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Abstract: Achieving balance between efficiency and performance is a key problem for convolution
neural network (CNN)-based single-image super-resolution (SISR) algorithms. Existing methods
tend to directly output high-resolution (HR) pixels or residuals to reconstruct the HR image and
focus a lot of attention on designing powerful CNN backbones. However, this reconstruction way
requires the CNN backbone to have good ability to fit the mapping function from LR pixels to HR
pixels, which certainly held these methods back from achieving extreme efficiency and from working
in embedded environments. In this work, we propose a novel distribution learning architecture
to estimate the local distribution and reconstruct HR pixels by sampling the local distribution with
the corresponding 2D coordinates. We also improve the backbone structure to better support the
proposed distribution learning architecture. The experimental results demonstrate that the proposed
method achieves state-of-the-art performance for extremely efficient SISR and exhibits a good balance
between efficiency and performance.

Keywords: image super-resolution; local distribution model; extreme efficient; multi-layer neural
network

1. Introduction

Single image super-resolution (SISR) is a classic image processing task, which has
been catching researchers’ attention for decades. The SISR targets reconstructing a high-
resolution (HR) image with only one low-resolution (LR) image as input. Reconstructing
clear and accurate edges is one of the major challenges in SISR.

Early studies focus on interpolation-based algorithms [1–3] that aim to calculate the
sub-pixels with neighboring pixels.Due to the limited information on the neighboring
pixels, interpolation-based methods fail to reconstruct visually clear edges. Introducing
filtering-based methods for post-processing to enhance the interpolated image is another
option [4,5]. These methods introduce non-local information [6] and non-linear filtering
and certainly enhance the visual quality of the interpolated image. However, limited by the
fronted interpolation methods, they also struggle to handle the large upsampling factors.
The optimization-based methods introduce kinds of priors and approach the optimal results
in an iterative way [7,8]. Limited by the complicated iterative solutions, these methods
are usually quite inefficient. Moreover, because the statistical priors cannot fit all samples,
the optimization-based methods also suffer from poor robustness. With the development
of machine learning, lots of data-driven methods have been proposed [9–11]. The sparse
coding-based methods [12–14] introduce a learning-based encoder to sparsely encode both
LR patches and HR patches and then try to build the mapping function from LR patches
to HR patches with sparse representation. However, the separated learning strategy and
limited sparse representation certainly limit the performance of these methods.

Benefiting from the great growth of computation devices, deep-learning-based meth-
ods exhibit a promising performance, and some of them widely are adopted in the edge
devices, such as surveillance cameras and mobile phones. Due to the power limitation
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and computational resource limitation, the efficiency is always firstly considered when
deploying the algorithms to such edge devices.

Dong et al. [11] introduced a convolution neural network [15] and provided an end-
to-end learning architecture named SRCNN for the SISR task. They first use bi-cubic
interpolation to upsample the LR image to the target resolution and then introduce CNN
to reconstruct the HR image from the upsampled LR image. In this situation, the CNN
has to work on the upsampled images, which extends the time of calculation and is quite
inefficient. Several studies [16,17] introduce transpose convolution [18] to conduct the
upsampling operation within the CNN architecture. Some studies try to implement bi-
linear interpolation within the CNN architecture to directly upsample the convolution
feature map using bilinear interpolation. Due to the limited upsampling accuracy, these
two operations could only work in the middle of the network. Therefore, parts of the
convolution layers also have to work on the upsampled resolution. To overcome this
limitation, Shi et al. [19] introduce a pixel shuffle operation and propose a sub-pixel
learning network named ESPCN for SISR. Unlike previous studies that directly output the
reconstructed HR image, ESPCN outputs the sub-pixels at each position and shuffle the
sub-pixels to obtain the final HR image. By doing so, the upsampling operation is moved
to the end of the network, so that the whole CNN could work on the original resolution.

Then, lots of studies adopted the pixel shuffle operation to reconstruct the HR pixels
and focus on the powerful and efficient backbone to achieve a balance between performance
and efficiency. Increasing the depth and introducing more components are general ways
to obtain more powerful backbones [20,21]. Introducing and optimizing the residual-like
components are widely adopted in relative research [22,23]. Liu et al. [24] propose a residual
feature aggregation (RFA) framework to aggregate these informative residual features
to produce more representative features. Zhang et al. [25] propose a context reasoning
attention network (CRAN) to adaptively modulate the convolution kernel according to the
global context for the SISR task. Zhang et al. [26] propose an end-to-end trainable unfolding
network that leverages both learning-based methods and model-based methods. The
network inherits the flexibility of model-based methods while maintaining the advantages
of learning-based methods. Other studies [27,28] introduce a Generative Adversarial
Network (GAN) to process real-world LR images, which are do not perform well based on
CNN methods.

Though these methods could significantly improve the performance, they are hardly
deployed on hardware platforms [29,30] because of the extreme efficiency requirement.
In this paper, we rethink the SISR task along the signal sampling direction and propose a
CNN-based local distribution reconstruction network (LDRN) for an extremely efficient
SISR task, aiming to provide a new baseline for hardware platforms.

The LDRN first introduces a neural network model to reconstruct the distribution of
the neighbor area of each LR pixel and then calculates the sub-pixels within the neighboring
area based on their relative coordinates from the center pixel. Compared to existing
methods, the proposed method achieves an excellent balance in efficiency and performance,
exhibiting good potential for being deployed to hardware platforms.

2. Proposed Method

Given a scene and a camera lens, the resolution of the captured image depends
on the number of photosensitive cells on the image sensor. Increasing the density of
the photosensitive cells is a direct way to increase the resolution of the captured image.
Assuming the real signal distribution of the scene is D, the sampling matrix of the image
sensor is M, and the captured image I can be expressed as:

I = S(D, M), (1)

where S denotes a sampling function. Therefore, changing the sampling matrix M directly
affects the resolution of the captured image. Because M is always uniformly arranged, the
corresponding sampling matrix of an HR image MHR can be easily calculated. Therefore,
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the keypoint of calculating the HR image from an LR image is reconstructing the scene’s
distribution D.

2.1. Motivation

A static natural scene is a 3D signal. After the optic transformation is conducted by
the camera lens, the scene’s signal degrades to a 2D signal S(x, y) lying on the image plane.
Because the S(x, y) totally depends on the scene, it is hard to give a specific mathematical
model to describe the S(x, y). We try to decompose the S(x, y) into multiple patches and
reconstruct the local distribution of each patch for sub-pixel reconstruction.

Because all observed pixels are uniformly arranged, we set the horizontal (or vertical)
distance between two adjacent pixels in the LR image as the unit length. Then, given
a image patch P with the size of 2ω × 2ω, whose center is located at (xP, yP), its local
distribution can be expressed as:

SP,ω(x, y) = L(x− xP, y− yP; HP) (2)

where x ∈ [x − ω, x + ω], y ∈ [y− ω, y + ω], L denotes a parameterized mathematical
model to describe the local distribution, and HP denotes the corresponding parameters to
formulate L.

Assuming the sampling points in the HR image are {(xp1, yp1), (xp2, yp2), . . . , (xpk, ypk)},
we can easily calculate all observed pixels with Equation (2). Given a specific upsampling
factor s and the corresponding matrix Ms, the observed k HR pixels of the corresponding
region of the LR patch P can be quickly located in Ms. Enlarging the patch size and conducting
the overlapped calculation are widely adopted by traditional methods [31]. However, such
strategy is quite inefficient in CNN-based methods. Inspired by [19], we adopt a pixel-wise
local reconstruction strategy. As shown in Figure 1, each local patch contains one pixel in the
LR image and the corresponding sub-pixel in the HR image. In this way, the reconstruction
area and sampling points are both minimized, which could significantly simplify the local
distribution reconstruction and avoid redundant sampling calculations.

Figure 1. The local distribution of an LR pixel in situation. The green point denotes the pixel in the
LR image, and the red point denotes the corresponding sub-pixels in the HR image.

2.2. Local Distribution Reconstruction

Linear models, polynomial models, frequency models and Gaussian models are widely
used mathematical models for describing the local image distribution and estimating
the sub-pixels [32–36]. However, estimating the real scene’s distribution is a ill-posed
problem. The above simple mathematical models struggle to precisely describe the real
scene. Inspired by artificial neural networks, we introduce a multi-layer neural network
operator (MNNO) to approach the real scene’s distribution.

As shown in Figure 2, the MNNO is a multi-layer full connection neural network. As
argued in Equation (2), the MNNO takes the 2D coordinate of the sampling point as the
input and then outputs a c-channel sampling value, where c = 1 is for gray pixels and
c = 3 is for color pixels. In this situation, the local distribution is certainly determined by
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the parameters of MNNO. Assuming MNNO is formulated by N full connection layers,
for the i-th layer, its input and output are denoted as fi and fi+1, respectively. Then, the
process of the i-th layer can be expressed as:

fi+1 = FC( fi, Hi) =

{
σ( fi ◦ Hi) i < N

fi ◦ Hi i = N
(3)

where FC denotes the process of a full connection layer, σ denotes the activation function,
◦ refers to matrix multiplication and Hi denotes the parameter matrix of the i-th layer.
Specifically, the calculation of the i-th full connection layer can be expressed as:

f u
i+1 = ∑

v
f v
i · h

u,v
i (4)

where u and v are the channel indexes of fi+1 and fi, respectively, and hu,v
i is the element at

(u, v) of Hi.
Assuming fi and fi+1 obtains ni and ni+1 channels, respectively, the size of Hi can be

obtained by ni · ni+1. Then, the complete process of MNNO can be expressed as:

MNNO([xpj, ypj]) = FC(. . .FC([xpj − xP, ypj − yP], H1) . . . , HN) + Hbias (5)

where Hbias receives the same channel number of the output pixel. We denote the MNNO
formulated by such N full connection layers as MNNO{n1,n2,...,nN}. Therefore, the total
parameters of the MNNO can be obtained as:

T(MNNO{n1,n2,...,nN}) = c +
N

∑
i=1

ni · ni+1 (6)

where n1 = 2, nN+1 = c and T is a function returning the total of the parameters in the model.

Figure 2. The proposed multi-layer neural network operator (MNNO) takes two-dimensional sam-
pling coordinate points as input and outputs sampling values.

Unlike traditional CNN-based SISR methods that directly output the reconstructed HR
pixels, we adopt a CNN backbone to estimate the parameters of the MNNO for each pixel.

2.3. Sampling Matrix

As argued in the previous subsection, the neighborhood of each pixel is only supposed
to cover the corresponding sub-pixels in the HR image. It is clear that given a random float
upsampling factor, the sub-pixels’ relative position in a local patch are probably different
from other patches. However, for integer upsampling factors, the situations will be much
simpler. Given a integer upsampling factor s, one LR pixel can be uniformly divided into s2

sub-pixels. Assuming the origin is at the LR pixel, the relative coordinates of the sub-pixel
at the i-th column and j-th row can be easily calculated by the symmetry principle as:

(x̂i, ŷj) = (
2i− s− 1

2s
,

2j− s− 1
2s

) (7)
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where (x̂i, ŷj) denotes the relative coordinates. Then, we can obtain an s2 × 2-sized coordi-
nate matrix for each LR pixel.

2.4. Overview of the Architecture

Figure 3 illustrates the architecture of the proposed LDRN. The proposed method
consists of two parts: the CNN backbone and the distribution reconstruction module
(DRM). The CNN backbone is supposed to estimate the parameters for constructing the
local distributions. The DRM then reconstructs the sub-pixels using Equations (3) and (5)
and finally outputs the HR image via the pixel shuffle operation.

Figure 3. The proposed LDRN consists of the CNN backbone and the DRM. The CNN backbone is
used to generate the parameter matrix, and the DRM is used to generate the HR image.

The recurrent-like architectures [37–39] are widely adopted by SISR methods to for-
mulate the backbone. Though they exhibit outstanding performance, they clearly suffer
from the expensive computation cost resulting from the multiple residual convolution
blocks. For instance, typical light recurrent networks such as EDSR-baseline [40], SRRes-
net [41], etc., obtain over millions of parameters and take over 2.8 trillion Flops to process
a 1920× 1080-sized image. Even the much more efficient VDSR [42] is also too large to
be implemented on the hardware platforms [30]. To achieve extreme efficiency, we only
adopt a few convolution layers to construct the baseline. Assuming the CNN backbone is
formulated by L convolution layers, these L convolution layers are sequentially stacked.
For the l-th layer, f l and f l+1 are recorded as its input and output. Then, the process of the
l-th layer can be expressed as:

f l+1 = CN
(

f l , Wl , Bl

)
=

{
σ
(

0, Wl ∗ f l + Bl

)
l < L

Wl ∗ f l + Bl l = L
(8)

where Wl and Bl denote the convolution kernel and bias of the i-th layer, and ‘∗’ denotes
the convolution operation. As a 2D convolution kernel, the shape of Wl can be written as
cl−1 × cl × kl × kl , where cl denotes the channel size of the output of the l-th layer and kl
denotes the size of square kernel.

The DRM is supposed to conduct MNNO to obtain the final sub-pixels for each LR
pixel via the sampling matrix and the parameters estimated by the CNN backbone. Then,
these sub-pixels are re-arranged by the shuffling operation to reconstruct the final HR
image. As described in Equation (5), using a larger N and larger ni to formulate the MNNO
could help to approach a more complex and non-linear distribution. However, this will
also introduce too high of a computation cost and make the algorithm quite inefficient.
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Moreover, the vanishing gradient is another serious challenge for a deep full connection
neural network. To solve these two problems, we adopt a shallow and small-scale MNNO
to formulate the DRM. First, the small-scale MNNO could save lots of parameters and
computation. Second, the shallow depth could ensure back-propagating the gradient to the
shallow layers of the CNN backbone and avoid the vanishing gradient.

2.5. Implementation Details

The proposed LDRN consists of a CNN backbone and DRM. For the CNN back-
bone, we set L = 4, (k1, c1) = (5, 64), (k2, c2) = (3, 32), (k3, c3) = (3, 32), (k4, c4) =(

3, T
(

MNNO{n1,n2,...,nN}
))

. To keep the size of the input LR image unchanged, we set the

padding size of the l-th layer to kl−1
2 . As described in Section 2.4, we adopt shallow and

small-scale settings for the DRM, so we set N = 2 and {n1, n2} = {12, 1}. Therefore, we
can easily obtain that c4 = 37 based on Equation (6). Moreover, we adopt PReLU as the
activation function for the CNN backbone and ReLU as the activation function for the DRM.
With the above settings, the proposed method has 40k parameters in total.

To train the proposed LDRN, we adopt the DIV2K [43] as the training dataset and
Set5 [44] as the validation set. The LR images are generated using Bicubic interpolation.
The 32× 32 pixel ILR patches are extracted from ILR sub-images, and 32s× 32s pixel IHR

patches are extracted from IHR sub-images. The details of obtaining ILR and IHR will be
extended in Section 3.1. We utilized random clipping to augment the training patches. Like
previous studies, we transformed each patch into YCbCr space and only trained on the
Y-channel. To train our model, we adopt Adam [45] as the optimizer and set the batchsize to
32. The learning rate is initialized to 10−3. We test the PSNR performance on the validation
set after the end of each training epoch. The learning rate will be halved when the PSNR
performance on validation does not increase for 10 consecutive epochs. The minimum
learning rate is set to 10−6, and the maximum training epochs is set to 200. When the
minimum learning rate is achieved or when the maximum training epoch is finished, the
training will immediately stop. We choose the L1 loss as the loss function. The training
takes roughly 90 min on a 2080Ti GPU. The PSNR is also used as the performance metric
to evaluate our model. For each upscaling factor, we train a specific network. It is worth
mentioning that because of the good Adam optimizer and the mature training strategy,
the performance fluctuation of each method is less than 0.01 dB and hardly affects the
comparison results. Therefore, we will not report the confidence intervals of the results in
the following experiments.

3. Experiments

In this section, we evaluate the performance of the proposed method using five
benchmark datasets. First, we describe the five benchmark datasets in detail. Then, we
demonstrate the effectiveness of the proposed CNN backbone and DRM. Moreover, we also
show that the settings given in Section 2.5 are the most appropriate settings for the proposed
method. Finally, we compare the proposed method with several extremely efficient SISR
methods to demonstrate the superiority of the proposed method.

3.1. Datasets

To train the proposed method, we adopt a training set from the DIV2K dataset as
the training dataset, which contains 800 HR images with 2K resolution. To obtain the
LR images, we downsample the HR images using bicubic kernels with a scale factor of
s ∈ {2, 3, 4}. We group the IHR into 192× 192-sized patches with a stride of 192 and crop
ILR patches to the size of 192

s ×
192

s from the corresponding LR image with a stride of 192
s . In

this way, we obtain 55510 non-overlapped training data pairs in total. In the testing stage,
we introduced five widely used public datasets, including the Set5, Set14 [46], B100 [47],
Urban100 [48] and Manga109 [49], to evaluate the performance of the proposed method
and compared methods.
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3.2. Ablation Investigation

In this subsection, we demonstrate the contribution of the proposed components,
including the CNN backbone and the distribution reconstruction module, in detail.

3.2.1. CNN Backbone

We first compare the performance of the proposed CNN backbone with several ex-
isting backbones adopted by extremely efficient SISR methods, including SRCNN [11],
ESPCN [19] and FSRCNN [50].

As shown in Table 1, the proposed backbone clearly surpasses existing backbones
for all datasets. Especially on the most challenging datasets Manga109 and Urban100, the
proposed backbone beats the second-best FSRCNN backbone by over 0.1 dB. The SRCNN’s
backbone introducing large-sized convolution kernel does not provide positive effects for
local distribution learning. Though FSRCNN’s backbone obtains the least parameters, it
suffers from the poor receptive field of the 1× 1-sized convolution kernel, which cannot
provide much information to support reconstructing the local distribution.

Table 1. The comparison of PSNR and SSIM [51] with different CNN backbone settings on benchmark
datasets. Bold indicates the best performance, while Underline indicates the second best.

Dataset Scale SRCNN Backbone FSRCNN Backbone ESPCN Backbone Ours Backbone

Set5
×2
×3
×4

37.10/0.9807
33.57/0.9647
30.59/0.9315

37.21/0.9809
33.80/0.9622
30.77/0.9343

36.62/0.9792
33.13/0.9612
30.19/0.9252

37.35/0.9812
33.81/0.9663
30.81/0.9349

Set14
×2
×3
×4

32.63/0.9506
29.70/0.9104
27.44/0.8594

32.73/0.9509
29.86/0.9119
27.58/0.8619

32.33/0.9487
29.47/0.9069
27.21/0.8539

32.84/0.9514
29.88/0.9122
27.62/0.8626

B100
×2
×3
×4

33.53/0.9534
28.99/0.8843
27.81/0.8478

33.41/0.9536
29.09/0.8856
27.89/0.8493

33.03/0.9512
28.76/0.8805
27.61/0.8429

33.49/0.9514
29.13/0.8863
27.93/0.8501

Urban100
×2
×3
×4

30.00/0.9385
27.29/0.8914
24.51/0.8167

30.17/0.9397
27.51/0.8954
24.68/0.8220

29.34/0.9315
26.84/0.8827
24.22/0.8065

30.36/0.9417
27.61/0.8971
24.73/0.8239

Manga109
×2
×3
×4

36.92/0.9864
31.03/0.9559
28.09/0.9199

37.20/0.9869
31.48/0.9591
28.45/0.9254

35.89/0.9839
30.16/0.9481
27.41/0.9090

37.45/0.9873
31.60/0.9601
28.57/0.9270

3.2.2. Distribution Reconstruction Module

The distribution reconstruction module (DRM) is the core module in achieving the
super resolution. As argued in Section 2.4, a deeper neural network in MNNO would
suffer from gradient back-propagation and cannot achieve a better performance. We show
the training loss curves and validation PSNR curves using N = {12, 1}, N = {5, 5, 1} and
N = {10, 10, 1} settings in Figure 4. The N = {5, 5, 1} setting obtains a closed number of
parameters to N = {12, 1}. Comparing the curves of N = {12, 1} and N = {5, 5, 1}, using
a similar scale of parameters to construct a deeper neural network cannot achieve a better
performance. Moreover, from the results of N = {10, 10, 1}, using much more parameters
to construct a deeper neural network also provides little help in improving the performance.
Therefore, we adopt a two-layer neural network in MNNO to formulate the DRM.
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Figure 4. Training curves for N = (12,1), N = (5,5,1) and N = (10,10,1).

Then, we investigate the best settings for a two-layer neural network. We construct a
group of models with different MNNO settings thatinclude N = 0, N = {4, 1}, N = {6, 1},
. . . , N = {20, 1}, where N = 0 denotes the model using only a convolution layer rather
than MNNO to output sub-pixels. From the results shown in Table 2, using small-scale
settings to construct MNNO shows closed performances to a normal convolution layer.
However, the larger MNNO does not always lead to a better performance. The larger
MNNO leads to a more complex distribution model, which certainly increases the difficulty
of estimating the MNNO parameters. Observing that the setting N = {12, 1} achieves
the best balance between complexity and performance, we adopt N = {12, 1} setting to
formulate the DRM.

Table 2. The comparison of PSNR and SSIM of different N settings with upsampling factor 2 on
benchmark datasets. Blod indicates the best performance, while Underline indicates the second best.

Dataset N = 0 N = (4,1) N = (6,1) N = (8,1) N = (10,1) N = (12,1) N = (14,1) N = (16,1) N = (18,1) N = (20,1)

Set5 37.26 37.26 37.28 37.31 37.34 37.35 37.35 37.36 37.34 37.35

Set14 32.80 32.81 32.81 32.86 32.86 32.88 32.84 32.84 32.88 32.83

B100 33.47 33.46 33.47 33.49 33.50 33.51 33.49 33.50 33.51 33.49

Urban100 30.23 30.25 30.31 30.33 30.40 30.41 30.36 30.41 30.43 30.36

Manga109 37.25 37.36 37.32 37.40 37.49 37.50 37.45 37.44 37.48 37.36

3.3. Comparison with State-of-the-Art Methods

To fairly evaluate the performance of the proposed method, we compare the method
with three typical, extremely efficient SISR methods, including SRCNN, FSRCNN and
ESPCN, and another two recently proposed methods—HFSR [30] and TSSRN [29]. We
retrained all compared methods using the same training strategy to ensure fair comparisons.
Because HFSR [30] could only be applied on a ×2 scale, we only train the HFSR for a ×2
scale comparison.

For an objective evaluation, we calculate the PSNR and SSIM for different upscaling
factors on five benchmark datasets. The quantitative results are shown in Table 3. The
proposed method outperforms both ×2 (0.244 dB higher than the second average) and
×3 (0.106 dB higher than the second best) on five benchmark datasets of all compared
methods. Although the proposed method is not the best in terms of ×4 (lower than the
first average by 0.032 dB), the gap is very small and does not exceed 0.04 dB on average. To
further illustrate the effects of different downsampling methods, we conduct an additional
experiment by producing the LR images with Gaussian downsampling. Specifically, the
Gaussian downsapling firstly blurs the HR image with a 3× 3 Gaussian blur kernel and
then downsamples the blurred image with a mean filter. Table 4 shows the comparison
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result. Comparing the bicubic results shown in Tables 3 and 4, the Gaussian downsampling
produces more serious LR degradation. Obviously, TSSRN obtains relatively good results
for bicubic downsampling degradation and exhibits poor performance on the Gaussian
downsampling degradation. By contrast, our LDRN achieves even greater performance
gain from the bicubic interpolation. This observation certainly demonstrates that the
proposed distribution learning architecture is robust to tougher situations.

Moreover, we also provide the results of the subjective evaluation for the more chal-
lenging ×3 and ×4 scales, respectively, in Figures 5 and 6. Because the HFSR can only
process ×2 scaled images, it will not be included in this comparison. In the more challeng-
ing Urban100 and Manga109 datasets, our LDRN exhibits better detailed reconstruction
ability caused by the MNNO.

To fully investigate the efficiency of all compared methods, we list the running times,
parameters, FLOPs and memory costs of all compared methods for processing a 1920× 1080-
sized image on the RTX 2080Ti GPU in Table 5. We also include typical efficient SISR
methods VDSR [42] and EDSR [40] as references in the comparison. Compared to other
methods, these two efficient methods have unaffordable computation and memory costs—
VDSR requires 9.3 GB memory, and EDSR takes over 2.8T FLOPs and 244 ms to process
a 1920× 1080 sized images. As far as we know, other efficient SISR methods [24,25,52]
(also called as lightweight methods) always achieve similar efficiencies between EDSR
and VDSR. In contrast, the other methods contain less than 50k parameters and consume
less than 3 GB memory for the same processing except for SRCNN. Accordingly, we can
conclude the extreme efficiencies of these methods. Our method has a close running speed
to HFSR and close memory cost to ESPCN, which certainly satisfies real-time processing.
However, our LDRN contains the most parameters and the second most flops among these
extremely efficient methods due to the MNNO.

Table 3. The results of PSNR and SSIM on public benchmark datasets (Bicubic). Bold indicates the
best performance, while Underline indicates the second best.

Dataset Scale Bicubic SRCNN
ECCV’14

FSRCNN
ECCV’16

ESPCN
CVPR’16

HFSR
TCSVT’19

TSSRN
JETCAS’20

LDRN
Proposed

Set5
×2
×3
×4

33.68/0.9644
30.90/0.9366
28.46/0.8918

36.83/0.9798
33.37/0.9633
30.45/0.9298

37.09/0.9806
33.78/0.9660
30.84/0.9350

36.82/0.9797
33.42/0.9632
30.48/0.9291

37.13/0.9807
-/-
-/-

37.18/0.9808
33.78/0.9662
30.87/0.9355

37.35/0.9812
33.86/0.9666
30.82/0.9349

Set14
×2
×3
×4

30.23/0.9260
27.89/0.8785
25.99/0.8219

32.46/0.9495
29.60/0.9090
27.34/0.8573

32.68/0.9505
29.87/0.9117
27.61/0.8617

32.46/0.9494
29.65/0.9090
27.40/0.8578

32.67/0.9505
-/-
-/-

32.71/0.9507
29.84/0.9115
27.64/0.8624

32.88/0.9516
29.92/0.9125
27.61/0.8624

B100
×2
×3
×4

30.95/0.9266
27.65/0.8520
26.70/0.8142

33.20/0.9522
28.91/0.8829
27.74/0.8453

33.34/0.9532
29.09/0.8854
27.92/0.8493

33.16/0.9519
28.89/0.8823
27.74/0.8459

33.36/0.9532
-/-
-/-

33.39/0.9535
29.08/0.8854
27.94/0.8497

33.51/0.9543
29.14/0.8865
27.92/0.8498

Urban100
×2
×3
×4

26.89/0.8935
25.22/0.8406
23.17/0.7631

29.68/0.9355
27.20/0.8891
24.47/0.8140

29.95/0.9380
27.51/0.8944
24.69/0.8214

29.49/0.9332
27.08/0.8864
24.42/0.8124

29.97/0.9384
-/-
-/-

30.05/0.9391
27.51/0.8947
24.73/0.8223

30.41/0.9422
27.64/0.8978
24.73/0.8238

Manga109
×2
×3
×4

31.27/0.9628
27.27/0.9123
25.30/0.8655

36.39/0.9851
30.78/0.9536
27.95/0.8173

37.02/0.9864
31.46/0.9585
28.50/0.9252

36.46/0.9850
30.71/0.9521
27.89/0.9158

37.05/0.9865
-/-
-/-

37.10/0.9866
31.49/0.9587
28.63/0.9266

37.50/0.9875
31.67/0.9604
28.57/0.9270
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Table 4. The results of PSNR and SSIM on public benchmark datasets (Gaussian). Bold indicates the
best performance, while Underline indicates the second best.

Dataset Scale Bicubic SRCNN FSRCNN ESPCN HFSR TSSRN LDRN

Set5
×2
×3
×4

32.10/0.9517
30.27/0.9292
28.18/0.8884

36.71/0.9793
33.35/0.9633
30.39/09298

36.99/0.9803
33.64/0.9654
30.61/0.9330

36.64/0.9791
33.27/0.9624
30.27/0.9269

36.55/0.9788
-/-
-/-

35.57/0.9754
32.03/0.9518
29.82/0.9207

37.24/0.9809
33.69/0.9658
30.72/0.9345

Set14
×2
×3
×4

29.02/0.9054
27.48/0.8696
25.50/0.8091

32.39/0.9489
29.50/0.9083
27.22/0.8561

32.59/0.9502
29.70/0.9101
27.37/0.8580

32.29/0.9486
29.52/0.9077
27.18/0.8543

32.12/0.9465
-/-
-/-

31.53/0.9428
28.72/0.8982
26.32/0.8369

32.85/0.9515
29.73/0.9109
27.45/0.8605

B100
×2
×3
×4

29.73/0.9038
27.35/0.8429
26.56/0.8115

33.15/0.9519
28.85/0.8820
27.67/0.8453

33.33/0.9532
28.94/0.8832
27.73/0.8465

33.05/0.9511
28.74/0.8803
27.61/0.8442

32.80/0.9483
-/-
-/-

32.30/0.9451
28.22/0.8725
27.36/0.8395

33.48/0.9542
28.99/0.8847
27.82/0.8485

Urban100
×2
×3
×4

25.87/0.8679
24.88/0.8303
23.04/0.7604

29.57/0.9341
27.15/0.8889
24.43/0.8154

29.95/0.9377
27.40/0.8929
24.59/0.8203

29.40/0.9319
26.98/0.8855
24.28/0.8103

29.35/0.9323
-/-
-/-

28.14/0.9187
25.93/0.8664
23.92/0.8010

30.37/0.9418
27.59/0.8978
24.71/0.8254

Manga109
×2
×3
×4

29.38/0.9461
26.74/0.9045
23.14/0.8248

36.32/0.9846
30.74/0.9537
27.71/0.9156

37.09/0.9864
31.38/0.9582
28.21/0.9225

36.29/0.9845
30.58/0.9517
27.50/0.9120

36.31/0.9845
-/-
-/-

34.41/0.9790
28.55/0.9335
23.19/0.8430

37.43/0.9872
31.56/0.9600
28.32/0.9247

Table 5. The results of running time evaluation and parameters.

Method SRCNN ESPCN FSRCNN HFSR TSSRN VDSR EDSR LDRN

Parameters 57k 21k 13k 20k 14k 680k 1368k 40k

Time (ms) 0.91 0.49 0.81 1.02 0.60 1.64 244.21 1.16

FLOPs 475.1G 44.1G 54.4G 41.5G 44.7G 6124.9G 2839.3G 83.1G

Memory (GB) 5.2 2.6 2.9 2.1 2.3 9.3 7.2 2.6

Figure 5. The “052”, “087” and “096” images from the Urban100 dataset with an upscaling factor of 3.
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Figure 6. The “HighschoolKimengumi_vol20”, “AosugiruHaru” and “Nekodama” images from the
Manga109 dataset with an upscaling factor of 4.

4. Conclusions

In this paper, we propose a novel local distribution reconstruction network for ex-
tremely efficient single-image super-resolution. The proposed method consists of a CNN
backbone and a distribution reconstruction module. To achieve extreme efficiency, we
adopt a four-layer CNN to formulate the backbone. In the distribution reconstruction
module, we propose a multi-layer neural network operator to approach the distribution
model of the real scene and calculate the HR pixels by sampling. The ablation study demon-
strates the effectiveness of the proposed CNN backbone and MNNO. The experiments on
two downsampling methods show that the proposed method exhibits the ability to solve
different kinds of LR degradation and clearly beats the second-best method with large
margins (over 0.244 dB for ×2 in average) for more challenging Gaussian downsampling.
Overall, the proposed method presents good performance and efficiency and shows a
promising performance when deployed on hardware platforms.
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version of the manuscript.
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