established as a convo-
lutive mixture of source signals and channel factors. In this convolutive model, direct
time-domain ICA methods suffer from severe computational complexity problems with
low implementation efficiency.

To overcome the above-mentioned problem, the frequency-domain ICA (FDICA) is
recommended for separating each frequency bin instantaneous mixture obtained from
the time frequency transformation of convolutive mixtures [5,13–17]. FDICA indepen-
dently carries out ICA separation, neglecting the relationship of each frequency bin dataset,
which uses univariate source component for achieving source modeling. It has been ex-
tensively used in multiple input multiple output (MIMO) and MIMO–OFDM (multiple
input multiple output–orthogonal frequency division multiplexing) detection [13–17]. In
reference [13], the authors investigated FDICA-based impulse interference mitigation for
MIMO-OFDM systems. In reference [14], the authors proposed a blind channel estima-
tion using correntropy FDICA for MIMO–OFDM systems. The authors in reference [15]
developed an FDICA-based decoding method for massive array antenna MIMO systems.
In reference [16,17], the authors proposed an FDICA-based MIMO–OFDM receiver for
green communication processing. However, FDICA confronts the random permutation
ambiguity problem, which will lead to the difficulty of the source recovery. In processing,
the random permutation correction must be used for the further source detection.

To solve the above-mentioned problems, this paper proposes an IVA detection receiver
for blind deconvolving of wireless receiving mixture data. IVA is a generation of ICA,
which can not only overcome random permutation problems, but also acquires performance
enhancement due to using a multivariate source model instead of a univariate source model
for constructing separation function [18–22]. Experimental results and analysis corroborate
the effectiveness and efficiency of the proposed IVA detection receiver.

The remainder of this paper is constructed as follows. Section 2 discusses the system
model and problem formulation. Section 3 talks about the IVA detection receiver, including
cost function formulation and optimization methods. Computational complexity and
performance evaluation are discussed in Section 4. Section 5 conducts experiments for
confirming the proposed method. Lastly, conclusions are obtained in Section 6. The
math notations are illustrated as follows. Scalars, vectors, and matrices are denoted by
lowercase letters, lowercase boldface letters, and uppercase boldface letters, respectively.
The uppercase superscripts “T” and “H” are used for transpose and hermite transpose,
respectively, and “*” denotes the convolutive operation.

2. System Model and Problem Formulation

In wireless communications, the source signals always transmit through frequency-
selective fading channels. The received signals are the convolutive mixtures of source
signals and channel effects. A typical system model with time-domain ICA detection
receiver is illustrated in Figure 1.

In Figure 1, the transmitted source signals are denoted as sl(n), l = 1, . . . , M,
n = 1, . . . T, and the received signals are represented as xm(n), m = 1, . . . , M, n = 1, . . . T.
M and T are the numbers of source signals and sample length, respectively. The number
of received signals equals that of source signals. The impulse response of channel from
the transmitter l to the receiver m is aml(n). zm(n) represents the circularly symmetrical
complex Gaussian noise term. The time-convolutive mixture contaminated by noise can be
described as

xm(n) =
M

∑
l=1

aml(n) ∗ sl(n) + zm(n). (1)



Electronics 2022, 11, 1460 3 of 12

Channel

T
ra

n
sm

it
te

r

( )1 ns

( )2 ns

( )M ns

( )1 nx

( )2 nx

( )M nx

Time domain 

ICA

Model 

Transformed 

as high-

dimensional 

instantaneous 

mixture 

High computation complexity 

and restricted separation 

performance

Figure 1. Convolutive mixture model with time-domain ICA detection receiver.

In practical applications, the convolutive mixture model is always generated from two
propagation influences emerged in wireless fading channels. First, the source signals reach
the different receivers with delays. Second, the source signals are transmitted through
multipath fading channel.

In the time-convolutive mixture model, direct ICA blind separation processing is a
difficult task with high computation complexity. Therefore, the time-domain model can
be transformed as a multiple-frequency-domain instantaneous mixture through discrete
short-time Fourier transform (STFT). The discrete STFT of the received signal xm(n) is
denoted as

Xm(t, f ) =
∞

∑
t=1

xm(n)win(tL− n)e−j2π f (tL−n)/F. (2)

where t is the frame number, and f is the frequency bin, f = 1, . . . , F. The window function
win(n) can be chosen as a rectangular window of length L. The F-point fast Fourier
transform (FFT) is implemented over the windowed section of the xm(n). The number of F
is set as larger than or equal to the window length L, i.e., F ≥ L.

Similar to the previous Equation (2), the Sl(t, f ) is expressed as the discrete STFT of
the sl(n). For the sake of simplification, the vector form of S(t, f ) and X(t, f ) is defined as
S(t, f ) = [S1(t, f ), . . . , Sl(t, k), . . . SM(t, f )]T , X(t, f ) = [X1(t, f ), . . . , Xm(t, f ), . . . XM(t, f )]T ,
and Z(t, f ) = [Z1(t, f ), . . . , Zm(t, f ), . . . ZM(t, f )]T , respectively. The corresponding matrix
form is S( f ), X( f ) and Z( f ). After this operation, the time-convolutive mixture will be
converted into frequency-domain instantaneous mixtures:

X(t, f ) = A( f )S(t, f ) + Z(t, f ). (3)

Assume that the source signal sl(n) is zero-mean, complex-valued, non-Gaussian
distributed, and statistically independent. In each frequency bin, the Sl(t, f ) also satis-
fies independent condition, which is proved in Appendix A. Thus, the ICA assumptions
are satisfied. Then the frequency-domain ICA is implemented in each frequency bin to
separate the source signals Sl(t, f ) independently. Before the ICA, the whitening process-
ing will be carried out firstly to reduce the noise effect and make the mixing matrices
orthogonal. We implement the whitening processing independently in each frequency
bin. Regarding the f th frequency bin (1 ≤ f ≤ F), the whitening operation is executed
through the transform X̄( f ) = V( f )A( f )S( f ) +V( f )Z( f ), where V( f ) = D( f )−1/2U( f )H ,
D( f ) = diag

(
λ

f
1 − σ( f )2, . . . , λ

f
M − σ( f )2

)
, and λ

f
i (i = 1, . . . , M) is the ith largest eigen-

value of the covariance matrix R( f ) = E
(

X( f )X( f )H
)

, U( f ) is a M×M matrix constructed

by the corresponding eigenvectors, and σ( f )2 is the variance of the noise. In practice, in
order to estimate the noise variance, the number of receiver sensors is set as larger than that
of the source signals. Thus, the noise variance can be estimated by averaging the difference
in value of the smallest eigenvalue. The whitening operation can make the orthogonal prop-
erty of the mixing matrices, i.e., it will satisfy the condition V( f )A( f )(V( f )A( f ))H = IM.
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Due to the inherent ambiguity problem of BSS, the independent ICA will give rise
to the random permutation ambiguity problem. The convolutive mixture model with
frequency-domain ICA detection receivers is shown in Figure 2. It is not easy to solve,
which will directly affect the following source recovery assignment.
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Figure 2. Convolutive mixture model with frequency-domain ICA detection receiver.

3. IVA Detection Receiver

In the separation of mixture model, the ICA methods used for each frequency bin
mixture data suffer from the random permutation problem. IVA can provide a natural
solution to this issue by acquiring the inherent dependencies of the transmitted digital
modulation signals. Therefore, it can solve the random permutation problem and imple-
ment the separation of sources for adaptive wireless receiving processing. Regarding the
used independent mechanisms in ICA and IVA that have differences, as shown in Figure 3,
in IVA, the multivariate source vector is used to replace the univariate source component
for modeling the source prior. The proposed IVA detection model is evolved from the
conventional FDICA scheme, which is demonstrated in Figure 4. In the following, the
fundamentals of IVA will be explained.
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Figure 3. IVA mechanism versus ICA mechanism.
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Figure 4. Convolutive mixture model with IVA detection receiver.

With regard to the model (3), this problem is tackled through defining dependence
between multiple components and developing a method for IVA directly. Without loss of
generality, the noise effect term is not always considered for deriving the IVA method for
simplicity. This consideration is reasonable due to that the whitening processing will be
used for removing the noise effect in the process of before IVA, which is similar to that of
the existing ICA processing.

According to the previous model (3), frequency bin datasets containing samples are
formed from linear mixtures of independent latent sources,

X(t, f ) = A( f )S(t, f ) + Z(t, f ), 1 ≤ t ≤ T, 1 ≤ f ≤ F. (4)

where each frequency bin dataset X(t, f ), f = 1, . . . , F is a linear instantaneous mixture of
M independent sources.

The invertible mixing matrices A( f ) ∈ CM×M are to be estimated as unknown
complex-valued matrix. S(t, f ) = [s1(t, f ), s2(t, f ), . . . , sM(t, f )]T is the latent random
complex-valued source vector of source matrix S( f ), in which superscript T denotes trans-
pose operations. In the IVA data model, the source components in each dataset are assumed
to be independent statistically, while in different datasets they have dependence connec-
tions. For formulating the dependence function across source components, the source
component vector (SCV) can be collected by vertically concatenating the nth source from
every dataset as follows:

Sn(t) = [sn(t, 1), sn(t, 2), . . . , sn(t, F)] ∈ CF. (5)

The related source component matrix (SCM) is illustrated in Figure 5 through concate-
nating the mth row of each S( f ). The SCVs are mutual statistically independent random
vectors. The probability distribution function (PDF) of the concatenated source vector can
be denoted as p(S) = ∏M

m=1 pm(Sm).
The purpose of IVA is to seek F separation matrices and the corresponding source

vector estimation for each dataset, with the f th estimations indicated as W( f ) ∈ CM×M.
The source estimations are represented as

Y(t, f ) = (W( f ))HX(t, f ). (6)

The estimation of the mth component from the f th dataset is denoted as
ym( f ) = (wm( f ))Hx( f ), in which superscript H indicates the complex conjugate transpose,
(·)∗ is the complex conjugate operator, wm( f ) is the mth column of W( f ), and wn,l( f ) is the
element in the nth row and lth column of W( f ). The estimation of the mth SCV is described
as yT

m = [ym(1), . . . , ym(F)]. The mixing matrices mean the influence of wireless channels,
which are potentially distinct for each dataset and are not necessarily related.
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Figure 5. IVA structure based on SCV.

The cost function of IVA is obtained in the same formation as that of ICA, i.e., minimum
mutual information (MMI) or maximum likelihood (ML) [20,21]. Compared with just
estimating single separation matrices in ICA, the purpose of IVA requires to estimate F
separation matrices W(1), . . . , W(F) to achieve source estimations.

3.1. Cost Function for IVA

The fundamental principle of IVA is to maximize the independence of all of SCVs,
which can be acquired through minimizing the mutual information among the source
component vectors. A set of separation matrices needs to be estimated that can be organized
as a three-dimensional array or tensorW ∈ CM×M×F. The essential cost function of IVA
based on the MMI principle is represented as [18–22]:

CIVA(W)
∆
= I{y1; . . . ; yM}

=
M
∑

m=1
H{ym} −H{y1, . . . , yM}

=
M
∑

m=1
H{ym} −H

{
(W(1))Hx(1), . . . , (W(F))Hx(F)

}
=

M
∑

m=1
H{ym} − 2

F
∑

f=1
log|det(W( f ))| − C1

. (7)

in which H{ym} illustrates the differential entropy of the estimated mth SCV, and the term
C1 denotes a constant parameterH{x(1), . . . , x(F)}, where it is regarded as a constant in
the subsequent optimization implementation. Particularly noteworthy is that the entropy of
a linear invertible transformation, WHx, in the complex domain is given by 2 log|det(W)|+
H{x}, and the determinant of a block diagonal matrix is a product of the determinants of
the individual blocks. The log|det(W( f ))| is a regularization term that penalizes separation
matrices with small determinants and restricts separation matrices to be unitary when the
penalty term becomes fixed.

By definition,H{ym} =
F
∑

f=1
H{ym( f )} − I(ym), where I(ym) is the mutual informa-

tion within the mth SCV, which sheds light on the dependence within components of an
SCV. Thus, Equation (7) can be obtained as follows after replacing ofH{ym}:

CIVA(W) =
M

∑
m=1

(
F

∑
f=1
H{ym( f )} − I(ym)

)
− 2

F

∑
f=1

log|det(W( f ))| − C1. (8)
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The previous mathematical description expresses that minimizing the cost function is
to simultaneously maximize the mutual information within individual SCVs and minimize
the entropy of all components. It is essential to point out that the mutual information I(ym)
in the IVA cost function gives an insight for solving the random permutation ambiguity
across multiple datasets.

3.2. Optimization Methods for IVA

According to [21], hm( f ) is defined to be a unit length vector such that(
W̃m( f )

)Hhm( f ) = 0 , where W̃m( f ) is the M × (M− 1) matrix formed by removing
the mth column of the separation matrix W( f ). Then, it can be computed as

|det(W( f ))| =
∣∣∣(hm( f ))Hwm( f )

∣∣∣Sm( f ). (9)

where Sm( f ) =

√∣∣∣det
((

W̃m( f )
)HW̃m( f )

)∣∣∣. Clearly, the value of Sm( f ) is independent

of wm( f ). The calculation of hm( f ) can be computed using an extension of the efficient
real-valued recursive method explained in [20] to complex domain processing. By replacing
(9) in (7), we obtain

CIVA(wm( f )) =
M
∑

m=1
H{ym} − 2

F
∑

f=1
log
(∣∣∣(hm( f ))Hwm( f )

∣∣∣Sm( f )
)
− C1

= H{ym} − 2 log
∣∣∣(hm( f ))Hwm( f )

∣∣∣+ Cm( f )
. (10)

where we note thatH{ym}is independent of wm( f ) for m 6= n, yielding

C[ f ]
m

∆
=

M

∑
m=1,m 6=n

H{ym} −
F

∑
l=1,l 6= f

2 log|det(W(l))| − 2 log Sn(l)− C1. (11)

then, IVA using vector gradient descent can be denoted as

(wm( f ))− ← (wm( f ))old − 2µ
∂CIVA

∂(wm( f ))∗
. (12)

in which µ denotes the nonnegative step size. The IVA cost function derivative is derived
with respect to the complex conjugate of wm( f ) as

∂CIVA
∂(wm( f ))∗ = −E

{
∂ log p(ym)

∂ym( f )
∂ym( f )

∂(wn( f ))∗ +
∂ log p(ym)
∂(ym( f ))∗

∂(ym( f ))∗

∂(wm( f ))∗

}
− 2

∂
∣∣∣(hm( f ))Hwm( f )

∣∣∣
∂(wm( f ))∗

. (13)

where E{·} shows the expectation operator. Applying the complex derivative rules of
Wirtinger calculus, it yields

∂ym( f )
∂(wm( f ))∗

=
∂(wm( f ))Hx( f )

∂(wm( f ))∗
= x( f ), (14)

∂(ym( f ))∗

∂(wm( f ))∗
=

∂(x( f ))Hwm( f )
∂(wm( f ))∗

= 0. (15)

and
∂ log

∣∣∣(hm( f ))Hwm( f )
∣∣∣

∂(wm( f ))∗
=

1
2

hm( f )

(wm( f ))Hhm( f )
. (16)
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Combining with the previous derived three gradients and assuming that

φ(y, f ) = [φ(y1, f ), . . . , φ(yM, f )]T

= −
[

∂ log{p(y1)}
∂y1( f ) , . . . , ∂ log{p(yM)}

∂yM( f )

]T . (17)

we can obtain
∂CIVA

∂(wm( f ))∗
= E{φ(ym, f )x( f )} − hm( f )

(wm( f ))Hhm( f )
. (18)

4. Computational Complexity and Performance Evaluation

The time-domain ICA method is only theoretically feasible. However, the time-domain
methods are computationally complex because of the convolutive mixture mechanism. It is
not realizable to use time-domain ICA, owing to the computational need.

After time-frequency processing, it is computationally efficient to implement separa-
tion work in each frequency bin, named FDICA. This method requires F times independent
ICA work for source separation, which has roughly the complexity order of O

(
FTM2).

In contrast with ICA, the IVA requires that of O
(

FTM2 + FTM
)
. It is noticeable that the

sampling length T is far larger than the number of source components M and frequency
bins F. Therefore, they have roughly similar computational complexity. Moreover, the
FDICA needs the permutation correction processing that also will lead to some computa-
tion complexities.

In addition, due to that the inherent random permutation problem existed in the
FDICA method, the permutation correction must be used for further source recovery. Oth-
erwise, the performance will be lost severely. In IVA, the random permutation problem can
be overcome. Moreover, the multivariate source models are utilized for source separation;
this will be better than the independently used univariate source model for realizing the
digital modulation signal model. In the next section, the simulation experiment will be con-
ducted for performance comparison; this will confirm the effectiveness of the investigated
IVA-based detection method.

5. Simulation Results and Analysis

To verify the effectiveness of the proposed IVA detection receiver, we conduct com-
puter simulations for performance analysis. Before the application of IVA to convolutive
mixtures, IVA experiments are implemented for helping set the appropriate algorithm pa-
rameters to wireless receiving detection application. Then, four different FDICA methods
and the proposed IVA detection method are implemented for performance comparison
in a convolutive mixture application. The joint inter-symbol interference (jISI) is used to
as performance index. The jISI is derived from the conventional normalized inter-symbol
interference (ISI) and is used to analyze performance, i.e,

ISI(G)
∆
=

1
2M(M− 1)

[
M

∑
n=1

(
M

∑
m=1

|gn,m|
maxp

∣∣gn,p
∣∣ − 1

)
+

M

∑
m=1

(
M

∑
n=1

|gn,m|
maxp

∣∣gp,m
∣∣ − 1

)]
. (19)

where G = WA. The ISI can be extended to obtain the joint ISI, i.e., G( f ) = W( f )A( f ),
and |G( f )| is the absolute value of G( f ).

jISI ∆
= ISI

(
F

∑
f=1
|G( f )|

)
. (20)

The metric jISI measures the consistency of SCV estimation among datasets. The lower
jISI means the better separation performance. In addition, BER performance metric is also
used to evaluate the different detection methods for convolutive mixture separation in
wireless receiving processing.
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In IVA, the complex multivariate generalized Gaussian (MGGD) distribution [20,21]-
based IVA is used to performance evaluation. The number is set as 5, and the sample length
is 1000 vs. 10,000. The MGGD used is to generate the sub-Gaussian distribution-based
SCV for simulating sub-Gaussian communication signals. The mth SCV is a zero-mean
with F dimensional sub-Gaussian random vector. The different SCV structure is random
correlation structure. In addition, we mainly consider the gradient iteration. We know the
Newton manner is faster but with high complexity and maybe non-convergence. Therefore,
the gradient is suggested in this paper. The random correlation covariance structure is
defined as Σm = CmCm

H , where the elements of Cm are from the standard complex-valued
normal distribution.

The experimental results are shown in Figure 6, which illustrates that IVA with the
long sample length is better than that of the short sample length. In Figure 7, the statistical
analysis of jISI for different F value is given for illustrating that the proper F values can be
set as for the following joint analysis, such as F = 16.

0 50 100 150 200 250
F

10-3

10-2

jI
SI

M=5, T=1000

M=5, T=10,000

Figure 6. Performance comparison of IVA with different sample length.

For the purpose of confirming the IVA detection performance for a real communication
application scheme, the following experiment is carried out. The simulation parameters
are set as follows. The channel is chosen as a slowly-varying frequency-selective fading
channel. This means that the channel impulse response changes slowly with the transmitted
symbol period. This mixture mechanism can be described as a static mixture. The third-
order convolutive mixture systems with the Gaussian distribution coefficients are used
for simulation. The source signals are uniformly distributed independent differential
quadrature phase shift keying (DQPSK). The number of source and received signals is
5. The sample length of the received signals is 10,000. The length of the rectangular
window is 3. The points of the FFT are 16. In order to highlight the proposed IVA, different
representative ICA methods are used to make performance comparisons. The simulation
results are demonstrated in Figure 8.
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Figure 7. Statistical performance analysis for IVA with different SCV dimension.
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According to the above-mentioned parameters, we simulate the IVA and four FDICA
methods for performance comparison. The averaged bit error rate (BER) of the data se-
quence with regard to the transmission data is evaluated. In FDICA, the permutation
correction scheme is from the reference [14]. In order to highlight the performance improve-
ment, the third FDICA method without permutation corrections is also given. Simulation
results are shown in Figure 8, which verify the effectiveness of applying the IVA method.
The proposed IVA scheme acquires the improved BER performance.
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6. Conclusions

The received wireless signals are always the convolutive mixture of the latent source
signals in the unknown condition of slow frequency-selective fading channels. The main
work of this paper is to propose an IVA-detection-based blind separation of convolutive
signals. IVA is beneficial for conquering permutation ambiguity encountered in the con-
ventional frequency-domain ICA model. In addition, the multivariate source models are
jointly used in IVA for performance enhancement. Simulation results show that the perfor-
mance of the proposed IVA detection method is better than that of the conventional FDICA
detection method. In the future work, the robust IVA method is strongly recommended to
be investigated for overcoming different environmental noise impact as well as dynamic
channel condition impairment.
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MIMO Multiple input multiple output
OFDM Orthogonal frequency division multiplexing

Appendix A

According to the theorem from [23], if the two random variables x and y are in-
dependent, then the functions of these random variables z = f (x) and w = g(x) are
also independent.

The previous theorem shows that functions of independent random variables are also
independent. In the frequency bin model, the sources sm(n) are statistically independent
so that their discrete STFT, Sm(t, f ) are linear functions of the sm(n) as

Sm(t, f ) =
∞

∑
t=1

sm(n)win(tL− n)e−j2π f (tL−n)/F. (A1)
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Therefore, these frequency components Sm(t, f ) are also statistically independent in
each frequency bin.
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