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Abstract: This paper presents a model-based scheme for permanent magnet synchronous motor
(PMSM) driving transmission fault detection and identification (FDI) in a steady-state condition. The
proposed framework utilizes a PMSM state-space model and an approximated transmission model
to construct the regression models for parameter estimation using the Recursive Least-Square (RLS)
algorithm. The FDI are accomplished by the residual current spectrum thresholding method to assess
the fault characteristic frequency magnitude and also by parameter clustering. Two types of mechani-
cal transmission with three different fault conditions are tested in the experiments. As a preliminary
effort in the condition monitoring of PMSM driving transmission, the study results demonstrate a
promising approach by considering both residual current spectrum and parameter cluster, which
achieved a satisfactory decision making in detecting and identifying the faulty condition.

Keywords: condition monitoring; fault diagnosis; mechanical transmission; model-based diagnosis;
parameter clustering; PMSM; recursive least-square; residual current spectrum

1. Introduction

In recent years, PMSMs have been used in many applications such as industrial
manufacturing, electric vehicles, and power generation. In these applications, a mechanical
transmission is usually implemented to couple the PMSM and the driven load. Due to
its role in transmitting the energy from PMSM to the driven load, the transmission is
highly exposed to failures. Failures in transmission can lead to severe consequences from
production loss to safety issues. Hence, there is a demand for condition monitoring and
early FDI of PMSM transmission to prevent failures and avoid unplanned downtime.

The vibration-based diagnosis method is popular because the fault in transmission
generates certain characteristic frequencies that modulate in the vibration spectrum [1].
The complexity of gear configuration and kinetics results in non-stationary and time-
varying vibration signals. Thus, signal processing such as Fourier series, short-time Fourier
transform, and wavelet transform generally applied on the vibration signal to obtain the
information regarding the transmission fault [2–5]. However, the vibration-based diagnosis
method is expensive for its implementation. It requires dedicated accelerometer transducers
and data acquisition devices to perform the continuous condition monitoring. Moreover,
the vibration signal is vulnerable to background noises, and the diagnosis accuracy depends
on the location of the accelerometer transducers. Many of the locations and drive-train
configurations are not accessible to install the accelerometer transducers [6].

Another approach in transmission FDI is the electrical signal analysis. This method
is well-known as the motor current signature analysis (MCSA). Basically, the fault in
transmission disturbs the air-gap relationship between the stator and the rotor [7,8]. Thus,
the fault condition is reflected in the current signals. Similar to vibration analysis, MCSA
employs signal processing techniques such as Fast-Fourier transform (FFT) as its common
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approach [1,7,9]. In contrast with the vibration-based method, MCSA provides low-cost
implementation, as it requires only one current sensor for continuous monitoring. However,
MCSA has no-fault threshold standard guidance to determine the fault severity. Hence, the
expert’s manual analysis is required to determine the fault severity. Moreover, as an inverter
drives the PMSM, it makes the output current signal from PMSM highly contaminated
by the input voltage harmonics and noises. The input voltage signal is the result of the
feedback controller. Thus, it may also compensate for any anomaly in the PMSM output
current signal [10]. Since any anomaly from the fault signature could be compensated by
the feedback controller, it makes the sensitivity of the current signal to transmission fault
signature low. Hence, to overcome this challenge, the model-based FDI is proposed.

The model-based approach exploits the relationship between the input voltage signal
and the output current signal, where the PMSM behavior can be deeply understood
through the mathematical model. The voltage signal will be fed into the mathematical
model to generate an estimated current signal. Then, the current signal will be subtracted
by the estimated current signal. Thus, the harmonics and noises from the voltage and any
compensation from the controller inverter can be filtered out and leave the transmission
fault signature in the residual current signal. In contrast to the general residual signal
analysis, the residual current signal is converted from the time-domain to the frequency-
domain in this study. The fault signatures observation is done in the residual current
spectrum instead of the time-domain residual current signal. The transmission faults in
the PMSM can be considered disturbances to the PMSM rotation. Thus, a specific fault
in the transmission will generate a particular frequency that disturbs the PMSM rotation
harmonics. The chance to spot the fault signatures is higher in the frequency-domain than
in the time-domain. Thus, in contrast to MCSA, the model-based approach utilizes the
residual current spectrum instead of the measured current spectrum.

The mathematical model in the model-based approach can be derived through physical-
based and data-driven manners [11,12]. Physical-based derivation of PMSM have been well
developed in the literature [13]. The available model can be modified depending on the
application such as inter-turn stator fault [14,15], open-winding [16], high-resistance con-
nection fault [17], and sensor fault [18,19]. In terms of data-driven manner, the state-space
model identification becomes the interest. Black-box model identification such as subspace
identification is mostly applied [20]. Data-driven state-space model derivation has been
applied for induction motors in misalignment [21] and sensor fault diagnosis [22]. It has
also been applied to PMSM, but for the control interest [23]. Physical-based derivation pro-
vides information about the system because its model parameters have physical meaning.
In contrast, data-driven derived model parameters have no physical meaning. The study
presented in this paper utilizes the physical-based synchronous dq-frame PMSM model and
two mass–spring–damper systems to approximate the transmission torque relationship.

This paper proposes a scheme in implementing the model-based approach in diag-
nosing the transmission fault in PMSMs. The PMSM runs in a steady-state condition with
constant speed and load. The RLS algorithm is employed to estimate the model parameters.
The RLS algorithm has been successfully implemented in different applications such as
the estimation of vehicle mass and road grade [24], the estimation of biodiesel reactor pa-
rameters [25], and the estimation of robotic manipulator parameters by combining the RLS
algortihm with Kalman filter [26]. There are three regression models implemented in this
study including d-axis, q-axis, and torque regression models. d-axis and q-axis regression
models are derived from a PMSM state-space model, while the torque regression model
is derived from a two-mass–spring–damper approximation of transmission system. The
proposed approach utilizes healthy data to identify the PMSM healthy model parameters
by using d-axis and q-axis regression models, as shown in Figure 1a. After that, the healthy
model is employed to generate the estimated current signal. As shown in Figure 1b, the
estimated current signal is used to subtract the measured current signal and generate the
residual current signal. Then, the fault diagnosis based on the residual current spectrum
analysis is performed. The residual current spectrum threshold is employed against the
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residual current spectrum to automatically determine the transmission fault characteris-
tic frequency and its magnitude level without the need for expert analysis. In addition,
the proposed approach also utilizes parameter clustering, as shown in Figure 1c. In the
parameter-clustering process, it employs the RLS algorithm with d-axis, q-axis, and torque
regression models and chooses one electrical parameter from the PMSM state-space model
and one mechanical parameter from the approximated transmission model as the index set
to determine faults. The proposed approach considers both the residual current spectrum
analysis and the parameter clustering as the FDI decision. The experimental results are
presented to show the effectiveness of the proposed model-based approach.

Healthy PMSM 
State-Space Model

Residual Current 
Spectrum Threshold

Residual Current 
Spectrum Analysis

PMSM

PMSM 
State-Space Model

d-q axis
Regression Model

PMSM 
State-Space Model

d-q axis
Regression Model

(a) (b)

(c)

Transmission 
Model

Shaft Torque
Equation

Torque
Regression Model

Parameter 
Clustering

+

+

+

+

Phase-locked
Loop

-

-

-

Figure 1. PMSM model-based fault detection and identification: (a) healthy PMSM model identifica-
tion; (b) residual current spectrum analysis; (c) parameter clustering.

This study is limited to the steady-state conditions with constant speed and load.
Nonetheless, it still poses a potential application in the industrial facility where the operat-
ing condition of the systems run by the PMSM tends to be steady state with constant speed
and load. There is also a trend in the industry that the induction motor is replaced by the
PMSM to save more energy. Thus, there are still opportunities for the proposed PMSM
model-based FDI to be implemented to improve the reliability of industrial operation. The
contributions proposed in this paper are highlighted as the following:

• Few works from the literature discuss the transmission fault in PMSM. This study
presents a systematic implementation of a model-based FDI for transmission fault in
PMSM. The model-based FDI scheme that utilizes residual current spectrum analysis
and parameter clustering is proposed and tested experimentally.

• The transmission is approximated as a simple linear model by using a two-mass-
spring damper system, in which the model parameters are estimated using the RLS
algorithm.

• The model-based FDI mitigates the influence from all the main harmonic frequencies
that dominated the spectrum, thus leaving the fault frequencies in the residual current
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spectrum more visible. The fault frequencies magnitudes are evaluated using the
residual current spectrum threshold without the need of expert knowledge. This
approach has not been considered in MCSA before.

• A preliminary study to verify the model compatibility with the data in various
load conditions.

• An indirect measurement approach for the transmission FDI. Most of the transmission
FDIs are vibration-based that requires direct measurement in the transmission location.
This approach is considered expensive and not always feasible in the cases where the
vibration transducers cannot be installed at the designated location.

2. PMSM and Transmission Mathematical Models
2.1. Coordinate Transformation

The stator-fixed three-phase abc-frame can be converted into the stator-fixed αβ0-frame
by using the following transformation matrix,

Tαβ0 =
2
3

1 − 1
2 − 1

2

0 −
√

3
2

√
3

2
1
2

1
2

1
2

 (1)

Then, the stator-fixed αβ0-frame can be converted into the synchronous dq-frame by
using the following transformation matrix,

Tdq(θe(t)) =

cos θe(t) − sin θe(t) 0
sin θe(t) cos θe(t) 0

0 0 1

 (2)

The stator-fixed three-phase abc-frame quantity can be reconstructed from the syn-
chronous dq-frame quantity by using Tdq(θe(t))−1 and T−1

αβ0 matrices.

2.2. PMSM Differential Equation

In this study, an interior-type PMSM is used. Unlike the surface-type PMSM, the
interior-type PMSM has a salient pole effect where the direct-axis inductance is not equal
to the quadrature-axis inductance (Ld 6= Lq). The PMSM mathematical model can be
expressed by the voltages and the flux linkages in the synchronous dq-frame as the follow-
ing [13],

vd = Rsid +
d
dt

ψd −ωeψq

vq = Rsiq +
d
dt

ψq + ωeψd

(3)

ψd = Ldid + ψm

ψq = Lqiq
(4)

where vd and vq are the dq-frame voltages, id and iq the dq-frame stator currents, Rs is the
stator resistance, ωe is the electric angular velocity, ψd and ψq the dq-frame flux linkages,
and ψm is the mutual flux linkage. Substituting Equation (4) into (3), and as the permanent
magnets are poor electrical conductors so that, d

dt ψm = 0 [13], it yields

vd = Rsid + Ld
d
dt

id −ωeLqiq

vq = Rsiq + Lq
d
dt

iq + ωe(Ldid + ψm)

(5)
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In this study, the electric angular velocity ωe can be easily obtained. Then, Equation (5)
can be converted from the continuous-time domain into the discrete-time domain using
the zero-order hold method as follows,

[
id(k + 1)
iq(k + 1)

]
=

[
− Rs

Ld
Ts + 1 ωe Lq

Ld
Ts

−ωe Ld
Lq

Ts − Rs
Lq

Ts + 1

][
id(k)
iq(k)

]
+

[ Ts
Ld

0
0 Ts

Lq

][
vd(k)
vq(k)

]
−
[

0
ωeψm

Lq
Ts

]
(6)

where Ts is the sampling time used to acquire the data.

2.3. Transmission Model

This study proposes a general approximation of the mechanical transmission model
instead of the fault transmission model. It is aimed to utilize this model to describe the
dynamic input–output relationship of the inspected system for different transmission
configurations and faults. Hence, the parameter deviation of the approximated model is
observed instead of looking at the fault model structure as in general model-based FDI
in this study. The mechanical transmission is approximated by using two mass–spring–
damper systems, as shown in Figure 2. The gears are assumed ideal with no backlash. In
Figure 2, the torques in the transmissions are derived as the following,

TSha f t = J1
d2

dt2 θ1 + B1
d
dt

θ1 + TL (7)

TL = T2
θ2

θ1
=

θ2

θ1
(J2

d2

dt2 θ2 + B2
d
dt

θ2 + Kθ2) =
θ2

2
θ2

1
(J2

d2

dt2 θ1 + B2
d
dt

θ1 + Kθ1) (8)

where TSha f t and TL are the shaft and the load torques, J1 and J2 are two gears’ inertia,
respectively, B1 and B2 are the friction coefficients associated to each shaft, K is the spring
coefficient at the load gear, and θ1 = θm is the rotor angular position. In addition, the ratio
of the radii is inversely proportion to the ratio of the gear teeth number such that θ2

θ1
= N1

N2
.

Figure 2. Mass–spring–damper approximation model for transmission.

Substitute Equation (8) into (7) and replace the the ratio of the radii by the ratio of the
gear teeth numberl; then, it arrives at,

TSha f t = (J1 + J2
N2

1
N2

2
)

d
dt

ωm + (B1 + B2
N2

1
N2

2
)ωm + K

N2
1

N2
2

θm (9)

where ωm = d
dt θ1 is the rotor mechanical speed. Since the PMSM runs in a steady-state

condition with constant speed and load, the d
dt ωm = 0. Moreover, TSha f t is estimated

through the linear relationship between the actual and the rated torque power as follows,

TSha f t =
TRated
PRated

PIn (10)

Then, by setting the BGT = B1 + B2
N2

1
N2

2
and KGT = K N2

1
N2

2
, Equation (9) is simplified and

is expressed in the discrete-time domain as the following,
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TSha f t(k) = BGTωm(k) + KGTθm(k) (11)

Because the PMSM used in this study has four pole pairs, ωm(k) and θm(k) are ob-
tained by,

ωm(k) =
1
4

ωe(k) θm(k) =
1
4

θe(k) (12)

where ωe(k) and θe(k) are estimated through the Phase-Locked Loop (PLL), as shown
in Figure 3. The lumped parameters BGT and KGT are therefore estimated through the
relationship shown in Equation (11).

Figure 3. PLL block diagram.

3. A Systematic Model-Based Fault Diagnosis Scheme
3.1. Parameter Estimation via Recursive Least Square

To estimate the model parameters of Equations (6) and (11) using the RLS algorithm,
the models have to be arranged as the regression models first. Equation (6) can be divided
into two regression models according to the d-axis and the q-axis as the following,

id(k + 1) =
[
iq(k) id(k) vd(k)

]
ωe Lq

Ld
Ts

− Rs
Ld

Ts + 1
Ts
Ld

 (13)

iq(k + 1) =
[
iq(k) id(k) vq(k) ωe

]

− Rs

Lq
Ts + 1

−ωe Ld
Lq

Ts
Ts
Lq

−ψm
Lq

Ts

 (14)

Meanwhile, the torque regression model in Equation (11) can be described as follows,

TSha f t(k) =
[
θm(k) ωm(k)

][KGT
BGT

]
(15)

In this study, the RLS algorithm will be implemented to estimate the parameters
in Equations (13)–(15). Generally, the estimation problem can be defined as: using the
dataset

{
(x(k), y(k)) k = 1, 2, . . . , N

}
and the RLS algorithm, estimate the parameters Θ.

The problem definition before performing the RLS algorithm is presented in Table 1.
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Table 1. The RLS algorithm problem definitions in this study.

Problems Output Input Parameters

RLS 1 (Equation (13)) y1(k) = id(k + 1) x1(k) =
[
iq(k) id(k) vd(k)

]
Θ1 =


ωe Lq

Ld
Ts

− Rs
Ld

Ts + 1
Ts
Ld


RLS 2 (Equation (14)) y2(k) = iq(k + 1) x2(k) =

[
iq(k) id(k) vq(k) ωe

]
Θ2 =


− Rs

Lq
Ts + 1

−ωe Ld
Lq

Ts
Ts
Lq

−ψm
Lq

Ts


RLS 3 (Equation (15)) y3(k) = Tsha f t(k) x3(k) =

[
θm(k) ωm(k)

]
Θ3 =

[
KGT
BGT

]

The RLS algorithm to estimate the parameters Θ̂ can be expressed as follows,

Θ̂i(k + 1) = Θ̂i(k) + K(k + 1)[yi(k + 1)− xi(k + 1)Θ̂i(k)] (16)

with
K(k + 1) = P(k)xT

i (k + 1)[xi(k + 1)P(k)xT
i (k + 1) + W−1]−1 (17)

P(k + 1) = P(k)− K(k + 1)xi(k + 1)P(k) (18)

where subscript i = 1, 2, 3 denotes the RLS algorithm problem definition in Table 1. The
RLS algorithm procedures can be implemented as a pseudocode in Algorithm 1.

Algorithm 1 RLS algorithm

1: initialization: a dataset
{

xi(k), yi(k) k = 1, 2, . . . , N
}

; initial parameter Θ̂(0);
weight W; and initial covariance matrix P(0)

2: for k = 0, 1, 2, 3, . . . , N − 1 do
3: K(k + 1) = P(k)xT

i (k + 1)[xi(k + 1)P(k)xT
i (k + 1) + W−1]−1

4: P(k + 1) = P(k)− K(k + 1)xi(k + 1)P(k)
5: Θ̂i(k + 1) = Θ̂i(k) + K(k + 1)[yi(k + 1)− xi(k + 1)Θ̂i(k)]
6: end for
7: The final estimated parameter is Θ̂i(k) when the index k = N

3.2. Baseline Model and Residual Current Spectrum Threshold

A dataset of m measurements of the PMSM voltage and current signals in healthy
condition is collected. Based on Figure 1a, the lumped parameters are estimated from the
measured voltage and current signals. The procedure is presented in Algorithm 2 for loop
lines 4 to 8. It requires Algorithm 1 to execute that for loop. After that, the identified lumped
parameters are averaged to obtain a single value for each lumped parameter, as presented
in Algorithm 2 line 10. The averaged lumped parameters are used to construct the baseline
model using Equation (6). Then, a set of m residual current spectrum is generated using the
baseline model from Algorithm 2. The residual current spectrum generation is presented in
Algorithm 3 lines 3 to 9. It is important to note that in line 7, only the residual phase A is
selected to generate the residual current spectrum threshold. It is not a requirement to use
all the three phase residual current signals. A mean and a standard deviation are calculated
from this set of residual current spectrum data. Finally, two different level thresholds are
constructed from the residual current spectrum mean and the standard deviation data. The
threshold construction is presented in Algorithm 3 lines 10 to 13.
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Algorithm 2 Baseline model identification

1: initialization: m dataset
{

vd(k), vq(k), id(k), iq(k) k = 1, 2, . . . , N
}

; and ωe;
2: set the problem definition of RLS 1 and RLS 2 as in Table 1
3: set matrix H = zeros(7, m)
4: for j = 1, 2, 3, . . . , m do
5: estimate parameters Θ̂1 ∈ R3×1 for RLS 1 via Algorithm 1
6: estimate parameters Θ̂2 ∈ R4×1 for RLS 2 via Algorithm 1

7: update matrix H(:, j) =
[

Θ̂1
Θ̂2

]
8: end for
9: The final matrix H ∈ R7×m

10: calculate Θmean =


1
m ∑m

j=1 H(1, j)
...

1
m ∑m

j=1 H(7, j)

 ∈ R7×1 . identified parameters mean

11: input Θmean as the parameters for Equation (6) . PMSM baseline model

Algorithm 3 Residual current spectrum threshold development

1: initialization: m dataset
{

vd(k), vq(k), id(k), iq(k) k = 1, 2, . . . , N
}

; ωe; and esti-
mated parameters Θ

2: set matrix R = zeros(p, m)
3: for j = 1, 2, 3, . . . , m do

4: calculate
[

îd(k)
îq(k)

]
using Equation (6) with parameters Θ

5: calculate
[

rd(k)
rq(k)

]
=

[
id(k)
iq(k)

]
−
[

îd(k)
îq(k)

]
6: calculate

ra(k)
rb(k)
rc(k)

 = T−1
αβ0Tdq(θe(k))−1

rd(k)
rq(k)

0


7: calculate Ra( f ) = fft(ra(k)) via FFT . residual current spectrum
8: update matrix R(:, j) = Ra( f )
9: end for

10: calculate R̄ =


1
m ∑m

j=1 R(1, j)
...

1
m ∑m

j=1 R(p, j)

 ∈ Rp×1 . residual current spectrum mean

11: calculate Rσ =


√

1
m−1 ∑m

j=1(R(1, j)− R̄1)

...√
1

m−1 ∑m
j=1(R(1, j)− R̄p)

 ∈ Rp×1 . residual current spectrum

standard deviation
12: calculate TH2σ = R̄ + 2× Rσ, where TH2σ ∈ Rp×1 . 2σ threshold
13: calculate TH3σ = R̄ + 3× Rσ, where TH3σ ∈ Rp×1 . 3σ threshold

3.3. Parameter Clustering

In addition to the residual current spectrum analysis, the parameter clustering is
included in the proposed PMSM transmission FDI, as shown in Figure 1c. According to
Equations (13) to (15), there are in total nine lumped parameters that can be identified
from the measured data. Considering that many of the true physical values are nontrivial
to recover precisely due to the non-linearity, one electrical lumped parameter and one
mechanical lumped parameter are chosen to form the parameter cluster. Because the d-axis
is used as the reference in the synchronous dq-frame transformation, the d-axis current is
zero. It is thus desirable to choose the lumped parameter that is unrelated to the d-axis. The
electrical lumped parameter Ts

Lq
is chosen from Equation (14), and it is recovered trivially.
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Moreover, because the fault in transmission affects the friction coefficient, the mechanical
lumped parameter BGT is chosen from Equation (15).

Firstly, a set of m healthy data is measured. The lumped parameters Ts
Lq

and BGT are
estimated from this healthy dataset, as shown in Algorithm 4 lines 6 to 10. Finally, the
parameter cluster plot is then generated. From this cluster plot, the 95% confidence range
is calculated to generate the healthy condition boundary. This process is presented in
Algorithm 4 lines 11 to 12. It is therefore that any condition will be considered faulty if the
chosen parameter values are located outside the confidence span.

Algorithm 4 Healthy parameter confidence interval

1: initialization: m dataset
{

va(k), vb(k), vc(k), ia(k), ib(k), ic(k) k = 1, 2, . . . , N
}

; This
dataset is obtained from a normal condition PMSM

2: obtain ωe and θe using PLL, then, calculate ωm = 1
4 ωe, and θm = 1

4 θe

3: calculate TSha f t =
TRated
PRated

PIn

4: calculate

id(k)
iq(k)
i0(k)

 = Tdq(θe(k))Tαβ0

ia(k)
ib(k)
ic(k)

, and

vd(k)
vq(k)
v0(k)

 = Tdq(θe(k))Tαβ0

va(k)
vb(k)
vc(k)


5: set the problem definition of RLS 2 and RLS 3 as in Table 1
6: for j = 1, 2, 3, . . . , m do
7: estimate parameters Θ̂2 ∈ R4×1 for RLS 2 via Algorithm 1
8: estimate parameters Θ̂3 ∈ R2×1 for RLS 3 via Algorithm 1
9: get Ts

Lq
from Θ̂2(3, j), and BGT from Θ̂3(2, j)

10: end for
11: create cluster plot via scatter( Ts

Lq
,BGT)

12: calculate the 95% confidence interval of healthy cluster plot

3.4. Fault Characteristic Frequency Detection

A short periodic impulse occurs in the current signal whenever the driving gear comes
in contact with a damaged tooth in the driven gear. The impulse is modulated around the
fundamental frequency and generates the side-band harmonics [27]. The driving gear fault
characteristic frequency fm is expressed as the following,

fgm =
fe

np

fm = fe ± k fgm

(19)

where fe is the operational frequency and np is the number of the PMSM pole, and
k = 1, 2, . . .. Since there is a changing ratio between the driving and the driven gears,
the gear ratio gr is considered in the driven gear fault characteristic frequency fl calculation
as depicted in the following,

fgl =
fe

grnp

fl = fe ± k fgl

(20)

In contrast to the gear-to-gear direct contacting configuration, the sprocket–chain
configuration has a series chain connecting the driving and the driven sprockets. The
literature rarely studies the sprocket–chain transmission fault. On the other hand, the
sprocket–chain transmission has a similar mechanical configuration as the belt–pulley
transmission. Thus, the chain fault characteristic frequency is depicted based on the belt
fault characteristic frequency as following [28],

fch =
2πrm fr

lch
(21)
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where fr is the driving gear rotation frequency, rm is the driving gear radius, and lch is the
chain length. Due to the similar physical phenomena to the gear set, the sprocket fault
characteristic frequency in the spectrum is described using the formula from the gear fault
characteristic frequency,

fsc = fe ± k fch (22)

4. Experimental Setup
4.1. PMSM Load Experimental Platform

The driving motor used in this study is a Chicony PMSM. The PMSM motor has a
built-in variable frequency drive with a closed-loop speed controller. Another Chicony
PMSM without an inverter is configured as a driven motor on the load side. The driven
motor is connected to the electrical load resistance and serves as a generator to simulate
various operation load conditions. In this study, the driving PMSM is operated in 100 Hz
operation frequency and reaches 80% load condition by changing the load resistance value,
as shown in Figure 4. The driving and the driven motors’ rated specifications are shown in
Table 2. The signal data acquisition process is accomplished by using a 24-bits NI-9244 card
for the three-phase voltage signal acquisition and a 24-bits NI-9239 card for the three-phase
current signal acquisition. The NI data acquisition cards are set at a 25 kHz sampling
frequency. The data acquisition interface is programmed using the NI LabVIEW.

Figure 4. PMSM load experimental platform.

Table 2. Driving and driven PMSM rated specifications.

Parameters Driving PMSM Driven PMSM Units

Rated Voltage 380 380 Volt
Rated Current 6.6 8.3 Amp
Rated Power 2.2 3.7 kW
Rated Speed 1500 1500 RPM
Rated Torque 14 23.6 Nm

Poles 4 4 pair
Efficiency 89.4 91.9 %

4.2. Transmission Faulty Specimens

The faults in two types of transmission configuration, being gear-to-gear and sprocket–
chain, are experimented. As shown in Figure 5, three fault conditions have been tested for
the gear-to-gear transmission, including slight wear at one of the driven gear teeth, severe
wear along the surface on one of the driven gear tooth, and no lubricant condition. For
the sprocket–chain configuration shown in Figure 6, three experimented fault conditions
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are slight wear at one of the driven gear teeth, one missing tooth at the driven gear, and
chain alignment offset from the driving gear to the driven gear. The gear specifications
for the gear-to-gear and the sprocket–chain are listed in Table 3. According to Table 3, the
gear-to-gear ratio and the sprocket–chain ratio between the driving and the driven gears
are 1:2. In the fault experiments, the PMSM load is fixed at 80%.

Figure 5. Gear-to-gear faults: (a) slightly worn damage at a tooth of the driven gear; (b) severely
worn damage along a tooth of the driven gear; (c) no lubricant at both the driving and driven gear.

Figure 6. Sprocket–chain faults: (a) chain offset from the driving gear to the driven gear; (b) slightly
worn damage at a tooth of the driven gear; (c) one missing tooth of the driven gear.

Table 3. Gear-to-gear and sprocket–chain specifications.

Driving Gear Driven Gear Units

gear-to-gear
No. teeth 20 40 -

Pressure angle 20 20 ◦

Gear module 2 2 -

sprocket–chain
No. teeth 15 30 -

Pitch circle
diameter 45.81 91.12 mm

Chain length 423 mm

5. Results and Discussions
5.1. Fault Detection and Identification

The current spectrum of PMSM with the gear-to-gear transmission under healthy
condition is shown in Figure 7a. Certain side-bands are observed and verified to be
related to the driven gear characteristic frequency fe ± k fgl . The presence of these feature
frequencies in the current spectrum is reasonable because of the dynamic interaction
between two gears and the inevitable tolerance in the gear manufacturing. Due to the lack
of fault threshold standard in MCSA, an intuitive evaluation on this current spectrum may
lead to a false diagnosis of the gear-to-gear transmission condition. Therefore, the model-
based approach is proposed and implemented in this study, and a residual current spectrum
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is obtained for the purpose of FDI, as shown in Figure 7b. The residual current spectrum
threshold for healthy data is obtained by using Algorithm 3, and the residual current
spectrum is evaluated based on its standard deviation. From the observation of Figure 7b,
the driven gear characteristic frequency fe ± k fgl is less than the 2 standard deviation
threshold (TH2σ). Thus, it implies a healthy condition. A more detailed comparison
between MCSA and the model-based approach for electric motor fault diagnosis can be
found in [21].

Figure 7. Gear-to-gear spectrum: (a) motor current spectrum; (b) residual current spectrum.

Three different fault conditions are experimented for gear-to-gear transmission, as
shown in Figure 5, and their residual current spectrum result is presented in Figure 8.
Figure 8a shows the residual current spectrum of a slightly worn fault in one of the driven
gear teeth. It can be seen that fe ± k fgl at 87.5 Hz and 112.5 Hz have amplitudes higher
than TH2σ but below TH3σ. In comparison to the slightly worn fault, peaks at fe ± k fgl at
75 Hz, 87.5 Hz, 112.5 Hz, and 125 Hz have amplitudes higher than TH3σ for the severely
worn fault, as shown in Figure 8b. In no lubricant fault, the signature peak of fe ± k fgl has
a higher peak than the TH3σ at 75 Hz and 125 Hz, as seen in Figure 8c.

Figure 8. Gear-to-gear fault residual current spectrum: (a) slightly worn damage at a tooth of the
driven gear; (b) severely worn damage along a tooth of the driven gear; (c) no lubricant at both the
driving and driven gear.

As shown in Figure 1, the proposed FDI scheme also includes parameters clustering.
For all gear-to-gear fault cases, a comparison of identified lumped parameter values be-
tween 30 healthy and 30 fault data is demonstrated. From the set of 30 healthy data, a
95% confidence span of parameter cluster is generated using Algorithm 4. As shown in
Figure 9, the identified lumped parameter values from healthy data are represented as the
green circles, and the faulty data values are represented as the red crosses. For the slightly
worn driven-gear fault, the faulty parameter cluster almost overlaps the healthy confidence
span, as seen in Figure 9a. It implies that the slight wear damage is not severe enough and
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just incipient. Thus, it could not be detected using the parameter clustering. This is also
confirmed by the residual current spectrum, as the fe ± k fgl amplitudes are higher than
TH2σ but lower than TH3σ. For the severely worn fault in Figure 9b, it is observed that
the faulty parameter cluster lies almost outside of the healthy confidence span. Moreover,
for the no-lubricant case in Figure 9c, the faulty parameter cluster is located in a distinct
distance outside the healthy confidence span. Since there is no lubricant in both the driving
and the driven gears, the friction force between these gears has increased. As a result, the
friction-related parameter is identified as higher than that in the healthy condition. The
friction-related parameter BGT causes the distinct distance between the healthy and faulty
parameter clusters in Figure 9c.

Figure 9. Gear-to-gear fault parameter clustering: (a) slightly worn damage at a tooth of the driven
gear; (b) severely worn damage along a tooth of the driven gear; (c) no lubricant at both the driving
and driven gear.

The conditions for the three different sprocket–chain faults are shown in Figure 6. The
residual current spectrum result of the chain offset fault is shown in Figure 10a. The fault
signature of fe ± k fgl has a peak higher than TH3σ at 87.5 Hz and also a peak of fe ± k fch
higher than TH3σ at 117 Hz, as seen in Figure 10a. The residual current spectrum of a
slightly worn fault in the sprocket shows no clear signature that is higher than TH2σ or
TH3σ, as seen in Figure 10b. The slightly worn fault is considered incipient to generate a
signature amplitude higher than the threshold in the experiment. On the other hand, in
the case of one missing tooth, the residual current spectrum shows that the signature of
fe ± k fgl has peaks higher than TH3σ at 75 Hz, 87.5 Hz, and 125 Hz, as seen in Figure 10c.
It is also observed that the peaks of signature fe ± k fch are higher than TH3σ at 74.4 Hz,
83 Hz, 91.5 Hz, 117 Hz, and 125.6 Hz.

Figure 10. Sprocket–chain fault residual current spectrum: (a) chain offset from the driving gear to
the driven gear; (b) slightly worn damage at a tooth of the driven gear; (c) one missing tooth of the
driven gear.
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Based on Figure 11a, the parameter cluster of the chain offset fault lies outside of the
healthy confidence span. A similar phenomenon also happened to the slightly worn tooth
and one missing tooth faults. The parameter cluster lies outside the healthy confidence
span for both faults, as shown in Figure 11b,c. As seen from the residual current spectrum
for the slightly worn faults, the signature peaks are low in the magnitude as well. The same
information is also concluded using the parameter clustering, as the distance between the
faulty parameter cluster and the healthy confidence span is closer. However, the faulty
parameter cluster lies outside the healthy confidence span. Meanwhile, the missing tooth
case is severe enough to establish a distinguishable distance of the fault parameter cluster.
In the case that the sprocket–chain fault is incipient and the residual current spectrum fails
to detect the this fault, the parameter clustering approach provides better sensitivity to
detect the fault because the identified mechanical related parameter BGT is strongly linked
to the friction coefficient.

Figure 11. Sprocket–chain fault parameter clustering: (a) chain offset from the driving gear to the
driven gear; (b) slightly worn damage at a tooth of the driven gear; (c) one missing tooth of the
driven gear.

Table 4 shows the summary of the FDI results for the experimented gear-to-gear and
sprocket–chain faults. In the residual current spectrum, the warning is above the TH3σ,
and the caution is above the TH2σ but below the TH3σ. In the parameter cluster, the
warning means that the fault parameter cluster lies outside the healthy confidence span. It
can be observed that the combination of the residual current spectrum threshold and the
parameter cluster helps to define the FDI decision confidently. For example, in the case of
slightly worn faults in gear-to-gear where the damage is incipient, the parameter cluster
fails but the residual current spectrum shows a caution alarm. In the case of a slightly worn
fault in the sprocket–chain where the damage is incipient, the residual current spectrum
threshold fails but the parameter cluster shows a warning alarm. When the damage is
severe enough, both the residual current spectrum threshold and parameter cluster show
the same warning alarm.

Table 4. The summary of gear-to-gear and sprocket–chain transmissions FDI results using residual
current spectrum threshold and parameter cluster.

Transmission Fault Load Residual Current Spectrum Parameter Cluster

gear-to-gear
slightly worn 80% caution normal
severely worn 80% warning warning
no lubricant 80% warning warning

sprocket–chain
chain offset 80% warning warning

slightly worn 80% normal warning
one missing tooth 80% warning warning
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5.2. Load Variations

The PMSM operating condition discussed in this study is a steady-state condition
with constant operating speed and load. In this case, the PMSM is assumed to be a linear
time-invariant system, as shown in Equation (6). However, the parameters presented in
Equation (6) indeed vary with different operating conditions. It is observed from Figure 12
where the lumped parameter values of the PMSM for three different load conditions
are identified. The lumped parameter values are presented in 58%, 73%, and 80% load
conditions. This load change is done by adjusting the resistance value of the variable
resistors in Figure 4. During the load change, the PMSM operating speed is kept constant
at 1500 RPM.

It is observed that all the PMSM model lumped parameters vary according to the load
conditions in Figure 12. Therefore, a specific parameter set identified under a particular
load condition should only be used in the model to represent that specific load condition.
Table 5 shows the residual fitting error between the measured signal and the estimated
signal at particular load conditions. If the fitting residual error is small, it implies that the
model is proper to describe those load conditions. This result demonstrates that a proper
model must be cautiously selected according to the operation condition. In a broad sense,
the selection is applied to the model and the residual current spectrum threshold. The
residual current spectrum threshold must be determined for a specific load condition using
a specific model identified under that load. Thus, the solution presented in this study is
limited only to a steady-state operating condition. The future development will be carried
out for transient and more dynamic operating conditions.

Figure 12. Identified PMSM lumped parameters with gear-to-gear transmission in 58%, 73%, and
80% load conditions: (a) − Rs

Lq
Ts + 1; (b) −ωe Ld

Lq
Ts; (c) Ts

Lq
; (d) ωe Lq

Ld
Ts; (e) − Rs

Ld
Ts + 1; (f) Ts

Ld
.

Table 5. Residual RMSE comparison of gear-to-gear transmission measured signal and estimated
signal based on the load conditions.

58% Load Estimated
Signal

73% Load Estimated
Signal

80% Load Estimated
Signal

58% Load Measured Signal 2.77% 5.73% 7.85%
73% Load Measured Signal 7.32% 2.11% 4.18%
80% Load Measured Signal 16.76% 5.58% 1.90%
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6. Conclusions

For a PMSM with mechanical transmission, the transmission fault characteristic fre-
quencies in the current spectrum are inevitable due to the dynamic interaction between
two or more gears and sprockets. The conventional MCSA may lead to false diagnosis due
to its lack of fault magnitude threshold standards. Through the residual current spectrum
threshold, the fault characteristic frequencies magnitude is easily evaluated. The fault
detection can also be accomplished through the parameter value monitoring. Combining
electrical and mechanical lumped parameters, these parameters are visualized as a cluster
to differentiate the normal and the faulty conditions. Three different fault conditions are
experimented for gear-to-gear and sprocket–chain transmissions to evaluate the proposed
method. The results demonstrate that the combination of the residual current spectrum
threshold and the parameter cluster can be used for fault diagnosis decisions and has
achieved satisfactory results.

This study is limited to the steady-state conditions with constant speed and load.
Based on the presented results, the estimated model parameters will also change as the load
conditions change. Thus, for PMSMs with the transient conditions where the operating
condition is varying in a short time, this solution may not be applicable. However, this
study still provides insights especially in regard to the sensitivity compared to MCSA and
the load influence, and it can be used as a reference in developing the model-based FDI
for PMSM in transient conditions. In the future, the PMSM will be operated in different
operating frequencies and loads. A set of the healthy state-space model and the residual
current spectrum threshold will be identified and generated for each combination of the
operating frequency and load. Then, the set of the state-space and the current spectrum
residual threshold will be selected based on the operating frequency and load of the data
utilized. This approach is similar to the gain scheduling in the adaptive control method.
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