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Abstract: Acquiring high-fidelity 3D models from real-world scans is challenging. Existing shape
completion-methods are incapable of generating details of objects or learning complex point dis-
tributions. To address this problem, we propose two transformer-based point-cloud-completion
networks and a coarse-to-fine strategy to extract object shape features by way of self-attention (SA)
and multi-resolution (MR), respectively. Specifically, in the first stage, the model extracts incom-
plete point-cloud features based on self-attention and multi-resolution encoders and predicts the
missing partial with a set of parametric surface elements. Then, in the second stage, it merges the
coarse-grained prediction with the input point cloud by iterative furthest point sampling (IFPS), to
obtain a complete but coarse-grained point cloud. Finally, in the third stage, the complete but coarse
point-cloud distribution is improved by a point-refiner network based on a point-cloud transformer
(PCT). The results from comparison to state-of-the-art methods and ablation experiments on the
ShapeNet-Part dataset both verified the effectiveness of our method.

Keywords: point-cloud completion; self-attention (SA); multi-resolution (MR); iterative furthest-point
sampling (IFPS); point-cloud transformer (PCT)

1. Introduction

With the development of computer vision, 3D vision has attracted growing attention
in the artificial intelligence field [1,2]. The 3D applications that have emerged and ae used
in our daily life are enjoying a rising trend, including 3D scene reproduction, virtual reality,
3D facial reconstruction and the Metaverse. Compared to 3D-representation methods
such as multi-view [3,4], volumetric [5–7] and mesh [8–10], point-cloud representations
own a simpler form, require smaller memory usage, and are more compact and versatile;
hence, they are more-commonly used in industry. Raw point-cloud data can be generated
by scanning real-world objects using various scanning devices. However, the limited
accuracy of equipment, manual errors and object occlusion can lead to the corruption of
point-cloud data during the scanning process. For practical applications, it is necessary to
reconfigure structural loss and improve structure quality to restore the original incomplete
point-cloud data.

Due to the sparsity, incompleteness and disorderliness of point clouds, learning
point-cloud representation is challenging. Recently, two typical encoder–decoder models,
the PointNet [11] and PointNet++ [12], have emerged and been successfully applied in
point-cloud completion tasks based on deep-learning methods. However, due to the
limited ability to analyze and generate point clouds, these efforts sometimes produce
distorted results and do not even preserve some of the actual structures shown in the
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input. For instance, when completing a chair with a missing backrest, the above methods
might be able to generate the exceeded shape of the chair (an example shown in Figure 1).
Nevertheless, they ignore the hollow pattern design of the backrest or the connector
between the chair legs, which are presented in the input point cloud.

Incomplete

Point Cloud

Predicted Whole 

Point Cloud
Ground Truth

Figure 1. The overall point-cloud structure of the object is outputted directly from the trained neural
network. Traditional approach tends to ignore the hollow pattern design on the backrest.

Recently, a series of 3D point-cloud completion methods [13–16] based on PointNet and
PointNet++ have been proposed. For example, the point completion network (PCN) [16]
and morphing and sampling Network (MSN) [14] are both able to generate a completed
point cloud by predicting the missing part, which is based on a two-stage completion
algorithm. At the same time, some previous work, such as GRNet [17], introduced a 3D
grid as an intermediate representation to regularize a disordered point cloud, and proposes
a new grid refiner network for point-cloud completion. TopNet [18] formulated the point-
cloud generation process as the growth of a rooted tree, where one parent point is projected
into several child points in a feature-expansion layer of TopNet. CDN [19] proposed a
cascading thinning network and a coarse-to-fine strategy to synthesize detailed object
shapes. Undeniably, they were unable to avoid the problem of distorted results. However,
PF-Net [15] tried to predict the missing part of the point cloud while keeping the input
incomplete-point-cloud coordinates unchanged. Although the method can improve the
overall point-cloud distribution and narrow the gap between the missing parts and the
original input, gaps are prone to occur between the edges of the input point cloud and the
predicted missing parts, which are negatively smoothed in the final merged point cloud.

To tackle these issues, we propose two 3D local-object point-cloud-completion trans-
former networks based on self-attention (3DPCTN-SAE) and multi-resolution encoders
(3DPCTN-MRE), which complete point-cloud shape completion in three stages. In the
first stage, we extract features of a point cloud based on a self-attention encoder and a
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multi-resolution encoder, respectively, and use a collection of two-manifold-like surface
elements that can be parametrized in 2D to assemble a missing partial point cloud. To pre-
vent the overlapping of surface elements, we use an expansion penalty to induce each
surface element to be concentrated on a local area. The generation of this stage may be
coarse-grained. To this end, in the second stage, we integrate the coarse-grained image
with the input point cloud and use iterative furthest point sampling (IFPS) to obtain a
uniformly distributed subset of the point cloud from the combination. In the third stage,
a point-refiner network based on a point-cloud transformer (PCT) [20] is used to achieve
fine-grained detail by predicting the fine tuning of each point. This solves the problem
of gap production when two point clouds are directly merged. We performed various
experiments on the ShapeNet-Part dataset, demonstrating the state-of-the-art quantitative
and qualitative results of the method. The contributions of this paper can be summarized
as follows:

• Two novel encoders are proposed for better spatial-characteristic extraction from
incomplete point clouds, namely, 3DPCTN-SAE and 3DPCTN-MRE. Compared with
previous methods of locally unorganized complete shape generation, 3DPCTN can de-
code the generation process of missing point clouds into an explicit, locally structured
pattern, thus greatly improving the performance of 3D shape completion.

• We propose a novel PCT-based point-refiner network for fine tuning each point to its
proper position. A PCT-based point-refiner network is introduced to solve the merging
problem between the incomplete and missing point cloud, ensuring that similarity
distribution between the predicted point cloud and missing part is ultimately achieved.

• Experiments show that 3DPCTN-SAE and 3DPCTN-MRE can significantly improve
the ability to extract local context information. Results also show the superiority of
using the PCT-based point-refiner network to local-area refinement as well as shape
integrity.

The rest of this paper is organized as follows: Some related algorithms are reviewed
in Section 2 and the proposed framework of the 3DPCTN is presented in Section 3.
The experimental-performance evaluation and the analysis are presented in Section 4.
Conclusions and discussions are included in Section 5.

2. Related Work

In this section, some related network architectures used for point-cloud completion
and reconstruction are reviewed, including 3D shape completion, point-cloud generation
and point-cloud transformers.

2.1. 3D Shape Completion

With the growth in deep-learning technology, a growing number of outstanding
works on 3D shape completion have appeared. Developing a 3D-voxelized representation
of objects using convolutional neural networks (CNN) was originally proposed in the
computer vision field [5–7,21]. Since the voxelization process demands a significant size
of memory and high computation cost for voxelized representation, these methods are
applicable for low-dimensional voxel grids, and also easily lead to geometric detail loss.
To overcome these drawbacks, most researchers prefer point clouds for 3D completion.
3D point-cloud completion has two mainstream methods: To generate completed point
clouds directly by extracting characteristics of the incomplete one. The other is to extract
the features of the incomplete point cloud, reconstruct only the missing parts of the point
cloud, and then merge the incomplete and missing parts. Yuan et al. [16] and Liu et al. [14]
proposed algorithms that generate coarse point clouds representing the completed point
cloud from the missing point clouds, then up-sampled the coarse point cloud to refine it
through its refining module. The proposed PF-Net [15] preserves the spatial structure of
the original incomplete point cloud and predicts multi-resolution missing point clouds
with a multi-resolution generation network, which enables a more-focused generation of
output point clouds.
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All of the above methods generate complete point clouds by feeding the encoded
global-feature vector to the decoder network. However, they all tend to have defections in
details during the presentation of the whole object surface.

2.2. Point-Cloud Generation

Methods of point-cloud decoding from latent features have not been fully studied
up to now. Fan et al. [22] solved the problem of 3D point-cloud generation from a single
picture using a fully connected layer and 2D deconvolution layer. The two loss functions
proposed by them, i.e., chamfer distance (CD) and earth mover’s distance (EMD), have laid
a foundation for point-cloud generation. LatentGAN [23] was first proposed to introduce a
deep-generative model for a point cloud, followed by numerous models based on feature
vectors and GAN. In addition, FoldingNet [24] introduced a new decoding operation
named folding. During folding operation, a 2D grid is folded and deformed into a 3D
shape, which can generate a continuous and smooth point-cloud structure. PCN [16] further
improved the folding operation by FoldingNet with a fully connected layer, and proposed
a coarse-to-fine point-cloud generator. AtlasNet [25], with learnable parameterization, is
capable of transforming from a set of 2D unit squares to a surface. It is worth mentioning
that Zhao et al. [26] proposed a method that outperformed all other methods in the field
of autoencoders for unstructured 3D data learning. However, due to defects in feature
extraction and decoding in point-cloud generation, it is difficult to achieve perfect point-
cloud generation.

2.3. Point-Cloud Transformer

In consideration of the irregularity and unchangeable nature of 3D point-cloud rep-
resentation, a point-cloud transformer provides an excellent mechanism for data points’
relationships encoding, for which PCT has comfortably prevailed [20,27]. For instance,
Zhao et al. [27] proposed a cloud transformer layer based on a vectorized self-attention
network (SAN) [28], where the weight of attention is determined by vectors. Similar to
Ref. [27], Guo et al. [20] reported a point-cloud transformer affected by the invariance
of a transformer’s arrangement. However, it is more directly based on the conventional
transformer architecture [29] and does not involve vector attention. The key contributions
in Ref. [20] included position coding based on 3D coordinates, an offset-attention module
and neighbor embedding by the local 3D structure of a point cloud. Specifically, the offset-
attention layer applies element-wise subtraction to calculate the differences between the
automatically extracted attention features and the input features. Local neighbor embed-
ding pays attention to the self-attention relationship between a set of points, rather than a
single 3D point cloud.

3. The Proposed Method Overview

Let P be a completed 3D point-cloud shape and assume that P can be divided into two
parts, namely, the incomplete point clouds I and the missing point cloud M, as follows:

P = I ∪M, (1)

where P, I and M all belong to three-dimensional space, and their points are, respectively,
3/2×N, N and 1/2×N. The aim of our method is to estimate the prediction of the missing
part of the point cloud M, denoted as M̂, by extracting the features of the given I, and then
merging both parts as predicted completed point clouds P̂ = I × M̂. The predicted point
cloud M̂ should have a similar density as the input point clouds I and be evenly distributed
so that the details of the object shape can be captured.

The overall network architecture is composed of three stages, as illustrated in Figure 2:
the missing-part prediction stage, merging and sampling stage and PCT-based point refiner
stage. In the first stage, the encoder uses a self-attention and multi-resolution mechanism
to extract the feature vector of the incomplete point cloud I, and then attempts to locally
approximate the target surface by mapping a set of 2D squares to a 3D surface. In the
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second stage, we merge the predicted missing part of the point cloud M̂ with the input
point cloud I to obtain P̂. If the two point clouds are just simply merged, there will be
problems of point distribution and conversion between them. Therefore, this module uses
the recently proposed IFPS to sample P̂ to a uniformly distributed subset point cloud T.
The third stage is to learn a parameter function to improve the sampled point set T. We
use point-refiner network based on PCT to predict the displacement4T to move T to the
desired position to improve the distribution of points within T. The final output is a point
cloud T + µ4T, where µ = 0.15 in our experiment.

Merging 

and 

Sampling

Encoder

Missing 

Part 

Decoder

G
F

V
Refining 

Network

Coarse Output

Missing Part

Ground Truth

Input

Final Output

Ground Truth

𝐿𝑒𝑚𝑑1 𝐿𝑒𝑚𝑑2

Figure 2. Intuitive architecture of the proposed method. It consists of three modules: The missing-
part prediction network uses an autoencoder structure to take the incomplete point cloud I as input
and output the corresponding missing part M̂. The merging and sampling module connects and
samples the incomplete input cloud and the missing part of the prediction. The point-refiner network
improves the distribution of point clouds and narrows the gap caused by merging.

3.1. Missing-Part Prediction Network

The goal of this network is to predict the missing part of the point cloud M given
the incomplete point cloud I as input. In order to improve the efficiency and accuracy of
the network, we used a self-attention encoder (SAE) [20] to extract global feature vectors.
In addition, we also tested the multi-resolution encoder (MRE) [15] to observe the impact
of the encoder on the prediction of the missing part. As for the decoder, we use the
morphing-based decoder proposed by Ref. [14].

3.1.1. Self-Attention Encoder

The structure of 3DPCTN-SAE is shown in Figure 3. The encoder is designed to trans-
form or encode input points into a high-dimensional feature space, which makes it possible
to characterize the semantic similarity between points as various points. The encoder first
embeds the input coordinates in the feature space. Then, it takes the embedded features into
its four consecutively stacked attention modules to learn the rich semantics and distinctive
representation of each point, and, finally, uses the linear layer to generate output features.

Formally, given an input point cloud I ∈ RN×d with N points, each point has a feature
description of d dimensions (d is 3 in the experiments), a de-dimensional embedding feature
Fe ∈ RN×de is first learnt through the input-embedding module. The embedded features
are then fed into the attention layer, which is stacked with four layers, to obtain attention
features Fi of each layer,

F1 = AT1(Fe), (2)

Fi = ATi(Fi−1), i = 2, 3, 4, (3)

where ATi represents the i-th attention layer, i = 1, . . . , 4, the output dimension of each
attention layer is the same as its input dimension. Then, by concatenating the attention
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features of each attention layer for linear transformation, the point-wise do-dimensional
feature Fo ∈ RN×do was output of SAE as follows:

Fo = concat(F1, F2, F3, F4) ·Wo, (4)

where Wo is the weight of the linear layer. More details of various implementations of input
embedding and attention can be found in Ref. [20]. To extract a valid global-feature vector
Fg of the point cloud, we choose to connect a maximum-pooling operator (MP) to learn the
point feature representation:

Fg = MP(Fo). (5)

C Decoder

𝑳𝒆𝒎𝒅𝟏

Attention C Concat
Input
Embedding

G
FA

𝐈
෡𝑴

𝐌
Module SAE

𝐈 ∪ ෡𝑴

N ൗ𝟏 𝟐𝑵 ൗ𝟑 𝟐𝑵

Figure 3. The 3DPCTN-SAE encoder mainly comprises an input-embedding module and four stacked
attention modules. We connect the feature dimensions of the attention output of each attention layer,
and then perform a linear transformation. Finally, a global feature of the missing part of the point
cloud is obtained, which is fed into the missing-part network decoder to obtain a completed shape
point cloud M̂.

3.1.2. Multi-Resolution Encoder

The architecture of 3DPCTN-MRE is shown in Figure 4. We first introduce the feature
extractor of 3DPCTN-MRE, namely, combined multi-layer perception (CMLP). Convention-
ally, the feature extractor in the encoder is to use a multi-layer perceptron (MLP) structure
similar to PointNet. This type of method maps each point to a three-dimensional space,
and extracts the maximum value from the final multi-dimensions to form a global feature
vector. However, this type of method does not make good use of the rich local information
of the low-level and middle-level features. In the CMLP [15], MLP is also used to encode
each point of the point cloud into multiple dimensions [64, 64, 128, 256, 512, 1024]. Dif-
ferently to PointNet, CMLP performs max pooling on the output of the last four layers of
MLP to obtain a multi-dimensional feature vector fi, where the dimensions of fi are [128,
256, 512, 1024], i = 1, . . . , 4. Then, we connect all the multi-dimensional features to form a
combined feature vector Fj, which can be represented as:

Fj = concat( f1, f2, f3, f4), j = 1, 2, 3 (6)

where the dimension of Fj is 1920, which contains both low-level and high-level
feature information.

The input of multi-resolution encoder is also an N × 3 unordered point cloud. We
sample the input point cloud by IFPS to obtain two other scales with different resolutions,
where the sizes are (N/x)× 3 and (N/x2)× 3 (x = 2 in the experiments). Since applying
these three incomplete point clouds with different resolutions into three CMLPs will
lead to three sets of features with different resolutions, we use the above MRE data-
dependent method to obtain the feature points of different input scale-point sets to help the
encoder focus on those more representative points. These three point clouds with different
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resolutions will be mapped to three independent combined-feature vectors Fj by CMLP,
where j = 1, 2, 3. Each vector Fj represents the features extracted from the point cloud at
a certain resolution of [2048, 1024, 512]. Then all Fj are connected to form a dimension of
1920× 3, which is expressed as Fo:

Fo = concat(F1, F2, F3). (7)

Then, we use MLP to integrate the feature-vector mapping into the global feature vector Fg,
whose size is 1920:

Fg = MLP(Fo). (8)

Decoder

𝑳𝒆𝒎𝒅𝟏
IFPS

IFPS

Down
Sampling

Down
Sampling

C
M

L
P

C
M
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ൗ𝟑 𝟐𝑵
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Figure 4. The 3DPCTN-MRE encoder first performs IFPS sampling on the input point cloud to obtain
multi-scale features with resolution of [2048, 1024, 512]. Then, multi-scale feature representations are
fed into the missing-part network decoder to obtain a completed shape point cloud M̂.

3.1.3. Missing-Part Network Decoder

The decoder converts the feature vector Fg into the required missing-part point cloud.
The dimension of the missing part of the point cloud to be output is expressed as X × 3,
(X = 1/2N). To improve the overall architecture performance, morph-based decoder
(MBD) is used as the decoder; the architecture is described in Ref. [14]. The decoder consists
of K (as per setting in Ref. [14], K = 16) surface morph-based networks to generate complex
shapes. It is expected that the shape of each surface generated by the morph-based network
will be concentrated on a relatively simple local area, thus making the generation of local
surfaces easier. Therefore, the MBD is more suitable for our goal of generating partially
missing point clouds. Each element of the network output is a map of a 2D square to a 3D
surface. Each 2D surface is randomly extracted from the unit square [0, 1]2, and then an
MLP is used to map them to a 3D surface. The perceptron is used to mimic a 2D square
morphing into a 3D surface. In each forward transmission, we randomly sample X/K
points from the unit square. Then, before passing feature as an input to the K MLPs, we first
connect the feature vector Fg with the 2D point. Each sampled 2D point will be mapped
to K 3D points located on K different surface elements. As a result, point cloud with a
predicted shape of K · X/K = X points is output in each forward direction. Since MLP
learns continuous mapping from 2D to 3D, the decoder can generate a smooth surface by
densely sampling on 2D, and this method can combine the results of multiple forward
passes to generate point clouds with arbitrary resolutions.

Since the MLP in AtlasNet does not explicitly prevent the generation of point clouds
with the same coordinates, overlap or excessive dispersion between surface point clouds
are inevitable. This can also cause surface elements to expand and cover a larger area,
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which makes it more difficult to deform 2D squares and capture local details. To this end,
we use an expansion penalty loss Lexpansion [14] as a regularizer for surface elements. It
makes every surface element compact and concentrated in a local area. As the expansion
penalizes loss, the overlap between the surface elements is reduced. Therefore, it allows
each surface element to generate a more flexible shape. Finally, the size of the missing-part
point cloud M̂ predicted by the encoder is 1/2× N × 3.

3.2. Merging and Sampling

Using an MBD, we can generate a smooth point cloud that predicts the shape of the
missing part. However, due to its limited capabilities, the decoder may ignore certain
structures, such as relatively subtle shapes that cannot be reconstructed, incomplete point
cloud I and the predicted missing part of the point cloud M̂ with different densities
and uneven distributions. The uniformity problem will make the final merged structure
unrealistic. At the same time, fixed-size surface elements are not flexible enough for
fine-grained local details.

By connecting the input point cloud I to the missing part of the point cloud M̂ and
the result of the connection is a point cloud I ∪ M̂ with a size of 3/2× N × 3, we realize
that there are two problems with the connection. First, the density of the missing part
of the point cloud M̂ is higher than the density of the input point cloud I, because the
missing part of the point cloud M̂ is only a small area, but there is half number of the
points to the input point cloud I. Secondly, the size of our spliced point cloud does not
match the size of the ground truth. To solve these problems, we use sampling methods
to adjust the point distribution and the size of the merged point cloud. Since the density
of the two point clouds may be different and they may overlap, the merged point cloud
may be unevenly distributed. Therefore, we hope to sample a subset of point clouds with a
uniform distribution from the combination. Thus, we use IFPS, as it has been effectively
applied in PointNet++ [12]. After sampling I ∪ M̂ using IFPS, T with a size of N is obtained.
The architecture of our merging and sampling is shown in Module A of Figure 5.

PCT 
Network

𝑳𝒆𝒎𝒅𝟐

𝐓 + 𝛍∆𝐓

𝐏

𝛍

Module B 

𝑰𝑭𝑷𝑺

𝐈 ∪ ෡𝑴

𝐓

Module A

ൗ𝟑 𝟐𝑵

𝑵

Figure 5. The architecture of our merging and sampling (Module A) and point-refiner network
(Module B).

3.3. Point-Refiner Network (PRN)

As a concatenation of the incomplete input I and the missing part of the prediction
M̂ may create a visible gap in the final point cloud, the goal of our refining network is
to solve this problem by smoothing the transition between the two merged point clouds.
In addition, the refined network can also enhance the final distribution of the point cloud
in the object. Module B in Figure 5 shows the abbreviated structure of the PRN. It mainly
contains PCT modules. The architecture of the PCT is shown in Figure 6.
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C
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Attention C ConcatInput
Embedding

R Repeat
Point
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Global
Feature

LBRD LBR LinearMA-Pool

Figure 6. The architecture of PCT. The encoder consists of an input-embedding module and four
stacked attention modules. The decoder comprises multiple linear layers. MA-Pool concatenates
MP and AP. LBR combines Linear, BatchNorm and ReLU layers. LBRD means LBR followed by a
Dropout layer.

The encoder in PCT functions similar to the SAE in self-attention encoder, but the
global feature vector is not just Fo pass MP. The maximum feature vector Fm and the average
feature vector Fa will be generated by Fo, respectively, fed-MP and average-pooling (AP)
learning. Specifically, we choose to connect the output of two pooling operators: MP and
AP operator in the cloud-point-feature-representation learning process. Both the maximum
pooling feature and the average pooling features are repeated N times, then we connect
them to obtain the global feature Fg. Next, we connect the global feature Fg with the point-
wise feature Fo, and then obtain the final completed point cloud after three one-dimensional
convolutions. At this stage, we move the predicted missing part of the point cloud to
a reasonable position, which preserves the completeness of the features of the original
predicted missing part of the point cloud.

PRN is to learn a parameter function to improve the sampled point set T. We use the
PCT network to predict the displacement 4T to move T to a more desirable position to
improve the distribution of points within T. The final output is a point cloud T + µ4T,
where µ ∈ [0, 1] is a hyper-parameter that controls the amount of displacement we intend
to maintain. In our experiments, µ = 0.15, which ensures that the shape of the original
point cloud is not seriously changed. The displacement 4T is obtained by using the
PCT network.

3.4. Loss Function

The existing similarity indicators mainly include chamfer distance (CD) and earth
mover’s distance (EMD). For two point clouds S1 and S2, CD measures the average distance
from each point in S1 to the nearest neighbor in S2 space, added with the average distance
from each point in S2 to the nearest point in S1 space.

LCD(S1, S2) =
1
2
(

1
S1

Σx∈S1 min
y∈S2
‖x− y‖) + 1

S2
Σy∈S2 min

x∈S1
‖x− y‖). (9)

In contrast, EMD is a metric between two distributions, only when S1 and S2 have the
same size, based on the minimum cost of converting one distribution to the other. Given
two point clouds of the same size, the definition of EMD is as follows:

LEMD(S1, S2) = min
ϕ:S1→S2

1
S1

Σx∈S1‖x− ϕ(x)‖2, (10)

where ϕ is a bijective function. Due to the lower computational cost of CD, most of
the existing works use CD as their loss function. However, CD turned a blind eye to
certain visual disadvantages. The output points of general point-cloud autoencoders are
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often over-filled in parts of huge volume, i.e., the top of a table, and the details of the
variable part are always blurred. However, it is difficult for CD to penalize this type of
deception, because one of these types of deception may increase very little, and the other
may be negligible.

EMD provides better reconstruction results attributed to its one-to-one mapping.
By solving the linear-distribution problem, EMD forces the output to have the same density
distribution as the ground-truth value, so that the local details and density distribution
have better fidelity. In our paper, we use the EMD implemented in [14], which has an O(n)
memory footprint and takes up less computational cost.

In the proposed architecture, we calculated the losses of both the missing-part predic-
tion network and the point-refiner network. The first loss calculates the EMD between the
predicted missing point cloud M̂ and the missing ground truth point cloud M. The second
loss is the EMD between the more refined point cloud P̂ and the completed ground-truth
point cloud P. Our final joint loss can be expressed as:

L = LEMD(M̂, M) + Lexpansion + LEMD(P̂, P). (11)

The EMD term and the extended penalty work in opposite directions. The former
encourages the point cloud to cover the shape of the entire object; the latter, as an adjust-
ment, encourages each surface element to shrink. The mutual restraint allows each surface
element to be concentrated in a local area, each element stays as close as possible to the
ground-truth value.

4. Experimental Results and Analysis
4.1. Data Generation and Implementation Details

Our evaluation method uses the protocol [16]. To train our model, we use 13 categories
of different objects in the benchmark dataset ShapeNet-Part [30]. The dataset consists of
13 categories in the ShapeNet-Part dataset: Airplane, Bag, Cap, Car, Chair, Guitar, Lamp,
Laptop, Motorbike, Mug, Pistol, Skateboard and Table. The data set contains 14,473 models
(11,705 for training and 2768 for testing). Before using these point-cloud models, we first
standardize their position and scale. As the position and scale are standardized, we move
the center of all input point clouds to the origin, and then normalize the input point-cloud
data to [−1, 1]; that is, we normalize the data to a radius of 1. Finally, we uniformly sample
each point-cloud model into 2048 points to create ground-truth point-cloud data.

In each epoch, we generate an incomplete point cloud from the completed point-
cloud model. Incomplete point-cloud data is usually generated by randomly selecting a
perspective from multiple views, then randomly selecting a point as the center, and deleting
all points within a sphere of a certain radius r from the completed point cloud. We control
the radius to obtain missing data with different sizes, and the size of r is 0.35 in our
experiment. As shown in the experiments in Section 4.3, all methods have better results
when the radius is 0.35. Hence, our completed point cloud can be divided into two groups:
points outside the sphere (incomplete point cloud) and points inside the sphere (missing
point cloud). Finally, we sample the originally completed point cloud as 2048 points to
obtain the ground truth of the completed point cloud, sample 2048 points from the original
incomplete point cloud as the input in the experiment, and sample 1024 points from the
original missing-part point cloud as the ground truth of the missing part in the experiment.
It should be noted that, in 3DPCTN-MRE, in addition to generating incomplete point
clouds, we also need to perform IFPS sampling on incomplete input point clouds to obtain
two additional scales with different resolutions; therefore, in the 3DPCTN-MRE experiment,
our incomplete point-cloud input has three different resolution scales, namely, 2048, 1024
and 512.

4.2. Comparsions with State-of-the-Art Methods

In this section, we compare our method with several representative benchmarks that
run directly on 3D point clouds, including 3D point-capsule networks (3D-Capsule) [26],
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PCN [16], morphing and sampling Network (MSN) [14], PF-Net [15], and RP-MBD [31],
which are briefly introduced as follows:

• 3D-Capsule uses the most advanced autoencoder to process point clouds for point-
cloud reconstruction, which is based on a capsule network.

• PCN completes a partial point cloud by an autoencoder. It uses a stacked version of
PointNet as the encoder and generates the point cloud in a coarse-to-fine form.

• MSN is generated using two stages, first predicting the coarse point cloud, and then
using the residual network to further enhance for obtaining a high-density point cloud.

• PF-Net learns multi-scale features from local shapes and regenerates missing parts
at different resolutions. Additionally, an adversarial loss is included to match the
distribution of predicted and actual missing regions.

• RP-MBD consists of two PointNet-based networks. The first network is based on
focusing on extracting information from incomplete inputs to infer missing geometries,
and the other network merges two point clouds and improves point distribution.

ShapeNet-Part test datasets are used for quantitative and qualitative comparisons.
We have trained and tested all methods using the same dataset to perform fair quantita-
tive evaluations.

The quantitative results for the comparison are shown in Tables 1 and 2. Both in CD
and EMD metrics, 3DPCTN-SAE and 3DPCTN-MRE outperform the other methods in the
mean of all categories and show significant improvement in all categories. The error of the
completed point cloud as a whole may come from two parts: the prediction error of the
missing area and the change in the original local shape. Since our method takes a part of the
shape as input and outputs only the missing region, it basically does not change the original
part of the shape. In both CD and EMD metrics, 3DPCTN-MRE outperforms 3DPCTN-SAE
in most categories. Our method performs well even for the harder classes in the dataset,
such as Bag, Cap and Lamp. The problem with the Bag and Cap classes is the imbalanace
in the number of shapes in the dataset (Bag contains 54 training shapes and Cap contains
39 training shapes), while the Lamp class has a problem with high intra-class variability.
However, our method still has a strong performance in these categories compared to other
methods. This is mainly due to the combined advantage of missing-part prediction and
refinement in our method: for the challenging classes, the prediction of the missing point
cloud will first compute a rough output, which is then corrected by refinement.

Table 1. Quantitative comparison between our methods and existing methods on ShapeNet-Part
dataset using chamfer distance (CD × 1000) with 2048 points. The best results are highlighted in bold.

Categories 3D-Capsule PCN MSN PF-Net RP-MBD 3DPCTN-SAE 3DPCTN-MRE

Airplane 2.277 1.579 0.661 0.533 0.467 0.325 0.326
Bag 6.501 4.872 2.333 2.252 1.670 0.598 0.580
Cap 6.939 5.782 2.266 1.927 1.109 0.408 0.390
Car 5.467 3.882 1.543 0.853 0.946 0.655 0.597

Chair 4.496 2.560 1.036 0.745 0.663 0.396 0.395
Guitar 3.741 0.809 0.859 0.437 0.381 0.280 0.390
Lamp 9.258 5.466 2.969 2.358 2.325 1.489 1.527

Laptop 2.565 1.708 0.745 0.516 0.379 0.335 0.305
Motorbike 4.770 3.121 1.398 0.854 1.084 0.784 0.804

Mug 6.219 5.108 1.453 1.025 0.743 0.644 0.546
Pistol 3.411 2.277 1.144 0.855 0.867 0.546 0.547

Skateboard 3.015 1.923 0.720 0.571 0.454 0.332 0.308
Table 4.099 2.982 1.196 1.071 0.833 0.400 0.424

Average 4.827 3.236 1.409 1.077 0.917 0.553 0.549
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Table 2. Quantitative comparison between our methods and existing methods on ShapeNet-Part
dataset using earth mover’s distance (EMD × 100) with 2048 points. The best results are highlighted
in bold.

Categories 3D-Capsule PCN MSN PF-Net RP-MBD 3DPCTN-SAE 3DPCTN-MRE

Airplane 4.038 4.122 2.078 1.474 1.394 1.131 1.119
Bag 7.480 8.263 3.903 2.199 2.438 1.863 1.723
Cap 6.818 7.224 3.299 1.937 2.074 1.382 1.438
Car 6.157 5.953 3.336 1.758 2.140 1.733 1.701

Chair 5.322 5.646 2.439 1.575 1.638 1.318 1.288
Guitar 3.769 3.866 2.107 1.528 1.234 1.103 1.232
Lamp 8.535 7.798 3.603 2.588 2.848 2.235 2.233

Laptop 4.303 4.068 2.180 1.428 1.435 1.312 1.268
Motorbike 6.005 5.769 3.295 2.183 2.291 1.936 1.989

Mug 6.822 7.226 2.780 1.620 1.628 1.622 1.519
Pistol 4.873 4.994 2.643 2.034 1.938 1.521 1.502

Skateboard 4.309 4.035 1.958 1.509 1.341 1.103 1.100
Table 5.565 5.403 2.424 1.606 1.617 1.253 1.262

Average 5.692 5.720 2.772 1.803 1.847 1.501 1.490

Visual comparison in Figures 7 and 8 demonstrate that our 3DPCTN also achieves
much better visual results than the other counterparts on the sparse point-cloud completion
task. All the methods are relatively good in the complete effect of simple objects, such
as the chair in the third column, but in more complex cases, the difference in methods is
obvious. Specifically, for 3D-Capsule and PCN, since the encoder–decoder-based feature
extraction and full point-cloud generation use fully connected layers to directly output
coordinates, they tend to generate ambiguous details such as Plane and Cap. For MSN,
although it is based on the first rough and then refined generative model, and then uses the
residual network to optimize it, only the global features of the input residual fault cloud are
extracted in the early stage, so some detailed information, such as Chair and Cup, will be
lost. In the Lamp category, 3DPCTN is the only way to reconstruct the missing light posts
without any noticeable noise. The Pistol highlights the obvious advantage of generating
only the missing parts, rather than recreating the entire shape, and also shows how the
3DPCTN is more accurate than the PF-Net and RP-MBD.

4.3. Robustness Test

In this robustness test experiment, our purpose is to evaluate the robustness of our
proposed model with some point clouds with missing holes of a different radius. The model
used in this experiment is the same as the model compared in Section 4.2, except that the
radius of the missing part of the incomplete point cloud that needs to be completed in this
test is different. In the previous comparison, we used a radius of 0.35. However, when the
test shape has missing parts of different sizes, we measure the robustness of the model
to completion. We change the radius from 0.25 to 0.55 and calculate the average chamfer
distance for each algorithm.
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Figure 7. Comparison of completion results between our method and state-of-the-art methods. Our
3DPCTN (3DPCTN-SAE and 3DPCTN-MRE) successfully predicts the missing part and integrates it
to produce a good result.
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Figure 8. Comparison of completion results between our method and state-of-the-art methods. Our
3DPCTN (3DPCTN-SAE and 3DPCTN-MRE) successfully predicts the missing part and integrates it
to produce a good result.
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Figure 9 shows the results. When the size of the missing part varies between 0.25 and
0.45, our method is always better than other methods. Our method always performed better
than other methods. That is, our method of predicting the completed point cloud shows
better robustness. When the radius increases, the performance of all methods generally
shows a downward trend; especially, when the radius is greater than 0.5, the performance
decline is greater. We believe that the reason for the decrease in the robustness of all
methods is that our fixed number of points cannot cover and represent the missing parts.
One of the main limitations of our method is the lack of adaptability and the inability to
express the missing part according to the extent of the proportions that are missing. It is a
promising idea to calculate an adaptive variable size point cloud through a neural network,
which can be incorporated into our method to improve robustness.
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Figure 9. Robustness against the variable size of missing parts. Our methods are robust when the size
of the missing part is similar to the size of the trained missing part. A smaller value of CD indicates a
better result.

4.4. Ablation Study

The performance improvement of 3DPCTN should be attributed to three key compo-
nents, SAE, MRE and PCT. To prove the effectiveness of each component in the proposed
method, we evaluated the 3DPCTN performance using the same parameters as Section 4.2.
In this experiment, we demonstrated the importance of these key components to the point-
cloud completion results. Furthermore, the contribution of each component could be
verified by deleting any components that will reduce performance. Comparison results
between different ablation methods are listed in Table 3.
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Table 3. Quantitative comparison between our method and the ablated versions on ShapeNet-Part
dataset using chamfer distance (CD × 1000) with 2048 points. The best results are highlighted in bold
and underlined. The lower results are the better.

Categories 3DPCTN-
SAE

3DPCTN-
SAE w/o

PCT

3DPCTN-
MRE

3DPCTN-
MRE w/o

PCT

Only PCT
w/o SAE and

MRE

Airplane 0.325 0.493 0.326 0.448 0.329
Bag 0.598 1.375 0.580 1.305 0.610
Cap 0.408 1.092 0.390 0.85 1.300
Car 0.655 1.080 0.597 0.857 0.632

Chair 0.396 0.701 0.395 0.622 0.404
Guitar 0.280 0.724 0.390 0.33 0.334
Lamp 1.489 7.157 1.527 2.275 1.550

Laptop 0.335 0.522 0.305 0.379 0.323
Motorbike 0.784 0.926 0.804 0.925 0.784

Mug 0.644 0.646 0.546 0.779 0.626
Pistol 0.546 0.702 0.547 0.736 0.575

Skateboard 0.332 0.428 0.308 0.436 0.314
Table 0.400 0.638 0.424 0.764 0.438

Average 0.553 1.271 0.549 0.824 0.632

In the experimental results of the PCT importance test, the comparison between the
second column and the third column, and the comparison between the fourth column and
the fifth column, are worthy of attention. From the bold fonts (the ones with bold fonts
are the best), it is obvious that the two experimental results of the PCT method are almost
excellent whether in the SAE or MRE networks. Moreover, the average of all categories is
much better than the result without PCT. When testing the significance of SAE and MRE,
we observed the second and sixth columns, and the fourth and sixth columns, respectively,
and found that both SAE and MRE can also reduce the CD value of the complete shape
after completion. In addition, the average reduction in each category is relatively large.
Overall, the PCT, SAE and MRE modules play an integral role in our proposed network.

5. Conclusions

In this paper, we have presented a novel neural network for point-cloud completion
called 3DPTCN, which completes the original point cloud in three stages. Furthermore,
3DPTCN extracts fine-grained point-cloud features from self-attention and multi-resolution,
respectively, and can effectively control point distribution using the expansion penalty
during point-cloud generation. The PCT-based point-refiner network is used to predict the
fine tuning of each point to achieve fine-grained details while preserving the original shape.
We conducted comprehensive experiments on the ShapeNet-Part dataset, which show that
our 3DPTCN is superior to the current SOTA point-cloud completion method and produces
more uniform point clouds. In future work, we will work on adaptive strategies to compute
missing dimensions to improve the complete performance of our network.
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