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Abstract: Depth-Image-Based-Rendering (DIBR) is one of the core techniques for generating new
views in 3D video applications. However, the distortion characteristics of the DIBR synthetic view
are different from the 2D image. It is necessary to study the unique distortion characteristics of DIBR
views and design effective and efficient algorithms to evaluate the DIBR-synthesized image and guide
DIBR algorithms. In this work, the visual saliency and texture natrualness features are extracted
to evaluate the quality of the DIBR views. After extracting the feature, we adopt machine learning
method for mapping the extracted feature to the quality score of the DIBR views. Experiments
constructed on two synthetic view databases IETR and IRCCyN/IVC, and the results show that our
proposed algorithm performs better than the compared synthetic view quality evaluation methods.

Keywords: Depth-Image-Based-Rendering; view synthesis; quality assessment; visual saliency;
texture measurement

1. Introduction

3D applications have become more and more popular in recent years, because they
can provide users with a fully immersive experience, such as Augmented Reality (AR),
Virtual Reality (VR), Free Viewpoint Videos (FVV), Mixed Reality (MR), and Multi-View
Videos (MVV) [1–3]. Through these, 3D applications support the ability for people to see
the same scene from different perspectives, leading to information redundancy and costly
storage space. Hence, researchers often only transmit and save two texture images and
a depth map, while the others are synthesized by utilizing the DIBR techniques at the
receiving terminal [4]. The complete view synthesis includes the collection, processing, and
transmission of texture images and depth maps, as well as DIBR view synthesis [5]. The
procedure of DIBR view synthesis consists of two steps. The first step is 3D image warping,
in which the original viewpoint is back-projected to the 3D scene, then re-projected to the
virtual view by the depth map. In 3D warping, this may produce geometric distortions,
such as minor cracks and slight shifts, since the pixel position in the synthesized view
may not be an integer. Figure 1a gives an example of small cracks. For a change in the
viewpoint, the synthesized view may appear as black holes. The second step is disoccluded
hole filling [5,6]. Researchers have used many in-painting methods to fill the black holes,
such as image in-painting with Markov chains [7] and context-driven hybrid image in-
painting [8]. However, these methods are not designed for view synthesis; thus, they
may introduce stretching, object warping, and blurry regions in the DIBR-synthesized
views. Figure 1b gives examples of blurry regions, and Figure 1c shows examples of
object warping and stretching. By the above analysis, both 3D image warping and the
disocclusion hole filling will introduce different types of distortion, which is different from
the traditional distortions. Therefore, 2D image quality assessment (IQA) methods are not
ideal for assessing DIBR views.
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Figure 1. Some examples of distortions in the DIBR views.

Due to the difficulty in capturing the geometric distortion of DIBR views by traditional
IQA methods [9–16], some studies on evaluating DIBR synthesized images have been pro-
posed, albeit without considering geometric distortions [17]. These metrics can be classified
into three types according to using the reference views: Full Reference (FR), Reduced Reference
(RR), and No Reference (NR) [1]. A number of works are briefly reviewed here [6,18–25].

LOGS: The geometric distortions score was derived from a combination of the sizes
and distortion strength of the dis-occluded region. A reblurring-based strategy generated
the global sharpness score. The final score was derived from a combination of the geometric
distortions score and the global sharpness score [6].

AR-plus thresholding method: The AR (autoregression)-based local image description
evaluates the DIBR-synthesized image quality. After the AR prediction, the geometry distor-
tion can be accurately captured between a DIBR-synthesized image and its AR-predicted
image. Finally, the proposed method used visual saliency to improve algorithm perfor-
mance [19].

MW-PSNR: Morphological Wavelet Peak Signal-to-Noise Ratio metric [20,21]. The mor-
phological wavelet decomposition preserves geometric structures such as edges in lower
resolution images. Firstly, morphological wavelet transform was used to decompose the
synthesis view and the reference view at multiple scales. Then, the mean square error
(MSE) of detail sub-band was calculated. The wavelet MSE was obtained by collecting the
MSE values of each scale.

MP-PSNR: The design principle of this metric was based on Pyramid representations
that have much in common with the eye’s visual system. The morphological pyramids
decomposed the reference and synthesized views. The quality score only used detailed
images from the higher pyramid [22].

OUT: This method detected the geometrically distorted of 3D Synthesized images
using outlier detection. The nonlinear median filtering was used to capture geometric and
structural distortion levels and remove outliers [23].

NIQSV: This algorithm assumed that the high-quality image includes sharp edges
and flat areas. Morphological operations were not sensitive to images, but local thin
deformation can be easily detected. The NIQSV measure first detected thin distortions
using an opening operation and then filled the black hole with a closing operation of the
larger structural unit [24].

MNSS: Multiscale Natural Scene Statistical (MNSS) analysis measurement [18]. Two
Natural Scene Statistics (NSS) models are utilized to evaluate the DBIR views. One of
the NSS models was used to capture the geometric distortion introduced by DIBR, which
destroys the local self-similarity of the images. Another NSS model was based on statistical
regularity, which was destroyed in DIBR synthetic views at different scales.

GDSIC: This method utilized the edge similarity in the Discrete Wavelet Transform
(DWT) domain to capture the geometric distortion. The sharpness was estimated by the
energies of sub-bands. Then two filters were used to calculate the image complexity. The
three parts were combined to produce the final DIBR quality score [2].



Electronics 2022, 11, 1384 3 of 10

CLGM: This method considers both geometric distortion and sharpness distortion,
which combining Local and Global Measures. Through the analysis of local similarity, the
distortion of the disoccluded area is obtained. Moreover, the typical geometrical deforma-
tion stretching is discovered and tested by computing its similarity to the adjacent areas
of equal size. Considering the scale invariance, the distance between the distorted DIBR
image and the down-sampled image was taken to measure global sharpness. The final
score was generated by linearly combining the two geometric distortion and sharpness
scores [25].

The DIBR quality metrics mentioned above usually measure the specific distortion
during view synthesis. This means that prior knowledge about distortion is needed. More-
over, the computational complexity of the algorithm is also very important in practical
applications. Therefore, an effective and efficient quality evaluation method for DIBR visual
synthesis is needed.

This paper develops a NR quality metric for DIBR views based on visual saliency and
texture naturalness. The design principle for the proposed metric is based on the following
facts. First, Human Visual System (HVS) usually searches for and locates critical areas
when facing images. This mechanism of visual saliency is of great significance for visual
information processing in daily life. Visual saliency mechanism has been successfully ap-
plied to target recognition, compression coding, image quality assessment, facial expression
recognition, and other visual tasks [26–32]. Second, the HVS has multi-scale characteristics
and can extract multi-scale information from images. Moreover, it is sensitive to texture
information. Inspired by this, we extract a set of related quality features and adopt a ma-
chine learning model for mapping the obtained features to the quality score of DIBR views.
Extensive experiments constructed on two public DIBR views databases, IRCCyN-IVC [33],
and IETR [34]. The results show the advantages of the proposed method over the relevant
state-of-the-art DIBR views quality assessment algorithms.

The rest of this article is arranged as follows. Section 2 explains our designed metric in
detail. Section 3 shows experimental studies to verify the effectiveness of our proposed
DIBR view quality assessment method. Section 4 gives the conclusion.

2. Proposed Method

This part will describe our designed DIBR views quality assessment algorithm in
detail. The distortions in the DIBR synthesized views induce some critical areas and
texture degradation. Visual saliency is first used to simulate eye movement “fixation” and
“saccade” [35]. Second, Local Binary Pattern (LBP) [36] is utilized to extract texture features
of the DIBR images, and the histogram is used to compare texture naturalness. Finally, the
extracted features are input into the regression model to train the quality model to predict
the quality of DIBR images. The flowchart of our proposed metric is given in Figure 2.

Figure 2. The flowchart of our proposed measurement algorithm.
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2.1. Visual Saliency Detection

Most visual saliency models acquire the saliency map by computing the center-
surround differences. This work considers the human eye sensitivity alter due to foveation.
Hence, the saliency detection model used in this work considers both global and local
center-surround differences [37]. The Gaussian low-pass filter simulates the “fixation” and
multi-space representation of the visual attention. For a DIBR view V(m, n), the smoothed
version of the ith scale Vi(m, n) is defined as:

VG(m, n) = V(m, n) ∗ G(m, n, σi), (1)

where ∗ and σi denote the convolution operator and the standard deviation of Gaussian
model at the ith scale, respectively. The kernel function is defined as:

G(x, y, σi) =
1√

2πσ2
i

exp(− x2 + y2

2σ2
i

), (2)

Then we measure local similarity between the smoothed versions and the DIBR view
at each scale:

Sg(V) =
2VVG + C

V2 + V2
G + C

, (3)

where V and VG denotes the DIBR view and its smoothed version, respectively. S(·) calcu-
lates the similarity.

This work adopts the method proposed in [35] to approximate the saccade-inspired
visual saliency. The similarity is defined as:

Sm(V) =
2VVM + C

V2 + V2
M + C

, (4)

where VM is generated by convolving V with a MB kernel which is calculated as:

M(x, y) =


1
n

i f (x · sin θ + y · cos θ) = 0, x2 + y2 ≤ n2

4
0 otherwise

, (5)

where n denotes the amount of motion pixels, and θ represents the motion direction. Then,
we integrated the saliency model of fixation and saccade inspired, and obtained the final
visual saliency model by using the sample linear weighting strategy as follows.

S(V) =
Sg(V) + αSm(V)

1 + α
, (6)

where α is an integer that deals with the relative importance of two components.

2.2. Texture Naturalness Detection

Our proposed method evaluates texture naturalness by the gradient-weighted his-
togram of the LBP calculated on the gradient map [36]. First, the Scharr operator extracts
the gradient magnitude of a DIBR view. It is defined by applying convolution masks to a
DIBR view V:

GM(V) =
√
(V ∗ gmx)2 + (V ∗ gmy)2), (7)

where ∗ denotes the convolution operation, gmx and gmy are defined as:
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gmx =
1
16

 +3 0 −3
+10 0 −10
+3 0 −3

⊗ I, (8)

gmy =
1
16

+3 10 −3
0 0 0
+3 −10 −3

⊗ I. (9)

Then, the LBP operator is used to describe the texture naturalness, which is defined
as follows:

LBPN,R(xc, yc) =
p−1

∑
i=0

t(gmn − gmc)2i. (10)

The t(·) is computed as

t(gmn − gmc) =

{
1, gmn − gmc > 0
0, gmn − gmc < 0

(11)

where N is the total number of neighbors and R is the radius. gmc and gmn are the gradient
magnitudes at the center location and its neighbor. The setting of values N and R will be
introduced in the Section 3, the experimental part.

After extracting the texture by LBP, the texture map is combined with the saliency
as follows:

W = LBP(V) · S(V), (12)

where W is the saliency texture map of the DIBR view, and V represents the DIBR view.

2.3. Quality Assessment Model

In the proposed method, the SVR regression model is adopted to train the quality
prediction model for DIBR images from the extracted features to the quality score [38].
Let parameters θ > 0 and λ > 0, the SVR is defined as:

min
w,δ,v,v′

1
2

wTw + θ
n

∑
i=1

(vi + rv′i)

subject to si − wTφ(di)− δ ≤ λ + v′i,

wTφ(di) + δ− si ≤ λ + vi,

vi, v′i ≥ 0, i = 1, . . . , 11.

where K(di, dj) = φ(di)
Tφ(dj) is the kernel function. λ, θ and k are determined by training

samples. Subsequently, the trained model is used to predict the quality of the input
DIBR views.

3. Experimental Results
3.1. Experimental Databases

The performance of our proposed metric is tested on two public DIBR view synthesis
databases, namely the IRCCyN/IVC [33] and IETR [34] databases.

The IRCCyN/IVC database [33] consists of 12 reference images with three sequences
(BookArrival, Lovebird, Newspaper) and associated 84 synthesized views that are generated
by seven different DIBR algorithms. Figure 3 shows some examples from the IRCCyN/IVC
database. The Absolute Category Rating (ACR) algorithm is adopted to test the subjective
assessment of the IRCCyN/IVC database. The resolution of each of the synthesized views
is 1024 × 768.
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Figure 3. Examples of the DIBR-sythesized views of IRCCyN/IVC database.

The IETR database [34] consists of 10 reference images and 140 associated synthe-
sized views that are generated by seven different DIBR algorithms. Figure 4 shows some
examples from the IETR database. The sequences of the database include BookArrival,
Lovebird, Newspaper, Balloons, Kendo, Dancer, Shark, Poznan_Street, PoznanHall, and
GT_fly. The subjective assessment of the IETR database is based on the ACR algorithm
and the Subjective Assessment Methodology for Video Quality (SAMVIQ) algorithm. The
resolution of each of the synthesized views is 1920 × 1088.

Figure 4. Examples of the DIBR sythesized views of IETR database.

3.2. Performance Evaluation Criteria

In this work, we adopt a five-parameter nonlinear fitting function to compute evalua-
tion criteria:

F(v) = θ1

(
1
2
− 1

1 + eθ2(v−θ3)

)
+ θ4v + θ5, (13)

where F(v) denotes subjective score; v represents the corresponding objective score; θi is
the fitting parameters. Next, three popularly used criteria are employed for performance
evaluation. PLCC (Pearson’s Linear Correlation Coefficient) is employed to assess the
prediction accuracy. The definition of the PLCC is given as follows:

PLCC =
∑i(bi − b̄)(li − l̄)√

∑i(bi − b̄)2 ∑i li − l̄)2
, (14)

where bi is the estimated value of the i-th DIBR view. b̄ is the mean value of all bi.
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The monotony of algorithm prediction is measured by the SRCC (Spearman’s Rank
ordered Correlation Coefficient). The SRCC is calculated by

SRCC = 1− 6
M(M2 − 1)

M

∑
i=1

d2
i , (15)

where M represents the total number of images in the test database; di is the rank difference
between the objective and subjective evaluation of the i-th image.

The final evaluation index, RMSE (Root Mean Square Error), is used to evaluate the
accuracy of the algorithm. The RMSE is computed as

RMSE =

√
1
n ∑

i
(si − oi)2, (16)

where si represents subject assessment values and oi represents the predicted value. A good
DIBR quality evaluation algorithm should obtain high SRCC and PLCC values and low
RMSE values.

3.3. LBP Parameter Settings and Computational Complexity Analysis

In the actual IQA system, the efficiency and accuracy of the algorithm are very impor-
tant. Therefore, we conduct experiments to test the influence of LBP radius and the number
of neighbors on algorithm performance, and the corresponding computational complexity.
The experimental results are shown in Table 1. From the Table 1, it can be seen that the
radius R is set to 1 and the number of neighbors N is set to 8, the PLCC reaches 0.8877 on the
IRCCyN/IVC database and 0.8586 on the IETR database. Moreover, the feature extraction
times of the two databases are 53 s and 132 s, respectively. Therefore, in combination with
efficiency and accuracy, N is set to 8, and R is set to 1 in the proposed metric.

Table 1. Performance comparison of our designed algorithm with different LBP parameter settings.

Database Radius Neighbors PLCC SRCC RMSE Time (S)

IRCCyN/IVC 1 8 0.8877 0.8511 0.2264 53
IRCCyN/IVC 1.5 12 0.9593 0.9301 0.1703 87
IRCCyN/IVC 2 16 0.9780 0.9510 0.1184 125
IRCCyN/IVC 3 24 0.9760 0.9441 0.1235 6087

IETR 1 8 0.8349 0.8029 0.0925 132
IETR 1.5 12 0.7642 0.7477 0.088 195
IETR 2 16 0.7770 0.7277 0.0873 338
IETR 3 24 0.8586 0.8158 0.0824 8392

3.4. Compared with Existing DIBR View Synthesis Metrics

To verify the performance superiority of the proposed algorithm, we compare the
proposed metric with nine existing DIBR view synthesis IQA methods, including MW-
PSNR [20,21], MP-PSNR [22], LOGS [6], APT [19], OUT [23], NIQSV [24], GDSIC [2],
MNSS [18], and CLGM [25]. First, we conducted the experiments on the IRCCyN/IVC
database. In the experiments, 80% of the images were randomly chosen as training models,
and the other 20% of the images were utilized for testing. The training tests were conducted
1000 times, and the median performance values are reported. Table 2 gives the experimental
results, and the best results are shown in bold.

Second, we conduct comparison experiments on the IETR database. The experimental
Settings are similar to the IRCCyN/IVC database. Table 3 gives the experimental results,
and the best results are shown in bold.



Electronics 2022, 11, 1384 8 of 10

Table 2. Performance comparison of our designed algorithm with the current mainstream DIBR IQA
models on the IRCCyN/IVC database.

Model Type PLCC SRCC RMSE

MP-PSNR FR 0.6174 0.6227 0.5238
MW-PSNR FR 0.5622 0.5757 0.5506

LOGS FR 0.8256 0.7812 0.3601
APT NR 0.7307 0.7157 0.4546
OUT NR 0.7678 0.7036 0.4266

NIQSV NR 0.7114 0.6668 0.4679
GDSIC NR 0.7867 0.7995 0.4000
MNSS NR 0.7704 0.7854 0.4122
CLGM NR 0.6750 0.6528 0.4620

Proposed NR 0.8877 0.8511 0.2264

Table 3. Performance comparison of our designed algorithm with the current mainstream DIBR IQA
models on the IETR database.

Model Type PLCC SRCC RMSE

MP-PSNR FR 0.6190 0.5809 0.1947
MW-PSNR FR 0.5389 0.4875 0.2088

LOGS FR 0.6638 0.6679 0.1854
APT NR 0.4225 0.4141 0.2252
OUT NR 0.2409 0.2378 0.2406

NIQSV NR 0.2095 0.2190 0.2429
GDSIC NR 0.4338 0.4254 0.2244
MNSS NR 0.2285 0.3387 0.2333
CLGM NR 0.1146 0.0860 0.2463

Proposed NR 0.8349 0.8029 0.0925

It can be found in Tables 2 and 3 that our designed metric obtains the highest PLCC
and SRCC values and the lowest RMSE values on both databases. In contrast, none of
the DIBR IQA metrics performed better than the proposed metrics; that is, the proposed
approach is highly correlated with human visual perception of DIBR view distortion.

3.5. Generalization Ability Study

Generalization ability is vital for learning-based methods. This part tested the general-
ization ability of the proposed method using cross-validation. First, we trained the model
in the IRCCyN/IVC database, and then the trained model was used for testing the IETR
database. Second, the IETR database was used to train the model, and the trained model
was used to test the IRCCyN/IVC database. The cross-validation simulation results are
given in Tables 4 and 5.

Table 4. The proposed method is trained on the IRCCyN/IVC database, and the performance of our
proposed method is tested on the IETR database.

Model PLCC SRCC RMSE

Proposed 0.4901 0.4408 0.2031

Table 5. The Proposed Method is trained on the IETR database, and the performance of our proposed
method is tested on the IRCCyN/IVC database.

Model PLCC SRCC RMSE

Proposed 0.7489 0.7390 0.4139
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Table 4 shows the cross-validation performance of our proposed metric on the IETR
database. Because the distortions in the synthesized views of the IETR database do not
include geometric data, the performance of the proposed method obtained PLCC, SRCC,
and RMSE values on IETR of 0.4901, 0.4408, and 0.2031, respectively. Table 5 shows the
cross-validation performance of the proposed algorithm on the IRCCyN/IVC database.
The IETR database was adopted as the trained model, and the PLCC, SRCC, and RMSE
values obtained by the proposed algorithm on IRCCyN/IVC are 0.7489, 0.7390, and 0.4139,
respectively. The experimental results are very encouraging, which are still higher than the
performance of other comparable algorithms. From the results, the proposed method has
an excellent generalization ability.

4. Conclusions

A blind quality index for DIBR views with visual saliency and textural naturalness
is put forward in this work. Our proposed algorithm is compared with the current main-
stream DIBR view quality assessment methods on the IRCCyN/IVC and IETR databases.
The experimental results show that our proposed blind quality measure has good per-
formance on the two public DIBR synthesis view databases. It is worth mentioning that
our proposed algorithm has good generalization ability, but the cross-database test results
are not satisfactory. We will consider using the ability of dual network to extract contour
and texture features for DIBR view synthesis to further improve the performance of this
algorithm in future work [39].
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