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Abstract: Automated diagnosis for the quality of bovine in vitro-derived embryos based on imaging
data is an important research problem in developmental biology. By predicting the quality of embryos
correctly, embryologists can (1) avoid the time-consuming and tedious work of subjective visual
examination to assess the quality of embryos; (2) automatically perform real-time evaluation of
embryos, which accelerates the examination process; and (3) possibly avoid the economic, social, and
medical implications caused by poor-quality embryos. While generated embryo images provide an
opportunity for analyzing such images, there is a lack of consistent noninvasive methods utilizing
deep learning to assess the quality of embryos. Hence, designing high-performance deep learning
algorithms is crucial for data analysts who work with embryologists. A key goal of this study is to
provide advanced deep learning tools to embryologists, who would, in turn, use them as prediction
calculators to evaluate the quality of embryos. The proposed deep learning approaches utilize
a modified convolutional neural network, with or without boosting techniques, to improve the
prediction performance. Experimental results on image data pertaining to in vitro bovine embryos
show that our proposed deep learning approaches perform better than existing baseline approaches
in terms of prediction performance and statistical significance.

Keywords: deep learning; boosting; reproductive biology; developmental biology; applications in
biology and medicine

1. Introduction

Each month, during human female ovulation, the left or right ovary produces and
releases an egg for fertilization. Early development of an embryo starts with the fertilization
of an egg by a sperm at the fallopian tube. The fertilized egg (embryo), where the egg
and the sperm unite, develops and goes through several stages, reaching the blastocyst
stage before implanting in the wall of the uterus. The implantation of the embryo is a
critical point during pregnancy for embryologists, who aim to accurately identify the
quality of an embryo at this point [1]. Due to the lack of consistent noninvasive methods
to determine the quality of embryos, the process of identifying the quality of an embryo
is a challenging task [2]. As bovine and human females share various characteristics in
terms of folliculogenesis, the cow has been used as a model to investigate folliculogenesis
events in humans [3,4]. Bó et al. [5] described the principles of evaluating bovine embryos,
which are important for deciding whether the embryo is worth transferring or frozen
for a given recipient and whether the embryo is eligible to be exported for human use.
The conventional evaluation method of the quality of bovine embryos is subjective visual
evaluation of embryo images by embryologists using stereomicroscopy, followed by a
scoring system issued by the International Embryo Technology Society (IETS). The scores
produced determine whether the quality of the bovine embryo is excellent, fair, or good.
Figure 1 shows the process of bovine embryo production through in vitro fertilization [6–8].
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Figure 1. In vitro fertilization in cows and delivery, shown as steps (1) to (7). Figure created with 
Biorender. 

Deep Learning (DL) techniques have been successfully applied to solve many real 
biological problems, including various medical imaging problems [9–15]. Specifically, DL 
techniques aim to improve the prediction performance in a given task via learning com-
plex concepts from simpler ones [16]. DL methods provide promising solutions in artifi-
cial intelligence when applied to medical imaging and could improve the performance of 
several medical imaging problems, including predicting the quality of embryos, in the 
coming years. 

Predicting the quality of embryos helps embryologists to (1) improve the embryo 
transfer process, which leads to better genetics and viable embryos [17]; (2) reduce the 
time spent searching for viable embryos, which is important for clients in the cattle in-
dustry who need to freeze or transfer the embryos to recipients [18,19]; and (3) avoid 
abortion at later stages of pregnancy caused by poor quality of embryos [20]. Due to the 
importance of predicting the quality of embryos, researchers from different domains, in-
cluding developmental biology and machine learning, are involved in this work. For 
example, Rocha et al. [21] proposed a machine learning approach to predict the quality of 
bovine embryos that works as follows. A preprocessing step aims to construct feature 
vectors via extracting 36 features from images of in vitro bovine images. Then, the con-
structed features are provided as input to a neural network, to build a model, which is 
then used to classify unseen images. Manna et al. [22] proposed an ensemble approach 
utilizing features extracted from the foreground image of the embryo to construct feature 
vectors, which are then provided to an ensemble of neural networks to train and predict 
the quality of unseen embryos. Filho et al. [23] proposed a machine learning approach to 
predict the grading of human embryos using extracted image features, provided as input 
to support vector machines (SVM), to yield a model. The resulting model is then used to 
evaluate the model using images of unseen human embryos obtained via two inde-
pendent experts. Other machine learning and deep learning approaches have been de-
veloped for other prediction tasks related to embryos [24,25]. For example, Miyagi et al. 
[26] developed a deep learning approach utilizing a convolutional neural network con-
sisting of two convolutional layers for feature extraction, two pooling layers for dimen-
sionality reduction, and fully connected layers for classification. The developed approach 
is used to predict the number of live births from images of blastocysts. Experimental re-

Figure 1. In vitro fertilization in cows and delivery, shown as steps (1) to (7). Figure created
with Biorender.

Deep Learning (DL) techniques have been successfully applied to solve many real
biological problems, including various medical imaging problems [9–15]. Specifically, DL
techniques aim to improve the prediction performance in a given task via learning complex
concepts from simpler ones [16]. DL methods provide promising solutions in artificial
intelligence when applied to medical imaging and could improve the performance of
several medical imaging problems, including predicting the quality of embryos, in the
coming years.

Predicting the quality of embryos helps embryologists to (1) improve the embryo
transfer process, which leads to better genetics and viable embryos [17]; (2) reduce the time
spent searching for viable embryos, which is important for clients in the cattle industry
who need to freeze or transfer the embryos to recipients [18,19]; and (3) avoid abortion
at later stages of pregnancy caused by poor quality of embryos [20]. Due to the impor-
tance of predicting the quality of embryos, researchers from different domains, including
developmental biology and machine learning, are involved in this work. For example,
Rocha et al. [21] proposed a machine learning approach to predict the quality of bovine
embryos that works as follows. A preprocessing step aims to construct feature vectors
via extracting 36 features from images of in vitro bovine images. Then, the constructed
features are provided as input to a neural network, to build a model, which is then used to
classify unseen images. Manna et al. [22] proposed an ensemble approach utilizing features
extracted from the foreground image of the embryo to construct feature vectors, which are
then provided to an ensemble of neural networks to train and predict the quality of unseen
embryos. Filho et al. [23] proposed a machine learning approach to predict the grading
of human embryos using extracted image features, provided as input to support vector
machines (SVM), to yield a model. The resulting model is then used to evaluate the model
using images of unseen human embryos obtained via two independent experts. Other
machine learning and deep learning approaches have been developed for other prediction
tasks related to embryos [24,25]. For example, Miyagi et al. [26] developed a deep learning
approach utilizing a convolutional neural network consisting of two convolutional layers
for feature extraction, two pooling layers for dimensionality reduction, and fully connected
layers for classification. The developed approach is used to predict the number of live
births from images of blastocysts. Experimental results showed that the deep learning
approach performs significantly better than the baseline method.
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The work described here differs from [5,21–23,26] in three ways. (1) We present
three deep learning approaches, where the first deep learning approach (DL) exploits a
convolutional neural network consisting of a convolutional layer for feature extraction,
an average pooling layer for dimensionality reduction and fully connected, and output
layers for the classification. The second deep learning approach (B1DL) extends the DL
approach and is coupled with a boosting technique to improve the prediction performance
by selecting an ensemble with the highest area under the curve during the training, which
is then used to perform predictions on unseen embryo images. The third deep learning
approach (B2DL) is different from the B1DL approach in terms of utilizing a different
boosting technique. (2) The proposed deep learning approaches are compared against
other deep learning approaches under a supervised learning setting, using only images of
in vitro bovine embryos. (3) We conduct statistical tests and evaluate the performance of
all approaches using several performance measures.

Conventional approaches have relied on the experience and expertise of humans,
following evaluation principles to determine the quality of bovine embryos [5]. To automate
the intelligence of the expert, ML approaches require extracting image features to construct
a dataset, which are then provided to a ML algorithm (artificial neural networks) to create
a model that automates human intelligence for predicting the quality of unseen bovine
embryos [21]. However, these approaches are (1) not accurate enough as they rely on
manually hand crafted features; (2) based on the subjective evaluation of experts who
spend much time examining embryo images and can mislabel some due to oversight or
fatigue; and (3) based on a set of subjective features that could affect the generalizability
of models [25]. In contrast to previous approaches that rely on a set of specified features,
sophisticated deep learning approaches can be used to improve prediction performance
without specifying a set of hand-crafted features [27,28]. However, these deep learning
approaches require extensive computational resources and the adopting of concepts that
improve the learning process [29,30].

Contributions. Our contributions in this paper are summarized as follows.

- We present new deep learning approaches for developmental biology, enabling deep
learning algorithms to achieve high-performance results from images of in vitro
bovine embryos.

- The proposed approaches adopt modified versions of deep convolutional neural
networks and boosting techniques, and are the first, to the best of our knowledge, to
be applied in the developmental biology discipline pertaining to predicting the quality
of embryos.

- In contrast to previous works, we assess our approaches by employing several clas-
sification performance measures against baselines, including existing deep learning
algorithms such as LeNet and AlexNet, based only on in vitro data.

- We perform an experimental study to report the predictive performance of all deep
learning approaches. The results demonstrate that our approaches significantly out-
performed the baseline approaches.

Organization. The rest of this paper is organized as follows. We review existing
research related to this paper in Section 2. Sections 3 and 4 present our proposed deep
learning approaches and report performance results of the proposed approaches against
the baselines. We provide a discussion of the results in Section 5. Lastly, we conclude the
paper and point out directions for future work in Section 6.

2. Related Work

There are three main bodies of research related to our work: AdaBoost [31,32],
LeNet [33,34], and AlexNet [35,36].

2.1. AdaBoost

AdaBoost aims to generate a highly accurate classifier via taking the weighted majority
vote of several classifiers. Algorithm 1 outlines the details of AdaBoost, which works as
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follows. For a given training set S consisting of m examples (line 1), all m examples are
assigned the same weight (see lines 2–4). The for loop in lines 5–13 aims to produce an
ensemble of T classifiers as follows. In line 6, the training set S and corresponding weights
Dt are provided as inputs to a machine learning algorithm to induce a model ht at the
tth iteration. The error of the ht classifier is calculated based on misclassified examples
and corresponding weights in Dt (lines 7–8). The weight αt of ht is calculated (Line 9).
Lines 10–12 perform a weight updating mechanism that aims to increase the weight of the
ith training example xi during the next iteration (i.e., t + 1) to focus on if the classifier ht
incorrectly predicts xi. Otherwise, its weight is decreased. Zt is a normalization factor that
makes Dt+1 normally distributed. This process (i.e., lines 5–13) is then performed for an
additional t − 1 times. For a given test example x′i , a prediction is performed based on the
sign of weighted T classifiers obtained from lines 5–13.

Algorithm 1: AdaBoost.
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2.2. LeNet

Figure 2 shows the architecture of the convolutional neural network (CNN) LeNet,
which has a 32 × 32 (INPUT)–28 × 28 × 6 (CONV)–14 × 14 × 6 (AVGPOOL)–10 × 10
× 16 (CONV)–5 × 5 × 16 (AVGPOOL)–120 (FC)–84 (FC)–10 (OUTPUT) structure. The
LeNet consists of six layers, excluding the input layer shown in the first. The input is a
grayscale image with 32 × 32 pixels. The first layer is a convolutional layer (CONV) that
filters the input with six kernels each of size 5× 5 with a stride of 1 pixel. The convolutional
layer produces six feature maps each of size 28 × 28, followed by an average pooling layer
that reduces the dimensionality of each feature map by a factor of 2. The third layer is a
convolutional layer that filters the output of the average pooling layer with 16 kernels each
of size 5 × 5 with a stride of 2 pixels. The third layer produces 16 feature maps each of
size 10 × 10, followed by an average pooling layer (i.e., L4) that reduces the dimensionality
of each feature map by a factor of 2. The average pooling layer is then flattened and
immediately followed by two fully connected layers and an output layer, which has a
number of units corresponding to the class labels. The convolutional and fully connected
layers are composed of rectified linear units (ReLUs) as ReLUs lead to faster training [37].
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3.1. The Deep Learning Approach (DL) 
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Figure 2. Architecture of the convolutional neural network (CNN) LeNet, consisting of six layers,
excluding the input and output layers.

2.3. AlexNet

Figure 3 shows the architecture of AlexNet, which has a 224 × 224 × 3 (INPUT)–54
× 54 × 96 (CONV)–27 × 27 × 96 (MAXPOOL)–23 × 23 × 256 (CONV)–11 × 11 × 256
(MAXPOOL)–9× 9× 384 (CONV)–7 × 7× 384 (CONV)–5 × 5× 256 (CONV)–2 × 2 × 256
(MAXPOOL)–4096 (FC)–4096 (FC)–1000 (OUTPUT) structure. The AlexNet consists of five
convolutional layers (interspersed with normalization layers), three max pooling layers,
two fully connected layers (interspersed with dropout with a ratio of 0.4), and an output
layer. The input is an RGB image of 224 × 224 × 3 pixels. The first layer is a convolutional
layer (CONV) that filters the input with 96 kernels each of size 11 × 11 with a stride of
4 pixels. The convolutional layer produces 96 feature maps each of size 54 × 54, followed
by a max pooling layer that reduces the dimensionality of each feature map by a factor
of 2. The third layer is a convolutional layer that filters the output of the max pooling
layer with 256 kernels each of size 5 × 5 with a stride of 1 pixel. The third layer produces
256 feature maps each of size 23 × 23, followed by a max pooling layer (i.e., L4) that
reduces the dimensionality of each feature map by a factor of 2. The fifth layer produces
384 feature maps each of size 9 × 9, followed by two convolutional layers that produce 384
and 256 feature maps of sizes 7 × 7 and 5 × 5, both with a stride of 1 pixel. The output
of layer 7 is provided to a max pooling layer, which reduces the dimensionality of each
feature map by a factor of 2. The output of the max pooling layer (i.e., L8) is then flattened
and immediately followed by two fully connected layers and an output layer, which is a
classification layer that has a number of units corresponding to the 1000 categorical labels.
The convolutional and fully connected layers (excluding the output using Softmax) are
composed of rectified linear units (ReLUs) as ReLUs lead to faster training.
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the input and output layers.

3. Our Proposed Approaches
3.1. The Deep Learning Approach (DL)

The CNN variant (see Figure 4) takes an RGB input image. The details of the proposed
architecture (CNN variant) employed via DL are shown in Figure 4, which has a 20 ×
20 × 3 (INPUT)–20 × 20 × 120 (CONV)–10 × 10 × 120 (AVGPOOL)–512 (FC)–512 (FC)–
2 (OUTPUT) structure. The CNN variant consists of a convolutional layer, an average
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pooling layer, two fully connected layers (interspersed with dropout with a ratio 0.5), and
an output layer. The input RGB image is resized to 20 × 20 × 3 pixels. The first layer is a
convolutional layer (CONV) that filters the input with 120 kernels each of size 5 × 5 with a
stride of 1 pixel. The convolutional layer produces 120 feature maps each of size 20 × 20
(with zero-paddings), followed by an average pooling layer that reduces the dimensionality
of each feature map by a factor of 2. The output of the average pooling layer (i.e., L2) is
then flattened and immediately followed by two fully connected layers and an output
layer, which is a classification layer that has a number of units corresponding to the two
categorical labels. The convolutional and fully connected layers (excluding the output
utilizing softmax) are composed of rectified linear units (ReLUs). The prediction generated
via the CNN variant differentiates good- from poor-quality embryos.
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3.2. The First Boosted Deep Learning Approach (B1DL)

Figure 5 shows our first boosted deep learning approach (B1DL), which works as
follows. Suppose that we are given a training set S = {(xi, yi)}m

i=1 consisting of m labeled
bovine embryo images, and a testing example of an unseen embryo image. We call our
algorithm B1 (see Algorithm 2) to boost the prediction performance of the CNN variant via
creating a better ensemble of several CNN variants. Initially, B1 takes as input the training
set S (Line 1). In lines 2–4, each example of a jth ensemble is assigned an equal weight.
Lines 5–20 aim to create a set of ensemble of CNN variants, where the size of the set is k.
The number of epochs Λ is randomly generated (line 6). Training examples in S are selected
without replacement based on weights in Dj,1. Then, Λ and S are provided as inputs to the
CNN variant, to induce the first model of the jth ensemble, hj,1. Lines 8–19 aim to create T
classifiers for a jth ensemble.

For each t iteration, the error of the tth classifier of ensemble j on the training set S is
calculated based on Dj,t (lines 9–10). The weight αj,t of classifier hj,t is calculated (line 11).
For each training example xi in S, the weight update mechanism in lines 12–14 aims to
increase the weight of incorrectly predicted example hj,t(xi) to focus on during the next
iteration while decreasing the weight of correctly predicted example hj,t(xi). Zj,t is a
normalization factor, such that Dj,t+1 becomes normally distributed. Line 15 selects m
samples with replacement from S based on Dj,t+1, which are then provided with Λ as inputs
to the CNN variant to learn a model hj,t+1. Such a process (i.e., lines 8–16) is repeated an
additional t − 1 times. In lines 17–19, prediction of a given jth ensemble is performed via
taking the sign of the weighted majority vote of T CNN variants. Lines 5–20 are repeated an
additional k − 1 times to generate a k ensemble consisting of T CNN variants. Line 21 aims
to select the ensemble that maximizes the area under the curve (AUC) during the training,
where the AUC is a performance measure that takes predictions and actual training labels
as input and returns the measured performance. For a given test example x′i , the prediction
is performed using the ensemble j* (see line 23).
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Algorithm 2: Boost1 (B1).
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3.3. The Second Boosted Deep Learning Approach (B2DL)

The B2DL approach aims to create a better set of classifiers and performs the same
steps as B1DL. However, B2DL differs from B1DL in terms of the weight update mechanism
of lines 12–14 in the B2 algorithm (Algorithm 3). As in [38], B2 aims to update the weights
in Dj,t+1 using previous t classifiers. In particular, B2DL aims to increase the weight of an
incorrectly predicted example xi to focus on in the next iteration if the majority of classifiers
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in the previous t iterations incorrectly predict xi. If the majority of classifiers in previous t
iterations correctly predict xi, then its weight is decreased in the next iteration.

Algorithm 3: Boost2 (B2).
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4. Experiments and Results

In this section, we first describe the datasets utilized in this work. Then, the experi-
mental methodology is presented. Lastly, the proposed approaches are compared against
several baselines using several performance measures.

4.1. Dataset

The dataset consisted of 306 in vitro bovine embryo images. Of these, 112 were
classified as good (i.e., grade 1), while the remaining images were classified as poor
(i.e., grade 3). That is, a bovine embryo with grade 1 is considered a good enough
embryo to be transferred or frozen for later use, while bovine images associated with
grade 3 are considered not good enough to be transferred into a recipient. The dataset
used in our study was downloaded from [2], which was produced via In Vitro Brasil
(http://www.invitrobrasil.com/en/ (accessed on 14 March 2022)) according to the proto-
col described in [39]. The quality of bovine embryos was evaluated by three experienced
embryologists utilizing the IETS standards [5]. As the grading might differ between embry-
ologists, the modal value was used [2,40,41].

4.2. Experimental Methodology

In this study, we compared the proposed deep learning approaches against baseline
convolutional neural network architectures, including LeNet and AlexNet. Details about
the baselines are provided below. Also, a summary of all approaches is provided in Table 1.

http://www.invitrobrasil.com/en/
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Table 1. Summary of the prediction algorithms used in our study.

Abbreviation Prediction Algorithm

DL The deep learning approach

B1DL The first boosted deep learning approach

B2DL The second boosted deep learning approach

LeNet The first baseline approach

AlexNet The second baseline approach

4.2.1. LeNet

This baseline works under a supervised learning setting, providing a training set
consisting of in vitro bovine embryo images as input to a CNN to obtain a model. Then, the
resulted model is applied to test examples of unseen bovine embryo images, to generate
predictions. The only difference between LeNet in this study and LeNet in Section 2.2
is the Softmax used in the output layer for the binary classification task (two instead of
10 possible categorical labels).

4.2.2. AlexNet

This baseline utilizes the CNN architecture, described in Section 2.3, which takes as
input the set of in vitro bovine images, to generate a model. Then, the obtained model is
used to classify unseen bovine embryo images. The only difference between AlexNet in
this study and AlexNet in Section 2.3 is the Softmax used in the output layer for the binary
classification task (two instead of 1000 possible categorical labels).

F1, accuracy (ACC), G-Mean (GM), and area under curve (AUC) performance mea-
sures were calculated based on the confusion matrix in Table 2 as follows [31,42]. As training
deep learning is time-consuming and requires extensive computational resources [43,44],
all prediction algorithms were evaluated using two-fold cross-validation as in [45–47],
where training and test sets were allocated distinct folds. Specifically, in each iteration step
j ∈ {1,2}, the test set took examples from fold j while the training set took all examples
from the remaining folds. Then, learning was performed to induce the model and perform
predictions on examples in test set, followed by calculating the performance results using
F1, ACC, GM, and AUC. This process was repeated for one more iteration in which the four
performance results were reported. Finally, we reported the mean for F1, ACC, GM, and
AUC, which correspond to the performance results utilizing two-fold cross-validation. We
designated these performance measures as MF1, MACC, MGM, and MAUC [44]. In addi-
tion, the standard deviation (SD) of the two testing folds was recorded. The software used
in our work included TensorFlow [48], Keras [49], and reticulate [50]. The experimental
results were analyzed using R [51].

Table 2. Confusion matrix for the two-class classification problem.

Predicted Positive Predicted Negative

Actual Positive TP (True Positive) FN (False Negative)

Actual Negative FP (False Positive) TN (True Negative)

4.3. Experimental Results

In this section, we evaluate all deep learning approaches, reporting two-fold cross-
validation results based on in vitro bovine embryo images.

Predicting the Quality of Bovine Embryos

Table 3 provides a detailed overview of the structures of all approaches. The convo-
lutional layer aims to extract special feature maps, followed by using either an average
or max pooling layer for dimensionality reduction. The dropout layers were utilized to
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avoid overfitting during training [52,53]. A fully connected layer and an output layer were
employed for the classification of bovine embryos. AlexNet utilizes a batch normalization
layer to reduce the effects of covariate shift and accelerate the training process.

Table 3. Detailed overview of Layer Type (and no. of parameters) for all models. DL is the proposed
model. LeNet and AlexNet are the compared models. No. of parameters is omitted when no
parameters were there.

DL LeNet AlexNet

INPUT INPUT INPUT

CONV (9120) CONV (456) CONV (34,944)

AVGPOOL AVGPOOL MAXPOOL

FC (6,144,512) CONV (2416) BATCHNORM (384)

DROPOUT 50% AVGPOOL CONV (614,656)

FC (262,656) FC (48,120) MAXPOOL

DROPOUT 50% FC (10,164) BATCHNORM (1024)

OUTPUT (1026) OUTPUT (170) CONV (885,120)

- - BATCHNORM (1536)

- - CONV (1,327,488)

- - BATCHNORM (1536)

- - CONV (884,992)

- - MAXPOOL

- - BATCHNORM (1024)

- - FC (4,198,400)

- - DROPOUT 40%

- - BATCHNORM (16,384)

- - FC (16,781,312)

- - DROPOUT (40%)

- - BATCHNORM (16,384)

- - OUTPUT (8194)

Figure 6 reports the training accuracy curves for each approach. It can be seen that the
training accuracy continues to increase as the number of epochs increases. While AlexNet
generates the highest training accuracy, it does not outperform our approaches (see results
in Table 4). Moreover, AlexNet in our study requires 24,773,378 parameters. The number of
parameters in the architecture utilized in our approaches is 6,417,314. The total number of
parameters in the LeNet architecture is 61,326.

Table 4 reports the performance results of all studied prediction algorithms in this
work. It can be seen from Table 4 that prediction algorithms utilizing our approaches
generate better performance results when compared to the two baselines. Specifically,
the prediction algorithm B2DL generates the highest MF1 of 0.863. Moreover, B2DL
generates the highest MACC of 0.807. Considering performance metrics pertaining to the
imbalanced classifications, B1DL performed better than all other prediction algorithms,
achieving the highest MAUC of 0.773 and the highest MGM of 0.765. These results show
the high performance of prediction algorithms exploiting the proposed deep learning
approaches. For each prediction algorithm, Figure 7 ranks the total running times spent
in the two-fold cross-validation technique. The results reported in Figure 7 show that the
prediction algorithms DL and B2DL utilizing our approaches were faster than all other
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baseline algorithms. B1DL was slower than DL, B2DL, and LeNet. AlexNet was the slowest
prediction algorithm.
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Table 4. Performance results of all prediction algorithms according to two-fold cross-validation
on images pertaining to in vitro bovine embryos. The highest MF1, MACC, MGM, and MAUC
values are indicated in bold. MF1 indicates the Mean F1. MACC indicates the mean accuracy. MGM
indicates the mean G-Mean. MAUC indicates the mean area under the curve. SD indicates the
standard deviation.

MF1 ± SD MACC ± SD MGM ± SD MAUC ± SD

DL 0.854 ± 0.027 0.795 ± 0.044 0.711 ± 0.074 0.741 ± 0.059

B1DL 0.844 ± 0.032 0.798 ± 0.031 0.765 ± 0.002 0.773 ± 0.011

B2DL 0.863 ± 0.007 0.807 ± 0.018 0.722 ± 0.053 0.752 ± 0.036

AlexNet 0.815 ± 0.034 0.742 ± 0.065 0.651 ± 0.142 0.691 ± 0.096

LeNet 0.806 ± 0.049 0.708 ± 0.114 0.373 ± 0.527 0.627 ± 0.180
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We assessed the stability of the reported results, running cross-validation (CV) of
prediction algorithms 10 times. Figures 8a–d and 9a–d show the performance results
obtained from 10 runs of cross-validation. Figures 8a,c and 9a,c show that prediction
algorithms utilizing B1DL and B2DL performed better than the baselines in terms of MF1,
MACC, MGM, and MAUC. These results clearly demonstrate the predictive superiority of
B1DL and B2DL.

The nonparametric Friedman test was utilized to assess the statistical significance [54–60].
In Table 5, we report the average rankings of all pairs of prediction algorithms and the
corresponding p-values, calculated based on MF1 in Figure 8a. Table 5 shows that B2DL
outperformed DL, LeNet, and AlexNet, and the differences were statistically significant
(p < 0.05). B1DL was also significantly better than DL and AlexNet (p < 0.05). The differ-
ences in prediction algorithms that were not significant (p ≥ 0.05) are shown in black.



Electronics 2022, 11, 1363 13 of 18Electronics 2022, 11, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 8. Performance results of the studied prediction algorithms, applied to test examples per-
taining to in vitro bovine embryos. These results are obtained by running CV 10 times. CVi is the 
ith cross-validation. MF1 is the mean F1. MACC is the mean accuracy. SD is the standard deviation.  

 

Figure 8. Performance results of the studied prediction algorithms, applied to test examples pertain-
ing to in vitro bovine embryos. These results are obtained by running CV 10 times. CVi is the ith
cross-validation. MF1 is the mean F1. MACC is the mean accuracy. SD is the standard deviation.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 8. Performance results of the studied prediction algorithms, applied to test examples per-
taining to in vitro bovine embryos. These results are obtained by running CV 10 times. CVi is the 
ith cross-validation. MF1 is the mean F1. MACC is the mean accuracy. SD is the standard deviation.  

 
Figure 9. Performance results of all prediction algorithms, applied to test examples pertaining
to in vitro bovine embryos. These results are obtained by running CV 10 times. CVi is the ith
cross-validation MGM is the mean G-Mean. MAUC is the mean AUC. SD is the standard deviation.



Electronics 2022, 11, 1363 14 of 18

Table 5. p-values and average rankings of all pairs of the prediction algorithms in Figure 8a on the
images pertaining to in vitro bovine embryos based on the Friedman test. The lower the rank of
a prediction algorithm, the higher the performance. The difference between a pair of prediction
algorithms with p < 0.001 (in red) is considered highly statistically significant. The difference between
the two algorithms in a pair with p < 0.05 (in blue) is considered statistically significant.

Prediction Algorithm A Prediction Algorithm B Average Rankings p-Value

B2DL B1DL (1.5, 2) 47 × 10−2

B2DL DL (1.5, 3.85) 88 × 10−5

B2DL LeNet (1.5, 3.35) 88 × 10−4

B2DL AlexNet (1.5, 4.3) 75 × 10−6

B1DL DL (2, 3.85) 88 × 10−4

B1DL LeNet (2, 3.35) 56 × 10−2

B1DL AlexNet (2, 4.3) 11 × 10−4

DL LeNet (3.85, 3.35) 47 × 10−2

DL AlexNet (3.85, 4.3) 52 × 10−2

LeNet AlexNet (3.35, 4.3) 17 × 10−2

5. Discussion

Our first deep learning approach (DL) aims to learn a model for classifying in vitro
bovine embryos using a CNN variant, which includes a convolutional layer and pooling
layer for the feature extraction and dimensionality reduction, fully connected layers, and
an output layer for the classification. The resulting model is used to classify test examples
of in vitro bovine embryo images. The second deep learning approach (B1DL) utilizes the
CNN used in the DL approach, coupled with a boosting technique, to yield an ensemble of
models, which are then used to classify test examples. The third deep learning approach
(B2DL) behaves like the B1DL approach. However, B2DL has a different boosting technique
in terms of the weight update mechanism.

Predicting the quality of bovine embryos is a challenging task. Making accurate
predictions of the quality of bovine embryos could be specifically adapted to optimize the
cryopreservation and avoid embryo selection in countries where it is not permitted, which
in turn could help embryologists to enhance laboratory protocols, leading to successful
pregnancies [20,22,61]. In this study, we aim to improve the prediction of the quality of
bovine embryos via leveraging deep learning techniques that consist of a variant of CNN
with or without boosting techniques. Experimental results show that our approaches
perform better than baseline approaches.

For the optimization process during the training of LeNet and AlexNet, we used the
Adam optimizer in this study with the default parameters (as suggested in [62]) to minimize
the categorical cross-entropy loss function as in [63]. For our approaches, categorical
cross-entropy is used as a loss function and the optimization is performed via RMSProp
optimizer [64,65], with default parameters given in [49].

In this study, we ran the cross-validation 10 times to assess the stability of prediction
algorithms. The reported p-values obtained from a Friedman test show that the prediction
algorithms utilizing our approaches perform better than the baseline methods that utilize
LeNet and AlexNet architectures.

The deep learning training phase requires additional time depending on the number
of processing layers. The more layers a network has, the more computational running time
is needed during the training. Therefore, we utilized deep learning consisting of fewer
layers, because the proposed approaches work in an iterative manner, where DL is trained
in each iteration.
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While our boosted approaches require the invoking of CNN several times, our com-
putational experiments show that the B2DL prediction algorithm is efficient as it requires
less running time than the baseline methods. This is due to B2DL including just four layers
compared to other baseline methods (i.e., LeNet and AlexNet) consisting of more than five.
AlexNet was the slowest prediction algorithm.

6. Conclusions and Future Work

We propose three deep learning approaches to accurately predict the quality of in vitro
bovine embryos. The first approach DL utilizes a convolutional neural network variant
consisting of four layers, excluding the input and output layers. The DL approach aims
to learn a model from a training set of images pertaining to in vitro bovine embryos. The
resulting model is then applied to perform predictions on unseen test examples. The
second approach, B1DL, is an extension of the DL approach. The only difference is that
B1DL utilizes a variant of the boosting technique to select the best ensemble in terms of
the maximum area under the curve during the training, from a set of several ensemble
models. Then, the best ensemble is used to perform predictions on unseen text examples.
The third approach, B2DL, is similar to B1DL. The only difference is that B2DL utilizes
a boosting technique with a different weight update mechanism. These deep learning
approaches are designed to improve the predictive performance. Experimental results on
images pertaining to in vitro bovine embryos demonstrate that our approaches perform
better than existing baseline methods and achieve statistically significant results.

In future work, we plan to (1) adopt the proposed approaches under the transfer
learning setting; (2) incorporate the proposed approaches with generative adversarial
networks to improve the prediction performance under the transfer learning setting [66–68];
and (3) evaluate the proposed deep learning approaches against others in the context of
different medical imaging problems [69,70].
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