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Przemek Wisniewski 1,2, Szymon Stanczyk 2, Dario Schiavon 1, Thomas Slight 3, Malcolm A. Watson 4,
Steffan Gwyn 5, Anthony E. Kelly 5 and Scott Watson 5
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Abstract: Gallium nitride (GaN) laser diodes (LDs) are considered for visible light communications
(VLC) in free space, underwater, and in plastic optical fibers (POFs). A review of recent results is
presented, showing high-frequency operation of AlGaInN laser diodes with data transmission rates
up to 2.5 Gbit/s in free space and underwater and high bandwidths of up to 1.38 GHz through 10 m of
plastic optical fiber. Distributed feedback (DFB) GaN LDs are fabricated to achieve single-frequency
operation. We report on single-wavelength emissions of GaN DFB LDs with a side-mode suppression
ratio (SMSR) in excess of 35 dB.

Keywords: GaN laser; GaN DFB; GaN systems; underwater communications; plastic optical fiber
communications

1. Introduction

Gallium nitride (GaN) light-emitting diodes (LEDs) have gained significant interest
for use in visible-light communications (VLC) [1]. Nowadays, there is a push towards
green, sustainable sources of communication, with VLC sources being able to provide both
lighting and communication simultaneously. GaN LED-based visible-light communications
typically provide low data rates [2]; however, recent work has shown that GaN micro-LEDs
can have bandwidths of hundreds of MHz, allowing for Gbit/s data transmission [3].
By exploiting techniques such as wavelength division multiplexing, data rates of over
10 Gbit/s have been reported [4,5]. However, the performance of GaN LEDs is limited
by moderate bandwidths, low power, and a rapidly divergent beam, resulting in short
transmission distances and limiting potential system applications.

In comparison, GaN laser diodes (LDs) have shown much higher modulation frequen-
cies, higher powers, and better beam quality, allowing for long-reach performance and
paving the way for many new VLC applications to be realized. Previous work has shown
that GHz data transmission is possible using directly modulated GaN LDs in free space,
underwater, and through plastic optical fibers (POFs) [6,7]. In free space, data transmission
rates exceeding 25 Gbit/s have been shown by using a 64-quadrature amplitude modula-
tion discrete multi-tone (64-QAM DMT) system [8]. Extensive work has been carried out in
underwater environments due to the low-loss transmission window through water in this
part of the spectrum. A system was presented by Wu et al., where data rates of 12.4 Gbit/s
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were achieved through water [9]. This technology could be used to provide communication
between underwater autonomous vehicles for oil and gas exploration or could be used to
assist docking stations or for seabed monitoring.

We also report here on recent developments in single-wavelength distributed feedback
(DFB) GaN LDs, a topic garnering significant research interest for applications such as
atomic cooling and optical communications [10,11]. Achieving narrow linewidths is a key
priority to allow these devices to be used in quantum clocks, and specific wavelengths can
be targeted for different applications. A number of groups around the world have focussed
on ways to optimize the GaN DFB process [12–14].

2. Materials

GaN LDs used in this work were fabricated from AlGaInN epitaxy via metal or-
ganic chemical vapor deposition (MOCVD), consisting of (i) an 800 nm Al0.08Ga0.92N
lower cladding layer, (ii) 50 nm GaN lower waveguide layer, (iii) 50 nm In0.02Ga0.98N
injection layer, (iv) InxGa1−xN/In0.02Ga0.98N quantum wells ×3 (3.5/9 Å) (the indium
composition (x) and well thickness can be varied to change the emission wavelength),
(v) 20 nm Al0.2Ga0.8N electron blocking layer, (vi) 80 nm GaN waveguide, and (vii) 350 nm
Al0.08Ga0.92N upper cladding.

AlGaInN laser epitaxy structures were processed into 2 µm ridge waveguide laser
diodes for single-transverse mode, with a cavity length of 700 µm.

3. Results

The optical power–current–voltage (LIV) characteristics for a 2 µm ridge waveguide
LD structure are shown in Figure 1a and the single-transverse optical beam modes are
shown for both the fast and slow axes in Figure 1b. An optical power in excess of 120 mW
is shown with a threshold current of 50 mA and a threshold voltage of ~3.5 V. The spectral
output at ~418.8 nm is shown in Figure 2, revealing a multi-longitudinal mode structure
typical of a Fabry–Perot (FP) LD device.
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Figure 2. Spectral output of a 418 nm GaN LD.

3.1. GaN Laser Diode Free-Space Data Transmission

Data transmission measurements were conducted in free space using a 422 nm GaN
LD. Figure 3 shows the eye diagrams measured using an Agilent 86105B digital sampling
oscilloscope. High-speed data transmission (small signal modulation) at 1 Gbit/s was
measured at a laser drive current of 115 mA (Figure 3a) and at 2.5 Gbit/s for 120 mA
(Figure 3b), at which the best Q-factor margins were achieved.
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3.2. GaN Laser Diode Underwater Data Transmission

GaN LDs have great potential for use in underwater communications, as the attenu-
ation coefficient through water is at its lowest in the blue-green part of the spectrum. To
test the suitability of GaN LD technology for underwater communications, a GaN laser
optical tracking system was constructed and submerged in a water tank (see Figure 4) [15].
Underwater experiments using a GaN LD have also been reported elsewhere [16–18].
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Figure 4. Collimated laser fired underwater from node to node in harbor-type water over a
~1 m distance.

The frequency response of the GaN LD was measured over an underwater path length
of ~1 m, showing that GHz operation was possible. This resulted in high-speed data
transmission at Gbit/s rates, demonstrating the suitability of the GaN system technology
for underwater sensing and communications (see Figure 5).
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Figure 5. Eye diagrams showing data transmission for a signal transmitted through water at
(a) 1 Gbit/s at 125 mA laser drive current, (b) 2 Gbit/s at 132 mA, and (c) 2.488 Gbit/s at 132 mA.

The relative openness of the “eyes” is a standard measure of the quality of data
transmission. Through ‘oceanic clear’ water, a data rate of up to 2.488 Gbit/s underwater
can be measured.

In order to test the performance of the GaN laser system in high-turbidity water
conditions, Maalox was introduced to the water to mimic the volume scattering of seawater
particles, which is representative of ‘harbor’ water.

It can be seen from Figure 6 that increasing the scattering solution results in an expected
laser power transmission reduction through the water, reducing the optical intensity at the
detector. However, this demonstrates that data transmission is possible, even in highly
scattered water environments.
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Figure 6. Laser transmission over 1 m of water with increasing scattering solution. (Left): Photo
with a light concentration of Maalox added. (Centre): Very high concentration of Maalox added.
(Right): Peak voltage reading from the quadrant detector representing received power over the
underwater path length, for increasing Maalox concentration.

3.3. GaN Laser Diode Data Transmission in Plastic Optical Fibers (POFs)

Visible-light data transmission using GaN LEDs through POFs has been reported
previously [19,20]. Here, we report on data transmission in POFs using a GaN LD.

A GaN LD emitting at 429 nm was used to conduct frequency response measurements
through various lengths of 1-mm-diameter step index plastic optical fibers (SI-POFs). Fiber
lengths of 1, 2.5, 5, and 10 m were tested to discover the relationship between the bandwidth
and fiber length. This laser had a −3 dB bandwidth of 1.71 GHz in free space and error-free
data transmission at 2.5 Gbit/s was achieved in a similar manner to that reported above.
The maximum bandwidth values achieved for transmission through 1, 2.5, 5, and 10 m of
fiber were 1.68, 1.63, 1.62, and 1.1 GHz, respectively, as seen in Figure 7a.
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function of length.

The bandwidth of the fiber itself can be obtained by subtracting the free space response
from that measured through the different lengths of fiber. This allows for dispersion analysis
to be carried out. It should be noted that the LD was not optimized for high-frequency op-
eration, nor was the laser optimized for fiber coupling so that further improvements could
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be made. In Figure 7b, the bandwidth of the fiber measuring 10 m drops to 1.38 GHz due to
modal dispersion, showing that Gbit/s transmission is still possible over these distances.

3.4. Visible DFB GaN LDs

Distributed feedback (DFB) lasers in the infrared range are successfully used in many
telecommunication applications due to the narrow spectral linewidth and mode stability of
the device. In comparison, DFB GaN LDs in the visible range are much more challenging to
fabricate and have received less attention for communication applications. DFB GaN LDs
can be fabricated using a buried or surface grating on a chip to select the longitudinal mode.
However, both methods have their disadvantages—complex overgrowth steps are required
for buried gratings, which have the potential to introduce epi-defects, while surface grating
designs can compromise the quality of the p-type top contact and suffer from increased
optical losses in unpumped grating regions. In this approach, gratings are etched onto
the sidewalls of a ridge waveguide laser diode. The sidewall grating can be designed and
implemented entirely post-growth once the emission wavelength is known. Additionally,
the coupling coefficient is mainly determined by the planar layout of the grating rather than
the etch depth, unlike surface or buried gratings, allowing more freedom in design [21,22].
A similar approach to fabricating DFB GaN LDs has been described elsewhere [12–14].

3.4.1. Design and Fabrication of Visible DFB GaN LDs

One of the key challenges in designing a GaN-based DFB is attaining the required
Bragg wavelength in the etched grating. As the emission wavelength of these devices is
~400 nm, a first-order grating would require a feature size of ~40 nm, which is not currently
feasible. To combat this, third-order gratings with complementary feature sizes of ~120 nm
were used, and an 80% duty cycle was implemented, such that loss of coupling strength by
using a lower-order grating was minimized, as seen in Figure 8a [21]. Then, to calculate the
coupling coefficient κ values of these devices, the effective indices of the wide and narrow
sections of the sidewall gratings at 2.5 µm and 1.5 µm, respectively, using coupled mode
theory [21] yield a coupling strength of κ = 22 cm−1.
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Figure 8. (a) SEM image of the as etched third-order DFB grating and (b) SEM image of the as-etched
39th DFB-order grating.

Another way to achieve single-mode emission is by utilizing a higher-order grating.
The operation involves the use of a Fabry–Perot (FP) laser with weak optical feedback
provided by a high-order grating that runs along the partial length of the waveguide.
The grating feedback is sufficient to allow lasing in a single or narrow band of FP modes,
which are close in wavelength to the Bragg wavelength, λb, with FP modes away from λb
experiencing an increased loss penalty. In order to ensure single-wavelength operation, the
grating must have a reflection bandwidth that is on the same order as the free spectral range
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(FSR) of the cavity (<0.1 nm). This design makes use of a 39th-order grating with 125 notch
pairs along the ridge, which we estimate to have a bandwidth of ~0.11 nm (Figure 8b).

Devices were fabricated from AlGaInN laser epi-structures, consisting of three In-
GaN quantum wells sandwiched between GaN barriers, GaN waveguide layers, and
Al0.06Ga0.94N cladding layers. The quantum wells were designed to emit around 410 nm.

To fabricate the gratings, electron beam lithography was used to define the ridge or
grating pattern and ICP etching was carried out. An optimized ICP process with a Cl2/N2
chemistry gives a smooth and vertical etching profile, which is important to achieve optimal
grating performance (see Figure 8). Before cleaving into individual chips, the sample was
thinned and polished and the back metal was deposited. We fabricated ‘standard’ 2 µm
ridge waveguide Fabry–Perot (with no grating) GaN LDs on the same wafer adjacent to
the DFB GaN LDs for comparison.

3.4.2. 39th-Order DFB GaN LD Characterization

The LI characteristics of a 39th-order DFB GaN LD are compared to a standard FP
GaN LD fabricated side-by-side in Figure 9. The standard FP GaN LD has a threshold
current of 70 mA and slope efficiency of 0.6 W/A, compared to a DFB GaN LD of 130 mA
and 0.27 W/A. An increase in threshold and decrease in slope efficiency by almost a factor
of two can be observed in the LI characteristics of the 39th-order DFB compared to the FP
GaN LD due to the increased scattering of the grating.
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DFB GaN LD (red).

Figure 10 shows the spectral evolution of the 39th-order DFB GaN LD as a function of
the drive current. From 150 mA to 225 mA, single longitudinal mode selectivity is observed
in this device.
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3.4.3. Third-Order DFB GaN Laser Diode Characterization

Fabry-Perot GaN LDs were fabricated adjacent to third-order DFB GaN LDs and the
LIV characteristics are compared in Figure 11. At a threshold current of 22–27 mA, output
powers of 80–90 mW at a turn-on voltage of ~3.5 V were observed for the FP GaN LDs
(D67, D68). The third-order DFB GaN LD (D70) characteristics show a higher threshold,
lower power, and increased turn-on voltage compared to their FP counterparts due to the
increased scattering from the etched grating.
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The spectral output of a third-order DFB GaN LD as a function of the drive current
is shown in Figure 12. From 45 to 70 mA, single-mode operation can be observed. A
side-mode suppression ratio (SMSR) in excess of 35 dB was achieved, as seen in Figure 13.
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Figure 13. Spectral performance of a third-order DFB GaN LD exhibiting a SMSR exceeding 35 dB.

The frequency response of the third-order DFB GaN LD is shown in Figure 14. A
maximum bandwidth of 2.3 GHz was achieved at 80 mA. The bandwidth began to decrease
after this point, reaching 1.2 GHz at 140 mA. The bandwidth was limited by the parasitic
capacitance within the package of the device, which was not optimized for high-frequency
operation, so there is scope to improve this further.
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Eye diagrams were taken for this device at varying data transmission rates. Error-
free transmission was achieved up to 3 Gbit/s and transmission at 2 Gbit/s is shown in
Figure 15.
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Figure 15. Eye diagram from the third-order GaN DFB LD at 2 Gbits/s showing error-free communi-
cation.

4. Conclusions

GaN LDs have great potential for many visible-light communication applications,
including free-space, underwater, and POF applications. Data rates of up to 2.5 Gbit/s
have been reported here using a blue GaN LD in free space, underwater, and with POFs.
Furthermore, the development of DFB GaN LDs for single-mode operation have been
shown using a third-order strongly coupled grating and a weakly coupled 39th-order
grating, demonstrating the potential for DFB GaN LDs for telecommunication purposes.
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et al. High speed visible light communication using blue GaN laser diodes. In Proceedings of the Advanced Free-Space Optical
Communication Techniques and Applications II, Edinburgh, UK, 26–29 September 2016; Volume 9991, p. 99910A. [CrossRef]

12. Kang, J.H.; Wenzel, H.; Freier, E.; Hoffmann, V.; Brox, O.; Fricke, J.; Sulmoni, L.; Matalla, M.; Stölmacker, C.; Kneissl, M.; et al.
Continuous-wave operation of DFB laser diodes based on GaN using 10th order laterally coupled surface gratings. Opt. Lett.
2020, 45, 935–938. [CrossRef] [PubMed]

13. Holguin-Lerma, J.A.; Ng, T.K.; Ooi, B.S. Narrow-line InGaN/GaN green laser diode with high-order distributed feedback surface
grating. Appl. Phys. Express 2019, 12, 042007. [CrossRef]

14. Deng, Z.; Li, J.; Liao, M.; Xie, W.; Luo, S. InGaN/GaN distributed feedback laser diodes with surface gratings and sidewall
gratings. Micromachines 2019, 10, 699. [CrossRef]

15. Watson, M.A.; Blanchard, P.M.; Stace, C.; Bhogul, P.K.; White, H.J.; Kelly, A.E.; Watson, S.; Valyrakis, M.; Najda, S.P.; Marona, L.;
et al. Assessment of laser tracking and data transfer for underwater optical communications. In Proceedings of the Unattended
Sensors and Sensor Networks X, Amsterdam, The Netherlands, 22–25 September 2014; Volume 9248, p. 92480T. [CrossRef]

16. Kaushal, H.; Kaddoum, G. Underwater Optical Wireless Communication. IEEE Access 2016, 4, 1518–1547. [CrossRef]
17. Spagnolo, G.S.; Cozzella, L.; Leccese, F. Underwater Optical Wireless Communications: Overview. Sensors 2020, 20, 2261.

[CrossRef] [PubMed]
18. Jaffe, J.S. Underwater Optical Imaging: The Past, the Present, and the Prospects. IEEE J. Ocean. Eng. 2015, 40, 683–700. [CrossRef]
19. Kagami, M. Visible Optical Fiber Communication. RD Rev. Toyota CRDL 2005, 40, 1–6.
20. Vinogradov, J.; Kruglov, R.; Engelbrecht, R.; Ziemann, O.; Sheu, J.-K.; Chi, K.-L.; Wun, J.-M.; Shi, J.-W. GaN-Based Cyan

Light-Emitting Diode with up to 1-GHz Bandwidth for High-Speed Transmission Over SI-POF. IEEE Photonics J. 2017, 9, 1–7.
[CrossRef]

http://doi.org/10.1038/nphoton.2007.52
http://doi.org/10.1109/LPT.2010.2056360
http://doi.org/10.1109/LPT.2016.2581318
http://doi.org/10.1109/JLT.2016.2554145
http://doi.org/10.1109/JPHOT.2017.2775648
http://doi.org/10.1364/OL.38.003792
http://doi.org/10.1117/1.OE.55.2.026112
http://doi.org/10.1038/s41598-018-31431-4
http://doi.org/10.1038/srep40480
http://doi.org/10.1117/12.2603450
http://doi.org/10.1117/12.2245495
http://doi.org/10.1364/OL.385002
http://www.ncbi.nlm.nih.gov/pubmed/32058510
http://doi.org/10.7567/1882-0786/ab0a57
http://doi.org/10.3390/mi10100699
http://doi.org/10.1117/12.2073675
http://doi.org/10.1109/ACCESS.2016.2552538
http://doi.org/10.3390/s20082261
http://www.ncbi.nlm.nih.gov/pubmed/32316218
http://doi.org/10.1109/JOE.2014.2350751
http://doi.org/10.1109/JPHOT.2017.2693207


Electronics 2022, 11, 1430 12 of 12

21. Slight, T.J.; Odedina, O.; Meredith, W.; Docherty, K.E.; Kelly, A.E. InGaN/GaN DFB laser diodes at 434 nm with deeply etched
sidewall gratings. In Proceedings of the Gallium Nitride Materials and Devices XI, San Francisco, CA, USA, 13–18 February 2016;
Volume 9748, pp. 119–124. [CrossRef]

22. Najda, S.P.; Perlin, P.; Suski, T.; Stanczyk, S.; Leszczynski, M.; Schiavon, D.; Slight, T.; Gwyn, S.; Watson, S.; Kelly, A.; et al. GaN
laser diodes for cold-atom quantum sensors and optical atomic clocks. In Proceedings of the Emerging Imaging and Sensing
Technologies for Security and Defence VI, Online, 13–18 September 2021; Volume 11868, p. 118680G. [CrossRef]

http://doi.org/10.1117/12.2212414
http://doi.org/10.1117/12.2594616

	Introduction 
	Materials 
	Results 
	GaN Laser Diode Free-Space Data Transmission 
	GaN Laser Diode Underwater Data Transmission 
	GaN Laser Diode Data Transmission in Plastic Optical Fibers (POFs) 
	Visible DFB GaN LDs 
	Design and Fabrication of Visible DFB GaN LDs 
	39th-Order DFB GaN LD Characterization 
	Third-Order DFB GaN Laser Diode Characterization 


	Conclusions 
	References

