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Abstract: The containment of unwanted electromagnetic radiation and interference is a relevant topic
for the system design of any electrical system, and even more for data centers. In this context, the
racks hosting piles of servers are one of the main sources of electromagnetic noise. Such unwanted
radiation can couple and interact with other computing machines, but also with sensitive electronic
devices needed for the management and/or maintenance of the center. The aim of this work is to
show how the proper stack-up of the trays in the rack gives rise to a decrease in the unwanted physical
electromagnetic radiation. Based on the application of the spherical wave expansion technique, a
multi-objective genetic algorithm is developed to evaluate the optimal set of rack configurations that
allows for a reduction of the external radiated field. The algorithm and the implemented constraints
are described, and the results are discussed.

Keywords: electromagnetic compatibility; electromagnetic interferences; single-objective optimization;
genetic algorithm; multiple-objective optimization; data center

1. Introduction

The ever-growing demand for computing power, storage services, and communication
bandwidth brings evident challenges to the design of data centers and their constitutive
parts. The server’s racks are made up of several trays, vertically stacked. They absorb
electric power, part of which is dissipated in the form of heat, and need to be cooled.
Among the design strategies for passive cooling, there is the tendency of reducing any
unnecessary heat barriers, such as parts of the tray enclosure. This design trend shows
some drawbacks from the electromagnetic compatibility point of view. In fact, the lack of
parts of the metallic enclosure decreases the overall electromagnetic shielding of each tray,
increasing its unwanted radiation toward the other trays of the same rack and toward the
space external to the rack.

In modern data centers, in the aisles in between the racks, electronic devices such as
personal computers or tablets of the maintenance personnel, or other electronic circuits
used for different operations, are often present. Both classes of device are very sensitive to
electromagnetic interference (EMI), and can be affected by the unwanted electromagnetic
field radiated by the trays in the racks.

One more aspect to be considered is the high connectivity of the data center environ-
ment. Multiple wireless systems supervise the normal and maintenance operations of the
center. The above-mentioned decreased shielding performance of the trays allow the trays’
electromagnetic fields to interact with the communication signals which, in turn, can be a
source of interference for the trays’ electronic circuits.

In [1], an efficient approach has been developed based on spherical wave expansion
(SWE) theory [2] to evaluate the total unwanted electromagnetic radiation of multiple
stacked trays, considered as radiation sources, starting from the knowledge of the radiation
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characteristic of each single source considered isolated. The methodology in [1] has been
applied, in [3], to the measured radiation pattern of a real rack. Each tray forming the
rack has been characterized by the SWE coefficients, which are extracted by the direct
measurements of its radiation fields when considered in isolation. These measurements
consider each tray’s functionality and setting. From [3], a sort of library of SWE coefficients
for each tray typology is made available to reconstruct the total electromagnetic field, due
to the stacking of the trays and for further elaboration.

The target of this paper is to develop a procedure to find the optimal position of the
trays in the vertical stack of a rack, in order to minimize their total physical electromagnetic
radiation in a volume of space outside the rack. This procedure, formally set as a minimiza-
tion problem, will resort to the SWE coefficients of the trays for the efficient computation of
their radiation, and to a multi-objective optimization approach based on a genetic algorithm
(MOGA) [4].

Section 2 illustrates the physical model of the trays and racks, briefly recalls the
extraction and use of the associated SWE coefficients, and describes the target volume
of space for which the cost functions are defined. The implemented MOGA and some
constraints set on the formation of the chromosomes, in order to take into account the
actual design of a rack (aka rackification), are introduced in Section 3. The results, all in
terms of electromagnetic fields, their comparison with those obtained by other methods,
and the practical implications of multiple solutions that are not optimal, with respect to all
objectives, are discussed in Section 4. Finally, Section 5 offers some concluding remarks.

2. The Radiation Source: Model and Target Volume
2.1. Model of the Radiation Source

The source of radiation considered in this work is a servers’ rack. This functional
structure is built by the piling-up of several active units, called trays, that perform the
different operations of a data center: computing, storage, networking, etc. Figure 1 shows a
schematic representation of the rack structure considered in this work, featuring a total of
nine trays of three different typologies, named, for sake of generality, Bot, Mid, and Top.
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Figure 1. Example of the stack-up of the trays in a servers’ rack.

In [1], it has been shown that the use of the SWE technique is an efficient way to
evaluate the electromagnetic field radiated from a single tray by reconstructing the tray
radiation from the SWE coefficients. Among the advantages, this technique considers
the total field embodying the local reflections and, in analogy with traditional numerical
techniques such as the method of moments, the SWE technique does not need any boundary
condition. Additionally, in [1], a mathematical procedure to assemble such coefficients
to compute the total radiation of more than one tray has been developed, applied, and
validated. Hence, the critical point is the availability of the SWE coefficients. In [3,4], a
library of SWE coefficients is obtained for the different typologies (Top, Mid, and Bot) of
operating trays from accurate radiation measurements, performed in an anechoic chamber,
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and by the application of a genetic algorithm (GA) optimization. In this way, the SWE
coefficients contain all the relevant information of the functioning tray, from which the
input and output power, bandwidth, and relevant harmonics are extracted, which will also
appear in the reconstructed field with a given approximation [3].

Based on these conceptual blocks, the radiation source of this work is the stack of trays
in Figure 1. In general, rack-mountable equipment is traditionally mounted by bolting
or clipping its front panel to the rack. Within the network industry, it is common for
server trays to have multiple mounting positions, so rack-mountable equipment will often
feature L-brackets that must be screwed or bolted to the equipment prior to mounting
on a 45 cm rack. Servers and deep-set pieces of equipment are often mounted using rails
that are bolted to the front and rear posts, allowing the equipment to be supported while
also enabling it to be easily installed and removed. Although there is no standard for the
depth of equipment, there is a tendency for four-or-more-post racks to be between 60 cm
and 100 cm deep: in our case, the rack depth is 60 cm. The materials of the structural parts
of the racks and trays are usually made of steel of around 2 mm thickness, or of slightly
thicker aluminum.

The geometry of the rack has been simplified (because not all the mechanical and
structural information can be disclosed), but maintains the relevant features for the target
of this work. The total height of the rack is hr = 174 cm, its width is wr = 45 cm, and its
frontal length is lr = 60 cm. Each try has wt = wr, lt = lr, and ht = 8 cm. The lowest tray in
the stack is placed ht0 = 100 cm from the ground.

For each combination of the trays’ position in the stack, the electromagnetic field is
computed, and as described in Section 3, its minimum is sought in the specific volume
described in the next sub-section.

2.2. The Target Volume for EMI Minimization

The target volume in which the minimization of the electromagnetic field should be
enforced, due to the combination of the radiation of the trays in the rack, is located in front
of the rack, where the presence of susceptible electronic devices can be assumed. Figure 2
helps to visualize the position and the form of the volume. In modern data centers, two
kind of devices with electronic circuits that are susceptible to electromagnetic interferences
are present in front of the racks:

1. Those that are usually located in the lower part of the volume (named Volume 1 or
V1, in yellow in Figure 2), up to hV1 = 60 cm from the ground, spanning the full width
of the aisle (wV1 = 200 cm);

2. Personal information devices, such as personal computers, tablets, and smartphones.
They are associated with the personnel and are usually located in the upper part of
the volume (named Volume 2 or V2, in green in Figure 2), from hV1 to hV2 = 170 cm.
The width of V2 is narrower than that of V1: wV2 = 150 cm.

In each volume, a number, N1 and N2, of test points are defined and used to compute
two independent cost functions, fc1 and fc2—one for each volume.

The generic cost function fci (for i = 1,2) is defined as:

fci =
∣∣Eavgi − Ethi

∣∣
, (1)

where:

1. Eavgi is the average value of the electric field, computed on Ni test points in volume Vi;
2. Ethi is the threshold value of the electric field, above which the EMI matters. This

value could be obtained by the standards and/or by specific design rules. In this
work, without loss of generality, the threshold values, stemming from particular
applications, are Eth1 = 1 µV/m and Eth2 = 1.5 µV/m, respectively.

In the following, N1 = 8 will be considered in volume V1, and N2 = 8 equally spaced
test points will be considered for volume V2.
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3. Constrained Multiple Objective Genetic Algorithm

Genetic algorithms (GA) follow a heuristic procedure to solve the research problems of
the optimal solution(s). They consider a set of solutions (called chromosomes or individuals)
that evolve in intervals of time called generations. Evolution is driven by the comparison
of the values of cost (or objective or fitness) functions [5], evaluated for each chromosome
of the population. These functions are a sort of measure of quality, with respect to the
problem considered. By means of these values, individuals of one generation are compared,
selected, and used to create the population of the next one, which is formed by individuals
with better cost function values. The basic structure of a genetic algorithm is cyclic and is
shown in Figure 3. Each cycle represents a generation, and within it, operations are carried
out to generate a newly formed population with increasingly better chromosomes.
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The first step of the algorithm is to create a random population of chromosomes. The
following phases are repeated with each generation, and are associated with the principle
of natural selection: the early stages are concerned with selecting the best individuals in
the population, while the others generate new individuals.

Chromosomes are the basis of the functioning of the genetic algorithm, and they
represent possible solutions to the problem. In our case, each chromosome is built up by
Ng = nine genes. Each gene represents one of the nine trays of the rack, as in Figure 1. The
first gene is associated with the bottom-most tray at ht0 = 100 cm, the second gene with the
tray at ht = 108 cm, and so on. The value of a gene can have only three integer values (1, 2,
or 3), which are associated with the proper set of SWE coefficients of the Bot, Mid, and Top
trays, respectively. The number of chromosomes in the population is Nc = 500.

At this stage of the algorithm, new chromosomes are generated from other chromo-
somes bypassing their own genetic heritage, so that the new solutions are similar but not
equal to the parent ones. This aspect is fundamental for the convergence of the algorithm;
in fact, every new population is built with better individuals than the previous one. This
is the crossover phase. In this work, the whole arithmetic crossover has been used [6],
where the new chromosomes (or offsprings) are a linear combination of the two parent chro-
mosomes. In this technique, a pair of chromosomes are selected randomly for crossover,
and by a linear combination, two new ones are produced. This linear combination can be
described as:

o f f spring1 = α ∗ Parents11 + (1 − α) ∗ Parents22, (2)

o f f spring2 = α ∗ Parents12 + (1 − α) ∗ Parents21, (3)

where offspringi is the i-th offspring (i = 1, 2), Parentsij is the j-th part (j = 1 corresponds
to the first m genes of the i-th chromosome Parentsi, j = 2 corresponds to the remaining
9-m genes of the i-th chromosome Parentsi), and m is a random number, such that 2 < m < 8.

The next step is the application of the mutation operator. The effect of this operator
is to deeply modify the chromosome so that the mutated individual explores areas of the
space of solutions not yet observed. This phase is introduced to avoid convergence towards
local optimal minima or maxima, thus favoring a global search. In this work, a mutation
rate of µ = 20% has been used, which corresponds to about 900 gene mutations. Random
numbers, chosen from a Gaussian distribution, are chosen to select the gene to mutate, and
its value is replaced by another random value between 1 and 3.

The part of the algorithm inspired by the principle of natural selection deals with
the classification of chromosomes, and ranks and selects the best solutions within the
population. The cost functions fc1 and fc2 for volumes V1 and V2, as defined in Equation (1),
are used as measures of the fitness of the solutions. Different from a single-objective GA, in
a multi-objective approach, the two cost functions are not combined into one [3,7], but are
considered separate.

Once the fitness of each chromosome is calculated, a subpopulation is chosen to
generate new solutions. There are various techniques for selecting the set of solutions,
named the mating pool, for reproduction. Due to the large number of the population used
in this work (the size is Np = 500 chromosomes), the tournament selection technique has
been chosen [8]: a small subset of chromosomes (in this work, the size of this subset is 4)
is randomly picked up from the mating pool, and the chromosomes with the lowest fci
in the subset become parents. The tournament repeats for every offspring needed. In
the tournament selection, the whole population never needs to be sorted; this is a clear
advantage because it is known that sorting is a time-consuming action for large populations.

The multi-objective nature of the developed algorithm is shown by evaluating the
fc1 for volume 1 and the fc2 for volume 2 (fci is defined in Equation (1)) separately for
each chromosome of the population, instead of merging them in a single weighted cost
function [9]. At each chromosome, both values of fci are associated, forming a point of
coordinates (fc1, fc2) in the cost function Cartesian plane. At each chromosome (at each
point on the plane), the concept of dominance is applied, and only the non-dominated
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chromosomes belonging to the Pareto front [10] are retained as optimal solutions. Figure 4
qualitatively shows six solutions, of which only four are non-dominated, forming the
optimal solutions’ Pareto fronts. Without adding additional information, all four solutions
are equally satisfactory. This flexibility is one of the strengths of the MOGA.
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In order to make the MOGA implementation more suitable for its use in the design of
the stack of trays from the point of view of the unwanted radiation, the presence of a specific
design constraint is considered. In the real design of a rack, there is a limit on the repetition
of the same tray in the stack. A rack cannot be formed by trays of the same type. This
constraint is introduced in the algorithm in the form of a soft constrained technique [11,12]
that is considered more valid for real and complex problems than a hard one. The soft
constrained technique implemented is the penalty function method. This method penalizes
the cost functions of solutions that are not eligible. In this way, chromosomes are moved
to areas of the space of the goals that the ranking considers worse. This is completed in
two simple steps: first, whether the chromosomes respect the constraint (i.e., the number of
genes with the same value is less than a given constrain value K) is checked. Subsequently,
the values of the cost functions associated with these individuals are increased by a factor
Rc that moves their chromosomes far from the optimal region, and then excludes them
from participating in the new generations. In the next section, a systematic analysis of the
impact of the constraint value K on the optimal solutions will be carried out.

4. Results and Discussion

As the first step for a critical discussion of the numerical output, a set of reference
results needs to be compared with those stemming from the proposed MOGA. These
reference results are found by using the analytical procedures developed in [3,4], where
a single-objective GA (SOGA) has been developed. The implemented SOGA finds the
minimum unwanted radiated EMI in volumes V1 and V2 at a specific frequency that is
considered critical for the applications considered. As mentioned, the results obtained by
the SOGA are considered as a sort of reference for those stemming from the MOGA, either
to show the similarities or to show the differences, advantages, and drawbacks. For the
SOGA, the two cost functions fc1 and fc2 (defined in Equation (1)) are combined into the
single fcSOGA:

fcSOGA = fc1 + fc2 =
∣∣Eavg1 − Eth1

∣∣+ ∣∣Eavg2 − Eth2
∣∣, (4)

ensuring similar conditions between the SOGA and the MOGA. Figure 5a,b reports the
magnitude of the computed radiated electric field in each of the N1 and N2 test points in the
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volumes, due to the configuration of the trays in the rack that minimizes Equation (5), ac-
cording to the SOGA. Such optimal configuration is represented by the chromosome CSOGA:

CSOGA = [ 3 1 3 2 2 2 2 2 2 ], (5)

in which:

• The first element of the chromosome corresponds to the bottom-most tray in Figure 1;
• The tray typology coding is 1 = Bot, 2 = Mid, and 3 = Top.
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Figure 5. The magnitude of the electric field in (a) the N1 test points of volume V1 and (b) the N2 test
points of volume V2, due to the optimal SOGA solution CSOGA in Equation (6).

The structure of the SOGA chromosome is the same as the structure of the MOGA one.
The results in Figure 5 are considered as the reference results for all the subsequent structures.

The second step considers the MOGA’s optimal solutions. As mentioned in Section 3,
the output of a MOGA procedure is a set of solutions (in our case, a set of tray configu-
rations), each one non-dominated by the others: they form the optimal Pareto front. The
optimal Pareto front obtained for the problem at hand, characterized by the same variables
of the SOGA, is given in Figure 6.
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In Figure 6, each starlet indicates a chromosome, or a tray configuration. The eight
chromosomes, from CMOGA1 to CMOGA8, of the optimal Pareto front in Figure 6 are reported,
by row, in Table 1.

Table 1. Chromosomes belonging to the optimal Pareto front in Figure 6. The tray typology coding is:
1 = Bot, 2 = Mid, and 3 = Top.

Gene g1 g2 g3 g4 g5 g6 g7 g8 g9

CMOGA1 2 2 2 2 2 2 2 2 2

CMOGA2 2 2 2 2 2 2 2 3 3

CMOGA3 2 2 3 3 2 2 2 2 2

CMOGA4 3 2 2 2 2 2 2 2 2

CMOGA5 3 3 2 2 3 3 2 2 2

CMOGA6 3 3 2 3 2 3 3 3 2

CMOGA7 3 3 3 2 2 3 3 2 2

CMOGA8 3 3 3 3 3 3 3 3 2

At each of the rack’s configurations, described in Table 1, and belonging to the optimal
Pareto front, corresponds a value of the magnitude of the computed electromagnetic
radiated field in the N1 and N2 points of volumes V1 and V2, respectively. Figure 7a,b
shows these magnitudes in these test points radiated by the configurations of the trays
in Table 1 that minimize Equation (5), according to the proposed MOGA. They are also
compared, as reference, with the field distribution in the same test points, due to the
chromosome CSOGA in Equation (6).
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In general, as expected, the spatial distribution of the radiated field estimated by the
SOGA and MOGA algorithms are similar but not identical. The values of the electric field,
due to the configurations CMOGA1, CMOGA4, and CMOGA8 (those with the starlets close to
the origin of the axis in Figure 6), are closer to CSOGA. The others have higher magnitudes,
but still belong to the optimal Pareto front and are an option if other design limitations or
constraints must be taken into account.

In the design process of a server rack, there is a great number of logical and physical
constraints to consider when positioning the trays. In the logical class fall those related
to the functionality and principal operations for which the rack is targeted (processing,
storage, switching, etc.); to the physical class belongs those limits such as overall weight,
length of the interconnection cables/fibers, and total heat dissipated. For this reason, as
the third step of the analysis of the results, a procedure to limit the number of repetitions
Nr of trays of the same type in the rack has been added to the proposed MOGA without
constraints. This constraint is an indirect but efficient way to consider either the logical or
functional design limits [11,12]. The value Nr ranges from Ng (a rack of all equal trays) to
Nr = 3, which is the minimum number of tray repetitions given the three different types of
trays (Top, Mid, and Bot). Based on this, the impact of several values of the constraint Nr is
considered, and is shown in the following figures and tables.

Setting Nr = 5 yields the optimal solutions obtained by the proposed constrained MOGA,
shown in Figure 8 (obtained by [13]), to which the chromosomes in Table 2 correspond.
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Figure 8. MOGA optimal solutions considering the constraints Nr = 5 (maximum of 5 repetitions of
the same tray are allowed in the rack).

Table 2. Chromosomes belonging to the optimal Pareto front in Figure 8, considering the constraints
Nr = 5. The tray typology coding is 1 = Bot, 2 = Mid, and 3 = Top.

Gene g1 g2 g3 g4 g5 g6 g7 g8 g9

CMOGA1 2 2 1 3 2 1 3 2 2

CMOGA2 3 1 3 1 3 2 2 2 2

CMOGA3 3 3 2 2 1 3 2 1 1

CMOGA4 3 3 2 2 2 2 2 1 1

The spatial distributions of the magnitude of the electric field in the N1 and N2 test
points in volumes V1 and V2, due to the four optimal configurations in Figure 8 and
obtained by imposing the constrain Nr = 5, are shown in Figure 9, along with, as reference,
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the values of the electric field in the same points obtained by the configuration in CSOGA in
Equation (6).
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As the Nr decreases (from 9 to 3), the constraint becomes stricter, the number of
possible tray repetitions decreases and, hence, the performance of the optimal solutions
that show an increase in the values of the cost functions also decreases. This is visible in
Figure 10, where the optimal solutions for Nr = 5, 4, and 3 move from the region close to
the origin of the axis to regions with larger values of fc1 and fc2, respectively.

Table 3 connects the solutions in Figure 10 with the disposition of the trays in the rack
fulfilling the stricter constraint of Nr = 3.

The inherent statistical nature of a GA calls, at least, for the evaluation of its perfor-
mance for multiple runs to test the convergence of the computed output. For the specific
physical problem considered up to now, the optimal Pareto front for seven cases has been
computed: the unconstrained MOGA (or Nr = 0), and the MOGA with Nr = 3, 4, 5, 6, 7,
and 8. Each case has been run 100 times, and the 100 optimal Pareto fronts for each case
have been plotted in Figure 11. The runs for Nr = 8 (purple circles) are very close to the
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unconstrained case, as expected. As the constraints become stricter (Nr decreases), the
cluster of fronts moves forward from the origin of the axis toward regions of higher values
of the cost functions. Please note that different runs can produce chromosomes with the
same structure, so some symbols are overlapped.
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Figure 10. MOGA optimal solutions considering the constraints Nr = 5 (star), 4 (circle), and
3 (asterisk).

Table 3. Chromosomes belonging to the optimal Pareto front in Figure 10, considering the constraints
Nr = 3. The tray typology coding is 1 = Bot, 2 = Mid, and 3 = Top.

Gene g1 g2 g3 g4 g5 g6 g7 g8 g9

CMOGA1 1 3 1 1 2 3 3 2 2

CMOGA2 2 1 3 2 1 3 2 1 3

CMOGA3 2 3 1 2 2 1 1 3 3

CMOGA4 3 3 1 2 2 3 1 1 2
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From a visual inspection of Figure 11, the self-consistency of the results and the
accuracy of the MOGA is evident: the less stringent the constraint, the more solutions with
low cost function values are available, giving rise to a cluster of symbols close to the origin
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of the axis. As the constraint becomes more stringent, less configurations are available,
so the optimal solutions move far from the low values of the fci that also spread on the
fc1–fc2 plane. This is confirmed as a proper quantitative measure of the Cartesian distance
of each solution from the origin of the axis. For the generic i-th solution, the distance di is
defined as:

di =
√

f 2
c1i + f 2

c2i. (6)

For each set of constraints, Nr, one can compute the average distance D and the
standard deviation σ of all the solutions belonging to that constraint. Table 4 reports the
results. The qualitative trends are confirmed by the values in the table.

Table 4. Statistical properties of optimal Pareto fronts in Figure 11.

Unconstrained Nr = 8 Nr = 7 Nr = 6 Nr = 5 Nr = 4 Nr = 3

D 1.91 × 10−6 1.99 × 10−6 2.14 × 10−6 2.20 × 10−6 2.24 × 10−6 2.37 × 10−6 2.54 × 10−6

σ 5.48 × 10−7 5.31 × 10−7 4.86 × 10−7 5.57 × 10−7 7.38 × 10−7 7.18 × 10−7 8.42 × 10−7

As final consideration, it is worthy to quantify the radiated field attenuation obtained
by the optimal configuration of the trays in the stack of the rack. Figure 12a,b shows the
spatial distribution of the magnitude of the electric field in the test points of V1 and V2, due
to the complete population of chromosomes (100 curves).
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Figure 12. Magnitude of the electric field in (a) the N1 test points of volume V1 and (b) the N2 test
points of volume V2, due to the entire population (blue curves) and one optimal MOGA solution
(red curve), with constraint Nr = 5.

In the entire population, the distribution due to one of the optimal MOGA solutions
belonging to the Pareto front is highlighted in red. The attenuation between the overall
maximum value in the population and the maximum of the optimal solution is around
6 dB for V1 and around 4.8 for V2.

5. Conclusions

The use of the spherical wave expansion technique as a practical and efficient means
to compute the electromagnetic field radiated by complex assemblies of sources, each one
experimentally characterized in terms of its SWE coefficients, has opened the possibility
of optimizing the radiation performances. In this work, this technique has been applied
to the minimization of the unwanted radiation in the space in front of a server rack by
choosing the proper sequence for the vertical allocation of the server trays in the rack. To
do this, two genetic algorithms, SOGA and MOGA, have been developed. The MOGA has
shown the same accuracy as the SOGA, but has more flexibility because its set of multiple
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optimal solutions, instead of the single one of the SOGA, allows for choices based on other
criteria. To make the proposed MOGA approach more suitable for engineering applications,
a constraint strategy has also been implemented, limiting the repetitions of the same tray
in the rack to a selectable number. The results are in line with the expectations. We have
not yet compared the proposed results with those obtained by other algorithms because
the present paper describes the second of a three-phase project. The next stage of this
research project is the execution of a measurement campaign, whose results could help to
refine the accuracy of the proposed optimization strategy and the electromagnetic field
evaluation model.
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published version of the manuscript.
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