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Abstract: Research on the application of machine learning to the field of intrusion detection is
attracting great interest. However, depending on the application, it is difficult to collect the data
needed for training and testing, as the least frequent data type reflects the most serious threats,
resulting in imbalanced data, which leads to overfitting and hinders precise classification. To solve
this problem, in this study, we propose a mixed resampling method using a hybrid synthetic minority
oversampling technique with an edited neural network that increases the minority class and removes
noisy data to generate a balanced dataset. A bagging ensemble algorithm is then used to optimize
the model with the new data. We performed verification using two public intrusion detection
datasets: PKDD2007 (balanced) and CSIC2012 (imbalanced). The proposed technique yields improved
performance over state-of-the-art techniques. Furthermore, the proposed technique enables improved
true positive identification and classification of serious threats that rarely occur, representing a major
functional innovation.

Keywords: imbalanced data; intrusion detection; machine learning; sampling method

1. Introduction

Rapid advancements in information technology have resulted in more sophisticated
and frequent cyberattacks. Hence, traditional intrusion detection security measures have
reached their limits in terms of detecting, analyzing, and responding to threats [1,2]. To
address this problem, machine learning techniques have been used in several areas to
improve cyber security [3]. Based on current advancements, supervised machine learning
techniques that learn and classify network behaviors have achieved higher true-positive
and lower false-positive rates than existing signature-based approaches [4,5].

When considering machine learning intrusion detection approaches, there are two
important considerations regarding the available labeled datasets. First, normal non-
threatening cyber activities outweigh malicious behaviors 100,000:1 (see Table 1), which
overall presents heavily imbalanced testing and training scenarios. Second, several types of
cyberattacks are known to exist, and the most serious threats are naturally the least frequent.
Hence, when limiting the set of cyber activities only to intrusions, the data remains quite
imbalanced, limiting the ability of machine learning algorithms to provide true positive
intrusion classifications [5,6].

Table 1. Imbalance ratios of intrusion detection datasets.

Dataset Imbalance Ratio

DARPA/KDD Cup 99 [7] 36,725
CICIDS2017 [8] 112,287

CSIC2012 [9] 1160
NSL-KDD [10] 648
PKDD2007 [11] 18
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As is evident from Table 1, with respect to the imbalance ratios (IRs) of KDD Cup
99 [7], CICIDS2017 [8], and CSIC2012 [9], there is a vast gap among the data classes which
also affects the efficiency of the machine learning (ML) [5]. In contrast, NSL-KDD [10]
and PKDD2007 [11], which were built to minimize imbalanced and redundant data types,
have smaller ratios. The IR reflects the weight of the majority class as compared with
the minority class. In Equation (1), max_i{C_i} and min_i{C_i} denote the majority and
minority classes, respectively. The larger the IR, the less reliable the dataset is for machine
learning intrusion detection [12].

IR = max_i{C_i}/min_i{C_i} (1)

In previous studies, we applied resampling techniques to balance the training data,
developed or adapted machine learning algorithms (e.g., cost-sensitive learning technique),
and employed ensemble approaches [13]. This routine of incremental improvement is
commonplace in machine learning fields, especially those dealing with imbalanced data
types. With respect to cyber security data, several studies have applied the synthetic
minority oversampling technique (SMOTE, Ma and Shi) [14]. Others have adapted tradi-
tional methods (e.g., random forest (RF), multilayer perceptron (MLP), and support vector
machine (SVM)), deep learning methods (i.e., convolutional neural network (CNN) and
deep neural network (DNN) Tripathi and Makwana) [15], and boosting techniques for
all of these. Nevertheless, all remain inadequate to ensure high classification accuracy
for minority cyberattack data types, and no suitable indicators are available to assess the
imbalanced datasets. Notably, the edited nearest neighbor (ENN) approach finds the K
nearest neighbors (KNNs) of each data type and checks whether the majority class from
all neighbors is the same as the observation class, which effectively cleans the database by
removing samples close to the decision boundary [6].

Accordingly, in this study, we propose a new ensemble mixed sampling method
(EmSM) that combines resampling with ensemble learning. First, SMOTE is combined with
an ENN to produce a superior intrusion detection dataset. Second, a bagging ensemble
model is applied to resolve the imbalanced dataset by generating multiple models of the
same size and performing predictions to improve the accuracy for the minority class while
maintaining the accuracy for the majority class.

This is accomplished by considering two factors. First, the PKDD2007 and CSIC2012
datasets are leveraged as they include basic cyberattack payloads limited to web-service
intrusions. Notably, they present various classes per field, which is good for calculating
IR. Second, binary and multi-classification sampling techniques from the Python Tool-
box [12] are leveraged to compare our results to extant sampling techniques for a variety of
label formats.

We make several contributions with this study:

• A hybrid resampling and bagging ensemble technique that improves the prediction
accuracy of the minority class while maintaining that of the majority class (Section 3);

• A method for measuring improvements to the machine learning performance on
imbalanced datasets using binary and multi-classification (Section 4);

• A first-of-its-kind imbalanced data handling method that accurately identifies rare
types of intrusion detection (Section 4);

• Identification of the effects of the data distribution of extracted features, applied
algorithm, and class ratio on the efficiency of handling imbalanced datasets (Section 4).

The remainder of this paper is organized as follows: in Section 2, we discuss previous
work related to this research; in Section 3, we describe the proposed ensemble mixed
sampling method; in Section 4, we present our experiments and the results; and in Section 5,
we present the conclusions.
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2. Related Work

This section provides the background and justification for this study. First, we sum-
marize the current knowledge on intrusion detection data, then, we cover related work in
which sampling techniques were examined for imbalanced class handling.

2.1. Intrusion Detection Data

Over time, system administrators using dedicated hardware and software devices have
accumulated many examples of anomalous patterns, transactions, policy changes, and user
behaviors indicative of network- and web-based intrusions. Notably, it takes a long time to
accumulate sufficient examples to construct a sizable database, as most network traffic is
mundane and harmless. Hence, only a minority of network traffic is considered malicious.
This imbalanced data frequency makes it difficult to effectively train a machine learning
application to recognize serious threats. Usually, data dedicated to network packet analysis
and protection are difficult to manage and are rarely made public owing to confidentiality
issues. However, several datasets are publicly available for benchmarking and scholarly
pursuits. For example, the Defense Advanced Research Projects Agency (DARPA) continues
to release up-to-date Knowledge Discovery in Databases (KDD) datasets [7], and the
Network Security Laboratory’s (NSL) KDD version [10] is widely used. Table 2 provides a
brief comparison of the most well-known intrusion detection datasets.

Table 2. Comparison of intrusion detection datasets.

Dataset Public HTTP Labeled Payload Class Metadata Year Balance IR *

DARPA/KDD Cup 99 [7] O - O X 4 X 1998 X 36,725
NSL-KDD [10] O - O X 4 X 2009 X 648
CICIDS2017 [8] O 4 O 4 6 O 2017 X 112,287
PKDD2007 [11] O O O O 8 O 2007 O 18

CSIC2010 [9] O O O O 2 O 2010 X 1160
CSIC2012 [9] O O O O 10 O 2012 X 1160

* IR, imbalance ratio.

The utilization of these datasets requires an understanding of their purposes and the
environments in which they were built, as clarified in Table 2. It is necessary to determine
which part of each dataset was created in a real environment (Table 2, public) and which
was generated arbitrarily and then refined (Table 2, metadata). Moreover, it is important to
know whether the labeled classes were classified using binary or multiple classification
(Table 2, class). Thus, the presence or absence of labeled attacks must be assessed (Table 2,
labeled), and the attack type is also classified (Table 2, class). As seen in Table 2, public
datasets are often imbalanced (Table 2, balance).

2.2. Sampling Techniques for Handling Imbalanced Classes

An imbalanced dataset is one in which the number of samples belonging to each class
is unequal. Methods designed to address this imbalance can be divided into data- and
algorithmic-level solutions [16].

2.2.1. Data-Level Methods

Several data-level approaches, including general sampling methods, are known. These
include over-, undersampling, and hybrid sampling methods. Undersampling gives rise to
the concern that useful information in the dataset will be reduced. For example, Tomek
et al. [17] proposed the Tomek link method (TOMEK), which minimized the distance
between pairs of nearest neighbors of opposite classes. The appearance of two samples in a
single Tomek link means that they are either noisy or close to the border and can be used
for undersampling to remove samples belonging to the majority class.

Oversampling can create a decision region in which less learning takes place and
becomes more specific; thus, the results are overfitted. SMOTE [14] interpolates minority
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class instances that are close to each other to create synthetic minority class instances.
However, SMOTE encounters the problem of overgeneralization, where the majority class
is not accounted for, and the minority class region is generalized unconditionally. To resolve
this problem, improved sampling methods have been proposed.

An extended SMOTE routine uses an ensemble iterative partitioning filter [18] that
overcomes problems caused by noise and borderline instances in imbalanced class sets.
Dong et al. [19] proposed Random-SMOTE to expand decision regions. It differs from
SMOTE in that it synthesizes new samples along the boundary between the two samples. B-
SMOTE, proposed by Han et al. [20], oversamples and strengthens only borderline minority
samples, classifying them into three groups: safe, dangerous, and noisy.

A sample is considered dangerous when more than half of the nearest neighbors of the
minority sample, m, are majority samples. In the case of a safe sample, more than half of the
m are minority samples. In the case of a noisy sample, m neighbors are majority samples.
Borderline instances of the minority class are more often misclassified than instances far
from the borderline. B-SMOTE outperforms SMOTE, but it oversamples only dangerous
points and does not use information from safe samples. Haibo et al. [21] proposed an
adaptive synthetic (ADASYN) sampling approach for imbalanced learning. ADASYN
uses weight-value distributions in minority class instances that differ according to learning
difficulty. More synthetic data are generated for minority class instances, which are difficult
to learn, than for minority class instances, which are easier to learn.

2.2.2. Algorithm-Level Methods

Chawla et al. [22] proposed a new algorithm-level approach to solving imbalanced
class sets based on a combination of SMOTE and a boosting process. Unlike standard
boosting, which assigns the same weight values to all examples of improper classifications,
SMOTE indirectly changes the updated weight values and compensates for skewed dis-
tributions by generating synthetic examples from rare or minority classes. AdaBoost, a
traditional algorithm proposed by Freund and Schapire [23], is used to reduce errors that
generate persistent classifiers. Its performance is slightly better than random guessing.
Based on AdaBoost, Fan et al. [24] proposed a transformation algorithm that used misclas-
sification costs to update the training distribution in continuous boosting rounds. Joshi
et al. [25] proposed an improved algorithm that provided additional features to enhance
the balance between recall and precision in data mining. Wu et al. [26] proposed a class
boundary alignment algorithm to be used in combination with SVMs to handle the problem
of imbalanced training data related to image and video sequences.

2.3. Studies on Class Imbalances in the Field of Intrusion Detection

Intrusion detection data are naturally imbalanced as they are produced by classifying
malicious network traffic amid the much higher volume normal traffic. Intrusion attack
types that present a significant threat have a ripple effect, but they do not often occur.
Hence, their detection accuracy is unavoidably low. The studies listed in Table 3 were
conducted to resolve this problem in the field of intrusion detection.

Sun et al. [27] proposed an improved SMOTE method based on a network cleaning
(NCL) rule that calculated the ratio of each class, the average ratio based on the ratios,
the standard deviation of class ratios, and an imbalance metric calculated by dividing the
standard deviation by the class ratio. This metric is used to sample minority class data.
An additional method was proposed that processed data assumed to be noise using NCL
after sampling using the KDD Cup 99 dataset. SMOTE-NCL improved the area under the
receiver operating characteristic (ROC) curve (AUC) of both the rare and normal classes.
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Table 3. Related studies on imbalance handling of intrusion detection data.

Year Author Dataset Proposed Sampling
Methods Algorithms

2016 Sun and Liu [27] KDD Cup 99 SMOTE-NCL KNN, SVM, C4.5, NB
2017 Yan et al. [28] NSL-KDD RA-SMOTE SVM, BPNN, RF
2019 Tripathi and Makwana [15] KDD Cup 99 SMOTE+Ensemble AdaBoost, RF
2019 Lee and Park [29] CICIDS2017 GAN RF
2019 Merino et al. [30] UGR16 GAN MLP
2020 Zhang et al. [31] UNSW-NB15, CICIDS2017 SGM_CNN CNN, RF, MLP
2020 Bedi et al. [32] NSL-KDD Siamese-NN CNN, DNN
2020 Zhang et al. [33] NSL-KDD ReliefF+B-SMOTE KNN, C4.5, NB
2020 Ma and Shi [14] NSL-KDD AESMOTE -
2021 Liu et al. [34] NSL-KDD, CICIDS2018 DSSTE RF, SVM, XGBoost, LSTM etc.

Yan et al. [28] demonstrated that B-SMOTE and SMOTE+ENN helped resolve the
overfitting problems of conventional SMOTE; however, they were found to be unsuitable
for intrusion detection. Subsequently, a region-adaptive SMOTE method was advanced,
which effectively improved the detection rate of rare classes (e.g., user-to-root (U2L) and
remote-to-local (R2L) attacks). NSL-KDD was used as the dataset, and the detection rate
improved. Tripathi et al. [15] proposed a combination RF+AdaBoost method to mitigate
the class imbalance problem of the KDD Cup 99 dataset. Rare classes (i.e., U2R and R2L)
were examined at various ratios from 50 to 1000%, alongside ensemble classification.

Bedi et al. [32] proposed the Siam intrusion detection system (IDS) method, which
identified the homogeneity between classes by calculating similarity scores for the pairs of
inputs needed to handle class-imbalance problems. High recall values were obtained in
CNN- and DNN-based IDSs. However, its performance was lower than that of conventional
IDSs. Lee and Park [29] noted that the class imbalance problem was larger when using
newer deep learning techniques. They also illuminated the weaknesses of existing data
imbalance resolution techniques, including data loss and overfitting. To resolve these
problems, a generative adversarial network (GAN) was proposed to generate new virtual
data similar to existing ones. Their model outperformed SMOTE, and CICIDS2017 was
used as the dataset. Oversampling was performed using a GAN. Rare classes (e.g., Bot,
Infiltration, and Heartbleed) comprised less than 0.1% of the dataset.

This examination of approaches to mitigate data imbalances in the field of intrusion
detection has revealed that data- and algorithm-level approaches are shifting toward hybrid
forms, and studies are being actively conducted using GANs [29] and similar algorithms to
resolve these problems.

3. Proposed Method

To overcome the problems of imbalanced and duplicate data for machine learning
intrusion detection capabilities, an ensemble mixed sampling method (EmSM) is proposed.
We apply the SMOTE+ENN resampling technique to generate a balanced dataset. An
ensemble bagging algorithm is then applied to the balanced dataset to improve the accuracy
of minority class prediction while maintaining the accuracy of predicting the majority class.

3.1. Process of the Proposed Approach

As shown in Figure 1, this process involves the use of the proposed sampling tech-
nique to create a class-balanced training dataset using imbalanced classes to increase the
modeling robustness. Efficiency is verified by comparing the training and class-balanced
datasets before and after sampling using t-SNE visualization. The details of this process are
as follows:
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Figure 1. Sampling process for handling imbalanced classes.

First, the dataset with imbalanced classes is subjected to preprocessing for feature
extraction based on intrusion detection characteristics. Using the sampling technique on
the data before preprocessing may not yield the intended results, as the data distribution
may differ after preprocessing. The sampling technique may also differ according to the
preprocessing methods used for extraction and feature selection. Second, the dataset is
divided into testing and training sets after preprocessing, which are then classified at a fixed
ratio per class. Binary classification classifies the data into attack and normal types, and
multi-classification classifies them by attack type. Third, the data are classified into majority
and minority classes. Then, the sampling method is applied to process the imbalanced data.
The sampling technique then generates a class-balanced dataset, and a model is generated,
which is optimized by measuring its performance against the test dataset.

3.2. Ensemble Mixed Sampling Method

As shown in Figure 2, the proposed EmSM method is performed as follows. First,
the training dataset is preprocessed before resampling. For the features of the intrusion
detection dataset, we select hybrid features extracted from the domain and attack features
according to the process of Jung et al. [35].
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Second, the minority and majority classes are selected according to label characteristics.
As the intrusion detection dataset is highly imbalanced and has many duplicates, we apply
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SMOTE+ENN, wherein synthetic data of the minority class are generated via SMOTE
oversampling, and noise and duplicates are removed via ENN undersampling. This
reduces data loss and improves the demarcation of classes.

Third, for the newly generated class-balanced dataset, the ensemble method balanced
bagging is used to address imbalanced data by randomly restoring and estimating new
data from the given training data to construct multiple small training datasets of the
same size. The final classification and prediction are performed using these small training
datasets, which reliably improves the performance of the model more effectively than
general bagging algorithms (e.g., RF). Fourth, balanced accuracy, G-mean, and F1-score are
used for evaluation of the imbalanced data.

4. Experiments and Evaluation

This section describes the experiments and evaluations that were conducted using
EmSM in three scenarios to improve the machine learning intrusion detection performance
on imbalanced data. The first scenario included binary classified dataset labels: normal
or attack. The extent to which the sampling techniques affected the machine learning
performance was measured. The second scenario included multi-classified labels that
were classified based on the attack type. A number of performance changes occur as a
result of using the sampling technique. In particular, our aim was to determine whether
the performance of the majority class could be maintained while the performance of
the minority class was improved. In the third scenario, we compared EmSM to extant
resampling techniques.

Two public datasets (i.e., PKDD2007 and CSIC2012) with different degrees of imbal-
ance were selected to demonstrate the efficacy of the EmSM techniques. Class imbalance
handling techniques were compared, including the baseline (no sampling) and nine exist-
ing techniques (i.e., random undersampling (RUS), ENN, TOMEK, random oversampling
(ROS), SMOTE, B-SMOTE, ADASYN, SMOTE+ENN, and SMOTE+TOMEK) [12]. RF, MLP,
and XGBoost were also used to evaluate the model after the imbalance-handling techniques
were applied. EmSM was then applied to the imbalanced dataset.

The analysis of the algorithmic effects, attack ratio, and data distribution as factors
affecting the sampling results are discussed in Section 4.5.

4.1. Datasets

The characteristics of the two selected datasets are listed in Table 4. These datasets were
tested by dividing the binary classification into attack and normal types and by dividing
the multi-classification according to the attack type. PKDD2007 and CSIC2012 have low
and high imbalance ratios, respectively. Most datasets in the field of intrusion detection
consist of preprocessed data. However, the two selected datasets include hypertext transfer
protocol request headers and payloads; thus, the relationship with feature extraction can be
studied during the experiments.

4.1.1. PKDD2007

PKDD2007 was created in response to a web traffic analysis challenge at the combined
18th European Conference on Machine Learning and the 11th European Conference on
Principles and Practice of Knowledge Discovery in Databases [11]. As part of the challenge,
participants were provided with a dataset containing normal traffic and seven types of
attack traffic. It included 35,006 requests classified as normal and 15,110 requests classi-
fied as attack (i.e., cross-site scripting (XSS), structured query language injection (SQLi),
lightweight directory access protocol (LDAP) injection (LDAPi), extended markup lan-
guage (XML) path (XPATH) injection, path traversal, command extraction, and server-side
included (SSI) attacks). The dataset consists of classes comprising each type of request, as
shown in Figure 3.
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Table 4. Description of datasets (PKDD2007 and CSIC2012).

Datasets Category Payload Labeled Binary Class
(Normal/Attack) Multi Class (Attack Type) Source Balanced IR

PKDD2007 WAF * O O 50,116
(35,006/15,110)

XSS
SQL Injection

LDAP Injection
XPATH Injection

Path Traversal
Command Extraction

SSL Attack

ECML/PKDD O 18

CSIC2012 WAF * O O 65,767
(8363/57,404)

XSS
SQLi

Buffer Overflow LDAP
XPath

FormatString
SSI

CRLFi
Anomalous

CSIC/TORPEDA X 1160

* WAF, web application firewall.
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Figure 3. PKDD2007 dataset classes according to attack type.

Additionally, the presence or absence of an attack in the dataset and the label for each
type were visualized using t-SNE, as shown in Figure 4.
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4.1.2. CSIC2012

The CSIC2012 dataset was presented as part of the Torpedo framework at RECSI2012.
The framework was used to develop labeled web traffic for web-attack detection system
evaluation and testing [9]. The data are comprised of 10 classes, including 8363 requests
classified as normal, 16,456 requests classified as anomalous, and 40,948 requests classified
as attacks. The 10 attack types include nor mal, XSS, SQLi, buffer overflow, LDAP, XPath,
FormatString, SSI, carriage return-line feed injection (CRLFi), and anomalous. The dataset
applies the XML file format and consists of labels and requests. A request is divided into
method, protocol, path, headers, and body.

The dataset consists of classes for each type of request, as shown in Figure 5. The
t-SNE visualization of the labels for the presence/absence of attacks and each attack type
for the dataset are shown in Figure 6.
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4.2. Data Preprocessing

This stage entailed the use of data preprocessing to prepare the datasets for machine
learning and comprised the following steps: normalization, field selection, and feature
extraction and selection.
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4.2.1. Normalization

The collected datasets consisted of typical XML format data. First, the same normal-
ization was performed on the datasets in the form of method, version, universal resource
indicator (URI), query, and body. The values containing user information were included in
the body field. For the URI, query, and body fields, the “\n” character was removed, and
URI decoding was applied.

4.2.2. Field Selection

The fields used in the experiment were selected from each dataset. In PKDD2007 and
CSIC2012, the category type was divided into class, method, and version. For the text type,
the URI, query, and body were selected. At this point, if a query did not exist in the data
generated by CSIC2012, a missing value was noted as the “?” character in those fields.

4.2.3. Feature Extraction and Selection

This study is based on a method for extracting the feature of an attack from the header
and payload portion of an intrusion detection event by considering the characteristics of a
web intrusion detection dataset with payloads. The feature extraction method has also been
verified for performance by Pastrana et al. [36] and Torrano-Gimenez et al. [37]. Features
were extracted using the keywords associated with the attack types for the separated
fields: http_url, http_query, and http_body. The features were then categorized, and string
vectorization was conducted [35].

4.3. Evaluation Environment and Metrics

The experimental environment was implemented using Python in Ubuntu 18.04.2 LTS.
Scikit-learn 0.20.4 was used as the machine learning algorithm. The hardware specifications
included two Nvidia GeForce RTX 2060 GPUs, 128-GB RAM, 8-GB SSD, and an AMD
Ryzen Threadripper 1900X 8-core processor.

The selected evaluation method was used to calculate the confusion matrix metric,
an approach generally used in machine learning. The confusion matrix contains four
types of information: true positive (TP) refers to samples that are actually positive (attack)
samples that are correctly judged as positive (attack) samples; false negative (FN) refers to
samples that are actually positive (attack) samples, but are mistakenly judged to be negative
(normal) samples; false positive (FP) refers to negative (normal) samples that are misjudged
as positive (attack) samples; true negative (TN) refers to samples that are actually negative
(normal) samples, and are correctly judged as negative (normal) samples [34].

The experimental results were evaluated using the following evaluation metric based
on the confusion matrix. Accuracy (2) is defined as the ratio of items that were correctly
classified as “normal” or “attack” for all sample items. Precision (3) refers to the ratio of
items that were classified as actual attacks to the items that were predicted to be attacks.
Recall (4) is the ratio of items that were predicted to be attacks to actual attacks. It has the
same meaning as the detection ratio used for intrusion detection datasets. The F1-score (5)
is the harmonic mean of precision and recall.

Accuracy = (TP + TN)/(TP + TN + FP + FN), (2)

Precision = TP/(TP + FP), (3)

Recall = TP/(TP + FN), (4)

F1-score = (2 ∗ Recall ∗ Precision)/(Recall + Precision). (5)

However, these general evaluation methods can produce biased or skewed results on
unbalanced datasets. Accordingly, many researchers have suggested various evaluation
methods (G-mean, F1-score, PR AUC, Brier Score, etc.) to compensate for the imbalance.
In this study, our selection of metrics supported our aim to improve the performance of
the minority class and also maintain the performance of the majority class. Thus, the false
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positive rate (FPR) (8), true negative rate (TNR) (9), and G-mean (7) were added to these
universal evaluation metrics. FPR refers to the rate at which normal traffic is correctly
predicted to be an attack, and TNR refers to the rate at which normal traffic is correctly
predicted to be normal. The G-mean value proposed by Kubat and Matwin [38] is calculated
as the geometric mean of sensitivity and specificity [12].

Balaced Accuracy(BA) = ((TP/(TP + FN)) + (TN/(TN + FP)))/2, (6)

G-mean = TP/(TP + FP), (7)

FPR = FP/(TN + FP), (8)

TNR = TN/(TN + FP). (9)

Therefore, accurate classification of the majority groups would cause the accuracy
and G-mean values of the minority groups to be low. Thus, as the accuracy of the minority
groups improves, the value of G-mean increases. In multi-classification problems, the index
is calculated using the weighted average method according to the number of samples for
each class to evaluate the detection performance of the model on the imbalanced class set.

4.4. Experimental Results

We now report the experimental results for the three given scenarios.

4.4.1. Scenario 1: Binary Classification

PKDD2007 and CSIC2012 both contain imbalanced data, although the data in CSIC2012
are much more imbalanced. Table 5 lists the number of data points before and after
PKDD2007 and CSIC2012 sampling. The “Base” column contains the number of data
points before sampling. For the undersampling methods (i.e., RUS, ENN, and TOMEK), the
number was reduced to match the 6691 normal minority class data. In the case of ENN and
TOMEK, the number of data points was determined according to the sampling properties
of each, rather than accurately matching the minority class (e.g., RUS). With respect to the
oversampling methods, ROS, SMOTE, and B-SMOTE generated 39,449 results similar to
the attack majority class, but ADASYN increased the number beyond that.

Table 5. Data distribution after sampling (datasets CSIC2012 and PKDD2007).

DATASET Label BASE RUS ENN TOMEK ROS SMOTE B-SMOTE ADASYN SMOTE
+ENN

SMOTE
+TOMEK

CSIC2012
Attack 39,449 6691 6685 39,449 39,449 39,449 39,449 39,449 39,446 39,449

Normal 6691 6691 6691 6691 39,449 39,449 39,449 39,451 39,449 39,449

PKDD2007
Attack 36,405 24,179 25,239 35,789 36,405 36,405 36,405 36,405 23,630 35,906

Normal 24,179 24,179 24,179 24,179 36,405 36,405 36,405 37,296 26,009 35,906

The traditional sampling methods (i.e., ROS and RUS) reduced the imbalances of
the training set and produced synthetic data that closely resembled the actual data. The
RUS algorithm can lose valid information, which leads to data duplication and overfitting.
Simultaneously, SMOTE and B-SMOTE can increase the number of difficult samples in the
training set by generating noise traffic and data overlaps.

Table 6 presents the results of the performance assessment of the model after sampling
using XGBoost as the algorithm. The lower the FPR, the more accurate the results. For
the base data, the FPR was 0.0024 for CSIC2012 and 0.0203 for PKDD2007. In the case of
the highly imbalanced CSIC2012 dataset, the oversampling (i.e., ROS, SMOTE, B-SMOTE,
and ADASYN) and hybrid sampling (i.e., SMOTE+ENN and SMOTE+TOMEK) methods
produced satisfactory results. However, in the case of PKDD2007, which contained balanced
classes, the improvement was not significant. Moreover, apart from TOMEK, most of the
methods did not produce satisfactory results. If the majority group is classified accurately
but the ability to predict the minority group is low, the G-mean value is low. Hence, the
G-mean is an important metric for identifying class imbalances. Here, the results obtained
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with the undersampling methods were superior to those of the base, except for ENN, and
the oversampling and hybrid sampling methods both yielded reliable results. In terms of
the recall values and F1-scores, the base and mixed-sampling methods produced satisfactory
results, whereas the performances of the undersampling and oversampling methods were
slightly lower.

Table 6. Model performance results after binary sampling (datasets CSIC2012 and PKDD2007,
algorithm XGBoost).

DATASET Label BASE RUS ENN TOMEK ROS SMOTE B-SMOTE ADASYN SMOTE
+ENN

SMOTE
+TOMEK

CSIC2012

Accuracy 0.9994 0.9991 0.9992 0.9990 0.9999 0.9999 0.9997 0.9997 0.9997 0.9999
FPR 0.0024 0.0006 0.0036 0.0054 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

G-mean 0.9987 0.9992 0.9981 0.9972 0.9999 0.9999 0.9998 0.9998 0.9998 0.9999
F1-score 0.9996 0.9995 0.9995 0.9994 0.9999 0.9999 0.9998 0.9998 0.9998 0.9999

PKDD2007

Accuracy 0.8865 0.8741 0.8524 0.8857 0.8749 0.8544 0.8400 0.8772 0.8718 0.8809
FPR 0.0203 0.0596 0.1182 0.0160 0.0682 0.1137 0.1521 0.0441 0.6054 0.0343

G-mean 0.8549 0.8532 0.8442 0.8520 0.8575 0.8454 0.8380 0.8515 0.8481 0.8529
F1-score 0.8398 0.8306 0.8137 0.8375 0.8342 0.8154 0.8051 0.8313 0.8256 0.8346

In summary, imbalance handling had a positive effect on machine learning perfor-
mance with the datasets. Additionally, after class-imbalance handling, the results obtained
for the CSIC2012 dataset were more satisfactory than those of the PKDD2007 dataset.

4.4.2. Scenario 2: Multi-Classification

The labels in this experiment reflected the different attack types. The CSIC2012 dataset
was used for this experiment. The class imbalance-handling technology included the base
pre-sampling dataset and nine sampling technologies. The purpose of this experiment was
to improve the detection rate for the minority class while maintaining the detection rate for
the majority class of an intrusion detection dataset with a class imbalance.

The results of sampling the CSIC2012 dataset in Table 7 indicate that the majority
classes were SQLi, normal, and XSS, whereas the minority classes were FormatString (F/S),
LDAPi, XPath, and CRLFi. To examine the problem more closely, SQLi and XSS were used
as the majority classes, whereas FormatString (F/S) and LDAPi were the minority classes.

Table 7. Data distribution after sampling (dataset CSIC2012).

DATASET Label BASE RUS ENN TOMEK ROS SMOTE B-SMOTE ADASYN SMOTE
+ENN

SMOTE
+TOMEK

CSIC2012

XPath 143 33 75 142 34,351 34,351 34,351 34,343 32,701 34,351
XSS 3907 33 3382 3894 34,351 34,351 34,351 34,326 33,532 34,351

B/O * 324 33 228 319 34,351 34,351 34,351 34,344 31,650 34,351
SQLi 34.351 33 34,128 34,350 34,351 34,351 34,351 34,351 34,079 34,351
SSI 371 33 126 366 34,351 34,351 34,351 34,377 33,676 34,351

F/S * 33 33 33 33 34,351 34,351 34,351 34,355 32,917 34,351
LDAPi 62 33 8 56 34,351 34,351 34,351 34,359 30,899 34,351
CRLFi 258 33 65 256 34,351 34,351 34,351 34,326 33,751 34,351

* B/O, buffer overflow; F/S, FormatString.

In the next step, we evaluated the models generated by the RF, MLP, and XGBoost
algorithms after sampling. The results in Table 8; Table 9 were obtained after using 10
sampling techniques, including the base, undersampling (i.e., RUS, ENN, and TOMEK),
oversampling (i.e., ROS, SMOTE, B-SMOTE, and ADASYN), and hybrid sampling (i.e.,
SMOTE+ENN and SMOTE+TOMEK). The G-mean and F1-score values are shown as the
evaluation metrics.
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Table 8. Model performance results after sampling (dataset CSIC2012, G-mean).

BASE RUS ENN TOMEK ROS SMOTE B-SMOTE ADASYN SMOTE
+ENN

SMOTE
+TOMEK

F/S_RF * 0.8655 0.9983 0.8656 0.9991 0.8657 0.9997 0.9997 0.9997 0.9998 0.9997
LDAPi_RF 0.9253 0.9245 0.8864 0.8861 0.9258 0.8864 0.8864 0.8452 0.8864 0.8864
SQLi_RF 0.9886 0.9588 0.9981 0.9853 0.9986 0.9988 0.9988 0.9988 0.9988 0.9988
XSS_RF 0.9479 0.8693 0.9851 0.9452 0.9878 0.9894 0.9893 0.9894 0.9909 0.9894

F/S_XGBoost * 0.8660 0.7785 1.0000 0.7906 1.0000 1.0000 1.0000 0.9999 0.9999 1.0000
LDAPi_XGBoost 0.9258 0.9192 0.9258 0.9258 0.9258 0.8864 0.9258 0.6545 0.8864 0.8864
SQLi_XGBoost 0.9986 0.8724 0.9976 0.9969 0.999 0.9991 0.9991 0.9972 0.9991 0.9991
XSS_XGBoost 0.9922 0.9488 0.9868 0.9869 0.9885 0.9896 0.9917 0.9844 0.9922 0.9896

F/S_MLP * 0.5000 0.5587 0.7071 0.3535 0.9998 0.9997 0.999 0.7905 0.9998 0.9997
LDAPi_MLP 0.8864 0.5695 0.8863 0.8863 0.8864 0.8864 0.7071 0.6546 0.8858 0.8863
SQLi_MLP 0.9988 0.0000 0.9985 0.9985 0.999 0.9991 0.9984 0.9985 0.999 0.9991
XSS_MLP 0.9841 0.5793 0.9793 0.9831 0.9821 0.9801 0.9728 0.984 0.9801 0.9790

* F/S_RF, FormatString + random forest; F/S_XGBoost, FormatString + XGBoost; F/S_MLP, FormatString + MLP.

Table 9. Model performance results after sampling (dataset CSIC2012, F1-score).

BASE RUS ENN TOMEK ROS SMOTE B-SMOTE ADASYN SMOTE
+ENN

SMOTE
+TOMEK

F/S_RF 0.4444 0.2857 0.4615 0.4324 0.5217 0.6667 0.6667 0.6957 0.7619 0.6667
LDAPi_RF 0.6154 0.4068 0.8800 0.6875 0.9231 0.8800 0.8800 0.8333 0.8800 0.8800
SQLi_RF 0.9890 0.9579 0.9994 0.9856 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990
XSS_RF 0.9418 0.8590 0.9821 0.9339 0.9853 0.9880 0.9869 0.9874 0.9880 0.9880

F/S_XGBoost 0.8571 0.0277 1.0000 0.7692 0.9412 0.9412 1.0000 0.8889 0.8889 0.9412
LDAPi_XGBoost 0.9231 0.1257 0.9231 0.9231 0.9231 0.8462 0.9231 0.4444 0.8462 0.8800
SQLi_XGBoost 0.9995 0.8647 0.9992 0.9990 0.9991 0.9991 0.9991 0.9974 0.9991 0.9991
XSS_XGBoost 0.9870 0.9475 0.9853 0.9817 0.9884 0.9895 0.9916 0.9694 0.9895 0.9895

F/S_MLP 0.3636 0.0031 0.6154 0.2000 0.8000 0.6667 0.4103 0.6250 0.8000 0.6957
LDAPi_MLP 0.8462 0.0093 0.8148 0.8148 0.8800 0.8462 0.6364 0.5217 0.5366 0.7857
SQLi_MLP 0.9996 0.0000 0.9995 0.9995 0.9991 0.9991 0.9984 0.9985 0.9990 0.9991
XSS_MLP 0.9714 0.1873 0.9767 0.9759 0.9815 0.9799 0.9636 0.9704 0.9799 0.9783

In the case of multi-classification, the results were slightly different for each algorithm,
but the F1-score and G-mean of the minority classes, F/S and LDAPi, increased, and the
metrics for the majority classes, SQLi and XSS, increased or decreased slightly owing
to small errors. However, the values of the metrics varied according to the sampling
method, indicating that the minority class detection performance was strengthened, and
the detection performance of the majority class changed minimally, which was the goal of
this study.

Therefore, dataset sampling techniques for imbalanced data handling had a positive
effect on model performance, and it was confirmed that of all the sampling techniques, the
hybrid SMOTE+ENN and SMOTE+TOMEK techniques produced the most stable results.

4.4.3. Scenario 3: Comparison with Ensemble Based Algorithms

This section compares the results of applying ensemble algorithms. First, SMOTE+ENN
resampling was performed on an imbalanced dataset, and balanced bagging was applied
to the resampled dataset. We compared the results before and after applying SMOTE to the
base using traditional algorithms (i.e., RF, MLP, and XGBoost) and ensemble algorithms (i.e.,
AdaBoost, EasyEnsemble, RUSBoost, balanced bagging (BB), and balanced random forest
(BRF)) [12].

As shown in Figure 7, applying an ensemble algorithm to imbalanced data lowered
the performance as compared with the use of resampling. Overall, the dataset that was
subject to imbalance handling yielded favorable results. As compared with the application
of a traditional algorithm to a dataset resampled using SMOTE or a similar technique,
the accuracy or G-mean of EmSM did not reflect a noticeable improvement in the balance,
although it did yield a superior F1-score of at least 4%. In particular, the proposed method
resulted in much more stable F1-score, G-mean, and balanced accuracy results.
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4.5. Results and Discussion

Using three experimental scenarios, this study applied and compared various sam-
pling techniques to determine their effectiveness in handling imbalanced intrusion detection
datasets. First, nine resampling techniques were applied and compared in Scenarios 1
and 2. As a result, it was confirmed that the sampling methods had the effect of both
binary and multi-classification in common. Binary classification yielded good results with
various performance metrics (accuracy, FPR, G-mean, F1-score) using the sampling tech-
nique. In particular, good results were obtained in oversampling and hybrid sampling.
In multi-classification, the gap between the G-mean and F1-score for each minority and
majority class was wide before sampling methods were used, and it could be seen that
the gap between the minority and majority classes was narrowed after using sampling
methods. This approach enables the performance of the majority class to be maintained
while improving the performance of the minority class. Second, in Scenario 3, the first
imbalance data-handling technique using sampling and ensemble sampling yielded more
satisfactory results than applying only ensemble sampling (i.e., AdaBoost, EasyEnsemble,
RUSBoost, balanced bagging, and balanced RF). In particular, the proposed method yielded
favorable results in terms of the F1-score, G-mean, and balanced accuracy.

However, in this study, the degree of influence of the algorithm, attack ratio, and data
distribution, which are factors that affect the sampling results for imbalanced data handling,
was also investigated. We found that the sampling method affected the results of RF, MLP,
and XGboost in particular. Generally, XGBoost is not greatly affected by imbalanced data,
whereas RF and others show improved results with more balanced data.

The performance of the model changes markedly when the attack class ratio exceeds
70%. This indicates that the dataset class ratio must be adjusted such that the imbalance
ratio is below 70%. Moreover, the data distribution changes caused by preprocessing and
feature extraction techniques influences the results.

In summary, we confirmed that the performance of the proposed sampling technique
for imbalanced intrusion detection datasets is superior to that of existing data-resampling
methods or ensemble approaches. In particular, it improves the classification performance
for the minority class while maintaining the performance for the majority class, demon-
strating its ability to successfully improve intrusion detection.

4.5.1. Results of Each Algorithm before and after Sampling

The features of the respective algorithms became apparent by considering the multi-
classification performance on a dataset with imbalanced classes. As shown in Figure 8, the
results produced by tree-structured algorithms (e.g., RF) in terms of the accuracy, precision,
recall, and F1-score were stabilized as a result of sampling. In the case of MLP and XGBoost,
sampling did not significantly affect the outcome. By comparison, after sampling, the
machine-learning performance improved in the order RF > MLP > XGBoost.
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Figure 8. Results of each algorithm before and after sampling (F1-score, dataset CSIC2012).

4.5.2. Results According to Attack Ratio

Figure 9 compares the F1-scores according to the attack class ratio as another way
to measure the effectiveness of the different methods. As shown, for PKDD2007, the
performance of the model does not depend on the sampling technique or the modeling
method for attack data ratios of 40% or less. However, the performance of the model
changed markedly relative to that of the original base dataset for attack data ratios of
70% or more. We can conclude that the proposed method for data imbalance handling is
effective, and that the extent of change varies according to the algorithm.
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4.5.3. Results According to Data Distribution

The effect of the sampling technique and data distribution on the results was deter-
mined by applying the RF algorithm to CSIC2012. The data distribution was changed
by subjecting the strings to vectorization when features were extracted from the payload
segments to change the data distribution. The sampling techniques that were used were
custom [35], term frequency-inverse document frequency (TF-IDF), hash, and Word2vec
string vectors. As shown in Figure 10, the performance results depend on the type of
string vector. The base was the optimal sampling technique for custom, and RUS was the
optimal technique for TF-IDF. In the case of hash, the optimal sampling technique was
ADASYN. These results show that the optimal sampling technique varies according to the
data distribution, which changes for each feature extraction.
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5. Conclusions and Future Work

The class imbalance issue, which is common in the field of intrusion detection, sig-
nificantly increases the difficulty of using existing algorithms for classification. In this
paper, we propose EmSM, which combines a hybrid resampling technique and an ensemble
technique to overcome the data imbalance problem in the intrusion detection field. As
a result, it was confirmed that the sampling methods had the effect of both binary and
multi-classification in common. Binary classification yielded good results with various
performance metrics using the sampling technique. In multi-classification, the gap between
the G-mean and F1-score for each minority and majority class was narrowed after using sam-
pling methods. Furthermore, the proposed technique improved true positive identification
and classification of serious threats that rarely occur, representing a major functional inno-
vation. However, subsequent experiments showed that many factors (applied algorithms,
attack ratios, and data distribution by features) could adversely affect the sampling results
and could cause difficulties in practical applications. Therefore, in the future, we aim to
increase the utilization of machine learning in the intrusion detection field by attempting
various approaches such as more extended GAN and one-class classification to solve the
imbalance problem in consideration of these problems.
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