
Citation: Raciborski, M.; Cariow, A.

On the Derivation of Winograd-Type

DFT Algorithms for Input Sequences

Whose Length Is a Power of Two.

Electronics 2022, 11, 1342. https://

doi.org/10.3390/electronics11091342

Academic Editor: Manohar Das

Received: 16 March 2022

Accepted: 20 April 2022

Published: 23 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

On the Derivation of Winograd-Type DFT Algorithms for Input
Sequences Whose Length Is a Power of Two
Mateusz Raciborski *,† and Aleksandr Cariow †

Faculty of Computer Science and Information Technology, West Pomeranian University of Technology,
Żołnierska 52, 71-210 Szczecin, Poland; atariov@wi.zut.edu.pl
* Correspondence: mateusz.raciborski@zut.edu.pl
† These authors contributed equally to this work.

Abstract: Winograd’s algorithms are an effective tool for calculating the discrete Fourier transform
(DFT). These algorithms described in well-known articles are traditionally represented either with
the help of sets of recurrent relations or with the help of products of sparse matrices obtained on the
basis of various methods of the DFT matrix factorization. Unfortunately, in the mentioned papers, it
is not shown how the described relations were obtained or how the presented factorizations were
found. In this paper, we use a simple, understandable and fairly unified approach to the derivation
of the Winograd-type DFT algorithms for the cases N = 8, N = 16 and N = 32. It is easy to verify that
algorithms for other lengths of sequences that are powers of two can be synthesized in a similar way.

Keywords: complexity theory; compression algorithms; digital signal processing; discrete Fourier
transforms; fast Fourier transforms; matrix decomposition; signal processing algorithms; sparse
matrices; sum product algorithm; Winograd discrete Fourier transform algorithm

1. Introduction

Winograd’s method for the realization of the discrete Fourier transform (DFT) for
several decades has been discussed in a number of publications [1–12]. In comparison with
the Cooley–Tukey fast Fourier transform (FFT) algorithms, the Winograd DFT algorithm
requires substantially fewer multiplications at the cost of a few extra additions. In the
known papers, the cases of the Winograd FFTs for small sequences of odd length are mainly
considered. Moreover, the algorithms were presented in the form of algebraic relations or
in the form of DFT matrix factorizations. However, none of the publications known to us
has written on how these relations were obtained or how, on the basis of any considerations,
the matrices that make up the corresponding computational procedures were constructed.

In this paper, we want to show a simple, understandable and fairly unified approach
to the derivation of Winograd-type FFT algorithms for the cases N = 8, N = 16 and N = 32.
It is easy to verify that algorithms for other lengths of sequences that are powers of two can
be synthesized similarly.

2. Preliminary Remarks

The discrete Fourier transform (DFT) is one of the most important tools in digital
signal and image processing. The DFT can be defined as follows:

yk =
N−1

∑
n=0

xne
−j2πnk

N (1)

where xn, n = 0, 1, . . . , N − 1 is a uniformly sampled sequence, yk, k = 0, 1, . . . , N − 1 is the
k-th DFT coefficient, and j =

√
−1 is an imaginary unit.

Electronics 2022, 11, 1342. https://doi.org/10.3390/electronics11091342 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11091342
https://doi.org/10.3390/electronics11091342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5298-6719
https://orcid.org/0000-0002-4513-4593
https://doi.org/10.3390/electronics11091342
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11091342?type=check_update&version=2

Electronics 2022, 11, 1342 2 of 22

In vector–matrix notation, we can rewrite (1) in the following form:

YYYN×1 = EEENXXXN×1 (2)

where
XXXN×1 = [x0, x1, . . . , xN−1]

T,YYYN×1 = [y0, y1, . . . , yN−1]
T

and
EEEN =|| wkn ||, wkn = e

−j2πnk
N , k, n = 0, 1, . . . , N − 1

Implementation of calculations in accordance with expression (2), especially for large
N, requires performing a large number of arithmetic operations, which in turn leads to an
increase in computation time.

In 1965, J. Cooley and J. Tukey proposed the fast algorithm to compute discrete Fourier
transform with a drastically reduced number of arithmetical operations. Mathematically,
the fast Fourier transform algorithms are based on factorization of the Fourier matrix into a
product of sparse matrices, meaning matrices with many zero entries. However, this factor-
ization can be implemented in different ways. In the case of the Cooley–Tukey algorithm,
we are dealing with the representation of the original matrix as a product of log2 N sparse
structured matrices. As is well known, the complexity of this algorithm is approximately
N
2 log2 N multiplications and the same number of additions of complex numbers.

Another effective algorithm for calculating the DFT is the Winograd FFT algorithm.
In comparison with the Cooley–Tukey FFT algorithm, the Winograd FFT algorithm requires
substantially fewer multiplications at the cost of a few extra additions. Winograd proved
that the multiplicative complexity of FFT algorithms can be significantly reduced by some
increase in additive complexity. The Winograd Fourier transform algorithm (WFTA) is an
FFT algorithm which achieves a reduction on the number of multiplications from order
O(N2) in the DFT to order N. In the literature known to the authors [1–15], the Winograd
FFT algorithms that implement DFT transform for a limited set of small-length sequences
are mainly considered. As a rule, these algorithms are represented as a set of algebraic
relations [1–5,8], although the matrix interpretation of Winograd FFT algorithms are avail-
able too [6,9]. In the case of the matrix formulation of the Winograd FFT algorithms,
the factorization of the DFT matrix differs from the factorization of the DFT matrix in the
Cooley–Tukey FFT algorithms. Moreover, the mechanism for deriving such algorithms for
each specific case is unique. In addition, methods for the deriving of recurrent relations are
not published anywhere. Additionally, the ways for deriving factorized representations of
DFT matrices have never been explained. In this paper, we show a simple, understandable
and fairly unified approach to the derivation of the Winograd-like FFT algorithms for the
case when the input sequence length is a power of two.

3. Short Background

The main idea of the proposed approach is to use a new method for factorizing the
DFT matrix, which is different from Winograd factorization. In contrast to Winograd
factorization, we propose the following unified method of DFT matrix decomposition:

EEE2i+1 = (HHH2 ⊗ III2i)(EEE2i ⊕QQQ2i)PPP
(π2i+1)

2i+1 (3)

where

PPP
(π2i+1)

2i+1 =

 III2i−1 ⊗ΨΨΨ2×4

(III2i−1 ⊗ΨΨΨ2×4)III
(1→)

2i+1

, ΨΨΨ2×4 =

[
1 0 0 0
0 0 1 0

]
, i = 1, 2, 3 . . .

EEEk is k × k DFT matrix; QQQk is some “prefix” matrix containing a constellation of twiddle
factors specific for each N; Ik is an identity k × k matrix; H2 is the order 2 Hadamard matrix;
III(1→)

2i+1 is the matrix obtained from the k × k identity matrix by shifting its columns by one

Electronics 2022, 11, 1342 3 of 22

position to the right; and signs “⊗”, “⊕” denote the tensor product and direct sum of two
matrices, respectively [16,17].

Then, the generalized scheme for the synthesis of Winograd-type DFT algorithms for
N equal to the power of two can be described as follows:

YYY2i+1×1 = (HHH2 ⊗ III2i)(EEE2i ⊕QQQ2i)PPP
(π2i+1)

2i+1 XXX2i+1×1 (4)

The methods for factorizing the matrices EEEk and QQQk are different, but both lead to
a factorization of the BCD type [18] similar to the Winograd factorization. Moreover,
as follows from expression (1), the expansions for small N are part of the expansions for
larger lengths of input sequences. When synthesizing algorithms for separate EEEk and QQQk,
we will use the templates of matrix structures and identities presented in [19,20].

4. Synthesis of the Fast Winograd-Type DFT Algorithms

Let us show, based on specific examples, how it works.

4.1. Fast DFT Algorithm for N = 4

As an example, suppose that N = 4. Then (2) can be rewritten as

YYY4×1 = EEE4XXX4×1 (5)

where

EEE4 =


a4 a4 a4 a4
a4 b4 −a4 −b4
a4 −a4 a4 −a4
a4 −b4 −a4 b4

,

a4 = 1, b4 = −j.

XXX4×1 = [x0, x1, x2, x3]
T,YYY4×1 = [y0, y1, y2, y3]

T.

Let us now define the permutation π4 and write it as a matrix in this way:

π4 =

(
1 2 3 4
1 3 2 4

)
, PPP(π4)

4 =


1

1
1

1

.

Permute the columns of the matrix EEE4 according to permutation π4. As a result of such
a permutation, we obtain the matrix

ẼEE4 =

[
EEE2 QQQ2
EEE2 −QQQ2

]
= ẼEE4PPP(π4)

4

where

EEE2 =

[
a4 a4
a4 −a4

]
and QQQ2 =

[
a4 a4
b4 −b4

]
According to the concept, Expression (4) for a given transform size can be rewritten

as follows:
YYY4×1 = (HHH2 ⊗ III2)(EEE2 ⊕QQQ2)PPP

(π4)
4 XXX4×1 (6)

where

HHH2 ⊗ III2 =

[
1 1
1 −1

]
⊗
[

1 0
0 1

]
=


1 1

1 1
1 −1

1 −1

 = WWW(0)
4 .

Electronics 2022, 11, 1342 4 of 22

As you can see, after rearranging the columns of the DFT matrix EEE4, it can be decom-
posed, as follows from the proposed technique, into the order 2 DFT matrix EEE2 and the
order 2 prefix matrix QQQ2.

For matrices EEE2 and QQQ2, we can offer the following factorization schemes leading to a
reduction in computational complexity:

EEE2 =

[
a4 a4
a4 −a4

]
= (a4 ⊕ a4)HHH2, QQQ2 =

[
a4 a4
b4 −b4

]
= (a4 ⊕ b4)HHH2

Taking into account the above factorization schemes, we can finally write

YYY4×1 = WWW(0)
4 DDD4WWW(1)

4 PPP(π4)
4 XXX4×1 (7)

where

WWW(1)
4 =

[
1 1
1 −1

]
⊕
[

1 1
1 −1

]
=


1 1
1 −1

1 1
1 −1

,

DDD4 = diag(ϕ0, ϕ1, ϕ2, ϕ3),

ϕ0, ϕ1, ϕ2 = a4 = 1, ϕ3 = b4 = −j.

Figure 1 shows a data flow graph of synthesized algorithm for 4 point DFT. As can be
seen, in this case, the algorithm takes only eight additions.

Figure 1. The data flow graph of the proposed algorithm for computation of 4-point DFT.

4.2. Fast DFT Algorithm for N = 8

As an example, suppose that N = 8. Then (2) can be rewritten as

YYY8×1 = EEE8XXX8×1 (8)

where
XXX8×1 = [x0, x1, x2, x3, x4, x5, x6, x7]

T,

YYY8×1 = [y0, y1, y2, y3, y4, y5, y6, y7]
T,

a8 = 1, b8 = 0.7071− j0.7071, c8 = −j, d8 = −0.7071− j0.7071,

EEE8 =



a8 a8 a8 a8 a8 a8 a8 a8
a8 b8 c8 d8 −a8 −b8 −c8 −d8
a8 c8 −a8 −c8 a8 c8 −a8 −c8
a8 d8 −c8 b8 −a8 −d8 c8 −b8
a8 −a8 a8 −a8 a8 −a8 a8 −a8
a8 −b8 c8 −d8 −a8 b8 −c8 d8
a8 −c8 −a8 c8 a8 −c8 −a8 c8
a8 −d8 −c8 −b8 −a8 d8 c8 b8


.

Electronics 2022, 11, 1342 5 of 22

Let us now define the permutation π8 in the following form:

π8 =

(
1 2 3 4 5 6 7 8
1 3 5 7 2 4 6 8

)
.

Permutation π8 can be written as a matrix in this way:

PPP(π8)
8 =



1
1

1
1

1
1

1
1


.

Permute columns of the matrix EEE8 according to permutation π8. As a result of such a
permutation, we obtain the matrix

ẼEE8 =

[
EEE4 QQQ4
EEE4 −QQQ4

]
= EEE8PPP(π8)

8

where

EEE4 =


a8 a8 a8 a8
a8 c8 −a8 −c8
a8 −a8 a8 −a8
a8 −c8 −a8 c8

 and QQQ4 =


a8 a8 a8 a8
b8 d8 −b8 −d8
c8 −c8 c8 −c8
d8 b8 −d8 −b8


According to the concept, Expression (4) for a given transform size can be rewritten

as follows:
YYY8×1 = (HHH2 ⊗ III4)(EEE4 ⊕QQQ4)PPP

(π8)
8 XXX8×1 (9)

Such a structure of the matrix ẼEE8 allows to apply a divide and conquer algorithm
that recursively breaks down a matrix–vector product of order eight into two smaller
matrix–vector products of order 4 [19]. If we write the matrix EEE8 as a product ẼEE8PPP(π8)

8 , the
Equation (8) will take the form:

YYY8×1 = WWW(0)
8 (EEE4 ⊕QQQ4)PPP

(π8)
8 XXX8×1 (10)

where
WWW(0)

8 = HHH2 ⊗ III4.

Permute columns of the matrix EEE4 and rows of the matrix QQQ4 according to permutation
π4. As a result of such permutations, we obtain the matrices

ẼEE4 =

[
AAA2 BBB2
AAA2 −BBB2

]
and Q̃QQ4 =

[
CCC2 CCC2
DDD2 −DDD2

]
where

AAA2 =

[
a8 a8
a8 −a8

]
, BBB2 =

[
a8 a8
c8 −c8

]
,

CCC2 =

[
a8 a8
c8 −c8

]
, DDD2 =

[
b8 d8
d8 b8

]
.

Electronics 2022, 11, 1342 6 of 22

Such structures of the matrices ẼEE4 and Q̃QQ4 allow to apply the same schemes of factor-
ization. Therefore, we can write

YYY8×1 = WWW(0)
8 W̃WW(0)

8 (AAA2 ⊕BBB2 ⊕CCC2 ⊕DDD2)W̃WW
(1)
8 PPP(π8)

8 XXX8×1 (11)

where
W̃WW(0)

8 = (HHH2 ⊗ III2)⊕PPP(π4)
4 , W̃WW(1)

8 = PPP(π4)
4 ⊕ (HHH2 ⊗ III2),

For matrices AAA2, BBB2, CCC2, DDD2 we can offer the following factorization schemes leading
to a reduction in computational complexity:

AAA2 =

[
a8 a8
a8 −a8

]
= (a8 ⊕ a8)HHH2, BBB2 =

[
a8 a8
c8 −c8

]
= (a8 ⊕ c8)HHH2,

CCC2 =

[
a8 a8
c8 −c8

]
= (a8 ⊕ c8)HHH2, DDD2 =

[
b8 d8
d8 b8

]
= HHH2

1
2
[(b8 + d8)⊕ (b8 − d8)]HHH2

Taking into account the above factorization schemes, we can finally write

YYY8×1 = WWW(0)
8 W̃WW(0)

8 WWW(3)
8 DDD8WWW(4)

8 W̃WW(1)
8 PPP(π8)

8 XXX8×1 (12)

where
WWW(4)

8 = III4 ⊗HHH2, WWW(3)
8 = III6 ⊕HHH2,

DDD8 = diag(ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7),

ϕ0, ϕ1, ϕ2, ϕ4 = a8 = 1, ϕ3, ϕ5 = e8 = −j, ϕ6 = −j0.7071, ϕ7 = 0.7071.

Expression (12) describes the Winograd-type fast Fourier transform algorithm for
N = 8. Figure 2 shows a data flow graph of synthesized algorithm for 8 point DFT. As can
be seen, in this case the algorithm takes 2 multiplications and 26 additions.

Figure 2. The data flow graph of the proposed algorithm for computation of 8-point DFT.

4.3. Fast DFT Algorithm for N = 16

Now let us consider the synthesis of a similar algorithm for N = 16. In matrix–vector
notation, we can rewrite the DFT in the following form:

YYY16×1 = EEE16XXX16×1 (13)

where
XXX16×1 = [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15]

T

YYY16×1 = [y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15]
T

Electronics 2022, 11, 1342 7 of 22

EEE16 =

[
EEE(0,0)

8 EEE(0,1)
8

EEE(1,0)
8 −EEE(1,1)

8

]
.

where

EEE(0,0)
8 =



a16 a16 a16 a16 a16 a16 a16 a16
a16 b16 c16 d16 e16 f16 g16 h16
a16 c16 e16 g16 −a16 −c16 −e16 −g16
a16 d16 g16 −b16 −e16 −h16 c16 f16
a16 e16 −a16 −e16 a16 e16 −a16 −e16
a16 f16 −c16 −h16 e16 −b16 −g16 d16
a16 g16 −e16 c16 −a16 −g16 e16 −c16
a16 h16 −g16 f16 −e16 d16 −c16 b16


,

EEE(0,1)
8 =



a16 a16 a16 a16 a16 a16 a16 a16
−a16 −b16 −c16 −d16 −e16 − f16 −g16 −h16
a16 c16 e16 g16 −a16 −c16 −e16 −g16
−a16 −d16 −g16 b16 e16 h16 −c16 − f16
a16 e16 −a16 −e16 a16 e16 −a16 −e16
−a16 − f16 c16 h16 −e16 b16 g16 −d16
a16 g16 −e16 c16 −a16 −g16 e16 −c16
−a16 −h16 g16 − f16 e16 −d16 c16 −b16


,

EEE(1,0)
8 =



a16 −a16 a16 −a16 a16 −a16 a16 −a16
a16 −b16 c16 −d16 e16 − f16 g16 −h16
a16 −c16 e16 −g16 −a16 c16 −e16 g16
a16 −d16 g16 b16 −e16 h16 c16 − f16
a16 −e16 −a16 e16 a16 −e16 −a16 e16
a16 − f16 −c16 h16 e16 b16 −g16 −d16
a16 −g16 −e16 −c16 −a16 g16 e16 c16
a16 −h16 −g16 − f16 −e16 −d16 −c16 −b16


,

EEE(1,1)
8 =



a16 −a16 a16 −a16 a16 −a16 a16 −a16
−a16 b16 −c16 d16 −e16 f16 −g16 h16
a16 −c16 e16 −g16 −a16 c16 −e16 g16
−a16 d16 −g16 −b16 e16 −h16 −c16 f16
a16 −e16 −a16 e16 a16 −e16 −a16 e16
−a16 f16 c16 −h16 −e16 −b16 g16 d16
a16 −g16 −e16 −c16 −a16 g16 e16 c16
−a16 h16 g16 f16 e16 d16 c16 b16


.

where

a16 = 1, b16 = 0.9239− j0.3827, c16 = 0.7071− j0.7071,

d16 = 0.3827− j0.9239, e16 = −j, f16 = −0.3827− j0.9239,

g16 = −0.7071− j0.7071, h16 = −0.9239− j0.3827.

Let us define the permutation π16 in the following form:

π16 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16

)

Electronics 2022, 11, 1342 8 of 22

Permute columns of the matrix EEE16 according to permutation π16. As a result of such
permutation, we obtain the matrix

ẼEE16 =

[
EEE8 QQQ8
EEE8 −QQQ8

]
= ẼEE16PPP(π16)

16

where

EEE8 =



a16 a16 a16 a16 a16 a16 a16 a16
a16 c16 e16 g16 −a16 −c16 −e16 −g16
a16 e16 −a16 −e16 a16 a16 −a16 −e16
a16 g16 −e16 c16 −a16 −g16 e16 −c16
a16 −a16 a16 −a16 a16 −a16 a16 −a16
a16 −c16 e16 −g16 −a16 c16 −e16 g16
a16 −e16 −a16 e16 a16 −e16 −a16 e16
a16 −g16 −e16 −c16 −a16 g16 e16 c16


,

QQQ8 =



a16 a16 a16 a16 a16 a16 a16 a16
b16 d16 f16 h16 −b16 −d16 − f16 −h16
c16 g16 −c16 −g16 c16 g16 −c16 −g16
d16 −b16 −h16 f16 −d16 b16 h16 − f16
e16 −e16 e16 −e16 e16 −e16 e16 −e16
f16 −h16 −b16 d16 − f16 h16 b16 −d16
g16 c16 −g16 −c16 g16 c16 −g16 −c16
h16 f16 d16 b16 −h16 − f16 −d16 −b16


.

According to the concept, expression (4) for a given transform size can be rewritten
as follows:

YYY16×1 = (HHH2 ⊗ III8)(EEE8 ⊕QQQ8)PPP
(π16)
16 XXX16×1 (14)

Such a matrix structure allows for the factorization of the matrix ẼEE16; similarly, as was
done in the case of the matrix of order N = 8 [19].

If we write the matrix EEE16 as a product ẼEE16PPP(π16)
16 , Equation (13) takes the form

YYY16×1 = WWW(0)
16 (EEE8 ⊕QQQ8)PPP

(π16)
16 XXX16×1 (15)

where the corresponding permutation matrix PPP(π16)
16 takes the following form:

P̌PP4×8 =


1

1
1

1

, P̂PP4×8 =


1

1
1

1

,

P̌PP8×16 = P̌PP4×8 ⊕ P̌PP4×8, P̂PP8×16 = P̂PP4×8 ⊕ P̂PP4×8,

PPP(π16)
16 = PPP(0)

16 =

[
P̌PP8×16

P̂PP8×16

]
and WWW(0)

16 = HHH2 ⊗ III8.

Electronics 2022, 11, 1342 9 of 22

Now let us permute columns of the matrix EEE8 according to permutation π8. As a result
of such a permutation, we obtain the matrix

ẼEE8 =



a16 a16 a16 a16 a16 a16 a16 a16
a16 e16 −a16 −e16 e16 g16 −c16 −g16
a16 −a16 a16 −a16 e16 −e16 e16 −e16
a16 −e16 −a16 e16 g16 c16 −g16 −c16
a16 a16 a16 a16 −a16 −a16 −a16 −a16
a16 e16 −a16 −e16 −c16 −g16 e16 g16
a16 −a16 a16 −a16 −e16 e16 −e16 e16
a16 −e16 −a16 e16 −g16 −c16 g16 c16


=

[
AAA4 BBB4
AAA4 −BBB4

]
,

where

AAA4 =


a16 a16 a16 a16
a16 e16 −a16 −e16
a16 −a16 a16 −a16
a16 −e16 −a16 e16

 and BBB4 =


a16 a16 a16 a16
c16 g16 −c16 −g16
e16 −e16 e16 −e16
g16 c16 −g16 −c16

.

Then the matrix EEE8 can be represented as a product ẼEE8PPP(π8)
8 = WWW(0)

8 (AAA4 ⊕BBB4)PPP
(π8)
8 .

Next, we permute rows of the matrix QQQ8 according to permutation π8. As a result of such a
permutation, we obtain the matrix Q̃QQ8

Q̃QQ8 =



a16 a16 a16 a16 a16 a16 a16 a16
c16 g16 −c16 −g16 c16 g16 −c16 −g16
e16 −e16 e16 −e16 e16 −e16 e16 −e16
g16 c16 −g16 −c16 g16 c16 −g16 −c16
b16 d16 f16 h16 −b16 −d16 − f16 −h16
d16 −b16 −h16 f16 −d16 b16 h16 − f16
f16 −h16 −b16 d16 − f16 h16 b16 −d16
h16 f16 d16 b16 −h16 − f16 −d16 −b16


=

[
CCC4 CCC4
DDD4 −DDD4

]
,

where

CCC4 =


a16 a16 a16 a16
c16 g16 −c16 −g16
e16 −e16 e16 −e16
g16 c16 −g16 −c16

 and DDD4 =


b16 d16 f16 h16
d16 −b16 −h16 f16
f16 −h16 −b16 d16
h16 f16 d16 b16

.

Then the matrix QQQ8 can be represented as a product PPP(π8)
8 Q̃QQ8 = PPP(π8)

8 (CCC4 ⊕DDD4)WWW
(0)
8 .

Taking into account the above factorization schemes, we can finally write

YYY16×1 = WWW(0)
16 W̃WW(0)

16 (AAA4 ⊕BBB4 ⊕CCC4 ⊕DDD4)W̃WW
(1)
16 PPP(0)

16 XXX16×1 (16)

where
W̃WW(0)

16 = WWW(0)
8 ⊕

[
PPP(π8)

8

]T
, W̃WW(1)

16 = PPP(π8)
8 ⊕WWW(0)

8 .

We now consider the matrices AAA4, BBB4, CCC4, and DDD4. Permute columns of the matrix AAA4
according to permutation π4. As a result of such a permutation, we obtain the matrix

ÃAA4 =


a16 a16 a16 a16
a16 −a16 e16 −e16
a16 a16 −a16 −a16
a16 −a16 −e16 e16

 =

[
AAA2 BBB2
AAA2 −BBB2

]
.

Electronics 2022, 11, 1342 10 of 22

Next, we permute rows of the matrix BBB4 according to permutation π4. As a result of
such a permutation, we obtain the matrix B̃BB4

B̃BB4 =


a16 a16 a16 a16
e16 −e16 e16 −e16
c16 g16 −c16 −g16
g16 c16 −g16 −c16

 =

[
CCC2 CCC2
DDD2 −DDD2

]
.

Now, we permute rows of the matrix CCC4 according to permutation π4. As a result of
such a permutation, we obtain the matrix C̃CC4

C̃CC4 =


a16 a16 a16 a16
e16 −e16 e16 −e16
c16 g16 −c16 −g16
g16 c16 −g16 −c16

 =

[
FFF2 FFF2
GGG2 −GGG2

]
.

Next, we define the permutation in the following way:

π̃4 =

(
1 2 3 4
1 2 4 3

)
Permute rows and columns of the matrix DDD4 according to permutation π̃4. As a result

of such a permutation, we obtain the matrix D̃DD4.

D̃DD4 =


b16 d16 h16 f16
d16 −b16 f16 −h16
h16 f16 b16 d16
f16 −h16 d16 −b16

 = PPP(π̃4)
4 DDD4PPP(π̃4)

4 =

[
J̃JJ2 K̃KK2
K̃KK2 −J̃JJ2

]

where

PPP(π̃4)
4 =


1

1
1

1

.

Then
DDD4 = PPP(π̃4)

4 (HHH2 ⊗ III2)
1
2
[(

J̃JJ2 + K̃KK2
)
⊕
(
J̃JJ2 − K̃KK2

)]
(HHH2 ⊗ III2)PPP

(π̃4)
4

where
1
2
(
J̃JJ2 + K̃KK2

)
=

1
2

[
b16 + h16 d16 + f16
d16 + f16 −(b16 + h16)

]
= JJJ2,

1
2
(
J̃JJ2 − K̃KK2

)
=

1
2

[
b16 − h16 d16 − f16
d16 − f16 −(b16 − h16)

]
= KKK2.

Taking into account the matrix transformations performed above, we can write

YYY16×1 = WWW(0)
16 W̃WW(0)

16 WWW(4)
16 PPP(4)

16 DDD16PPP(3)
16 WWW(3)

16 W̃WW(1)
16 PPP(0)

16 XXX16×1 (17)

where
DDD16 = AAA2 ⊕BBB2 ⊕CCC2 ⊕DDD2 ⊕FFF2 ⊕GGG2 ⊕ JJJ2 ⊕KKK2,

PPP(4)
16 = III4 ⊕PPP(π4)

4 ⊕PPP(π4)
4 ⊕PPP(π̃4)

4 , WWW(4)
16 = WWW(0)

4 ⊕ III8 ⊕WWW(0)
4 ,

WWW(3)
16 = III4 ⊕WWW(0)

4 ⊕WWW(0)
4 ⊕WWW(0)

4 , PPP(3)
16 = PPP(π4)

4 ⊕ III8 ⊕PPP(π̃4)
4 ,

Electronics 2022, 11, 1342 11 of 22

AAA2 =

[
a16 a16
a16 −a16

]
, BBB2 =

[
a16 a16
e16 −e16

]
,

CCC2 = FFF2 =

[
a16 a16
e16 −e16

]
, DDD2 = GGG2 =

[
c16 g16
g16 c16

]
,

JJJ2 =
1
2

[
b16 + h16 d16 + f16
d16 + f16 −(b16 + h16)

]
, KKK2 =

1
2

[
b16 − h16 d16 − f16
d16 − f16 −(b16 − h16)

]
.

In turn, the matrices AAA2, BBB2, CCC2, DDD2, FFF2, GGG2, JJJ2 and KKK2 also have structures that pro-
vide effective factorization, which leads to a decrease in the multiplicative complexity
of calculations:

AAA2 =

[
a16 a16
a16 −a16

]
= (a16 ⊕ a16)HHH2,

BBB2 =

[
a16 a16
e16 −e16

]
= (a16 ⊕ e16)HHH2,

CCC2 = FFF2

[
a16 a16
e16 −e16

]
= (a16 ⊕ e16)HHH2,

DDD2 = GGG2

[
c16 g16
g16 c16

]
= HHH2

1
2
[(c16 + g16)⊕ (c16 − g16)]HHH2,

JJJ2 =
1
2

[
b16 + h16 d16 + f16
d16 + f16 −(b16 + h16)

]
= TTT2×3

1
2

 j21 0 0
0 j22 0
0 0 j23

TTT3×2,

where

TTT2×3 =

[
1 0 1
0 1 1

]
, TTT3×2 =

 1 0
0 1
1 1

,

j21 = (b16 + h16)− (d16 + f16),

j22 = −[(b16 + h16) + (d16 + f16)],

j23 = d16 + f16.

KKK2 =
1
2

[
b16 − h16 d16 − f16
d16 − f16 −(b16 − h16)

]
= TTT2×3

1
2

 k21 0 0
0 k22 0
0 0 k23

TTT3×2.

where
k21 = (b16 − h16)− (d16 − f16),

k22 = −[(b16 − h16) + (d16 − f16)],

k23 = (d16 − f16).

Combining the above partial decompositions in a single procedure, we can rewrite
(13) as follows:

YYY16×1 = WWW(0)
16 W̃WW(0)

16 WWW(4)
16 PPP(4)

16 WWW(6)
16 AAA16×18DDD18AAA18×16WWW(5)

16 PPP(3)
16 WWW(3)

16 W̃WW(1)
16 PPP(0)

16 XXX16×1 (18)

where
WWW(5)

16 = (III6 ⊗HHH2)⊕ III4, WWW(6)
16 = III6 ⊕HHH2 ⊕ III2 ⊕HHH2 ⊕ III4,

Electronics 2022, 11, 1342 12 of 22

DDD18 = diag(ϕ0, ϕ1, . . . , ϕ17),

ϕ0, ϕ1, ϕ2, ϕ4, ϕ8 = a16 = 1, ϕ3, ϕ5, ϕ9 = e16 = −j,

ϕ6, ϕ10 =
1
2
(c16 + g16) = −j0.7071, ϕ7, ϕ11 =

1
2
(c16 − g16) = 0.7071,

ϕ12 =
1
2
[(b16 + h16)− (d16 + f16)] = j0.5412,

ϕ13 = −1
2
[(b16 + h16)− (d16 + f16)] = j1.3066,

ϕ14 =
1
2
(d16 + f16) = −j0.9239,

ϕ15 =
1
2
[(b16 − h16)− (d16 − f16)] = −0.5412,

ϕ16 = −1
2
[(b16 − h16) + (d16 − f16)] = 1.3066,

ϕ17 =
1
2
(d16 − f16) = −0.3827,

AAA16×18 = III12 ⊕TTT2×3 ⊕TTT2×3, AAA18×16 = III12 ⊕TTT3×2 ⊕TTT3×2

Figure 3 shows a data flow graph of synthesized algorithm for 16 point DFT. As can
be seen, in this case the algorithm takes 10 multiplications and 74 additions.

Figure 3. The data flow graph of the proposed algorithm for computation of 16-point DFT.

4.4. Fast DFT Algorithm for N = 32

Now let us consider the synthesis of a similar algorithm for N = 32. In matrix–vector
notation, we can rewrite the DFT in the following form:

YYY32×1 = EEE32XXX32×1 (19)

where

XXX32×1 = [x0, x1, x2, . . . , x29, x30, x31]
T, YYY32×1 = [y0, y1, y2, . . . , y29, y30, y31]

T

Electronics 2022, 11, 1342 13 of 22

Let us define the permutation π32 in the following form:

π32 =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32


Permute columns of the matrix EEE32 according to permutation π32. As a result of such

permutation, we obtain the matrix

ẼEE32 =

[
EEE16 QQQ16
EEE16 −QQQ16

]
= EEE32PPP(π32)

32

According to the concept, expression (4) for a given transform size can be rewritten
as follows:

YYY32×1 = WWW(0)
32 (EEE16 ⊕QQQ16)PPP

(π32)
32 XXX32×1 (20)

where
WWW(0)

32 = (HHH2 ⊗ III16),

PPP(π32)
32 =

[
P̌PP16×32

P̂PP16×32

]
, P̌PP16×32 =

3
⊕

i=0
P̌PP
(i)
4×8, P̂PP16×32 =

3
⊕

i=0
P̂PP
(i)
4×8,

P̌PP
(i)
4×8 =


1

1
1

1

, P̂PP
(i)
4×8 =


1

1
1

1

,

EEE16 is the same as in the algorithm for N = 16, so we will skip this part.
QQQ16 is a new matrix. Permute rows of the matrix QQQ16 according to permutation π16.

As a result of such a permutation, we obtain the matrix

Q̃QQ16 =

[
AAA8 AAA8
BBB8 −BBB8

]
= QQQ16PPP(π16)

16

where

AAA8 =



a32 a32 a32 a32 a32 a32 a32 a32
j32 k32 l32 m32 −j32 −k32 −l32 −m32
n32 o32 −n32 −o32 n32 o32 −n32 o32
k32 −j32 −m32 l32 −k32 j32 m32 −l32
p32 −p32 p32 −p32 p32 −p32 p32 −p32
l32 −m32 −j32 k32 −l32 m32 j32 −k32
o32 n32 −o32 −n32 o32 n32 −o32 −n32
m32 l32 k32 j32 −m32 −l32 −k32 −j32


,

and

BBB8 =



b32 c32 d32 e32 f32 g32 h32 i32
c32 f32 i32 −d32 −g32 b32 e32 h32
d32 i32 − f32 c32 h32 −e32 b32 g32
e32 −d32 c32 −b32 −i32 h32 −g32 f32
f32 −g32 h32 −i32 −b32 c32 −d32 e32
g32 b32 −e32 h32 c32 − f32 i32 d32
h32 e32 b32 −g32 −d32 i32 f32 c32
i32 h32 g32 f32 e32 d32 c32 b32


,

Electronics 2022, 11, 1342 14 of 22

where
a32 = 1,

b32 = 0.9808− j0.1951, c32 = 0.8315− j0.5556,

d32 = 0.5556− j0.8315, e32 = 0.1951− j0.9808,

f32 = −0.1951− j0.9808, g32 = −0.5556− j0.8315,

h32 = −0.8315− j0.5556, i32 = −0.9808− j0.1951,

j32 = 0.9239− j0.3827, k32 = 0.3827− j0.9239,

l32 = −0.3827− j0.9239, m32 = −0.9239− j0.3827,

n32 = 0.7071− j0.7071, o32 = −0.7071− j0.7071,

p32 = −j,

Taking into account the above factorization scheme, we can finally write

YYY32×1 = WWW(0)
32 W̃WW(0)

32 (EEE8 ⊕QQQ8 ⊕AAA8 ⊕BBB8)W̃WW
(1)
32 PPP(π32)

32 XXX32×1 (21)

where

P̌PP8×4 =



1

1

1

1


, P̂PP8×4 =



1

1

1

1


,

P̌PP16×8 = P̌PP8×4 ⊕ P̌PP8×4, P̂PP16×8 = P̂PP8×4 ⊕ P̂PP8×4,

ṖPP16 =
[

P̌PP16×8 P̂PP16×8
]
,

W̃WW(0)
32 = WWW(0)

16 ⊕ ṖPP16, W̃WW(1)
32 = ṖPP16 ⊕WWW(0)

16

EEE8 and QQQ8 are the same as in the algorithm for N = 16, so we will skip this part.
AAA8 and BBB8 are a new matrix from the bottom half of the algorithm for N = 32. Permute

rows of the matrix AAA8 according to permutation π8. As a result of such a permutation, we
obtain the matrix

ÃAA8 =

[
FFF4 FFF4
GGG4 −GGG4

]
= AAA8PPP(π8)

8

where

FFF4 =


a32 a32 a32 a32
n32 o32 −n32 −o32
p32 −p32 p32 −p32
o32 n32 −o32 −n32

 and GGG4 =


j32 k32 l32 m32
k32 −j32 −m32 l32
l32 −m32 −j32 k32

m32 l32 k32 j32


Let us now define the permutation π

(2)
8 in the following form:

π
(2)
8 =

(
1 2 3 4 5 6 7 8
1 2 3 4 8 7 6 5

)
.

Permutation π
(2)
8 can be written as a matrix in this way:

Electronics 2022, 11, 1342 15 of 22

PPP
(π

(2)
8)

8 =



1
1

1
1

1
1

1
1


.

Then, we permute rows and columns of the matrix BBB8 according to permutation π
(2)
8 .

As a result of such a permutation, we obtain the matrix

B̃BB8 =

[
JJJ4 KKK4
KKK4 JJJ4

]
= PPP

(π
(2)
8)

8 BBB8PPP
(π

(2)
8)

8

where

JJJ4 =


b32 c32 d32 e32
c32 f32 i32 −d32
d32 i32 − f32 c32
e32 −d32 c32 −b32

 and KKK4 =


i32 h32 g32 f32
h32 e32 b32 −g32
g32 b32 −e32 h32
f32 −g32 h32 −i32


To reduce the computational complexity for matrix BBB8, we need to perform the follow-

ing calculations:

B̃BB8 =

[
JJJ4 KKK4
KKK4 JJJ4

]
= HHH8

(
J̃JJ4 ⊕ K̃KK4

)
HHH8

where

J̃JJ4 =
1
2
(JJJ4 +KKK4) =

1
2


b32 + i32 c32 + h32 d32 + g32 e32 + f32
c32 + h32 f32 + e32 i32 + b32 −d32 +−g32
d32 + g32 i32 + b32 − f32 +−e32 c32 + h32
e32 + f32 −d32 +−g32 c32 + h32 −b32 +−i32


and

K̃KK4 =
1
2
(JJJ4 −KKK4) =

1
2


b32 − i32 c32 − h32 d32 − g32 e32 − f32
c32 − h32 f32 − e32 i32 − b32 −d32 + g32
d32 − g32 i32 − b32 − f32 + e32 c32 − h32
e32 − f32 −d32 + g32 c32 − h32 −b32 + i32

.

Taking into account the above factorization scheme, we can finally write

YYY32×1 = WWW(0)
32 W̃WW(0)

32 PPP(3)
32 WWW(3)

32 DDD32WWW(4)
32 PPP(4)

32 W̃WW(1)
32 PPP(π32)

32 XXX32×1 (22)

where

PPP(3)
32 = PPP(2)

16 ⊕PPP(π8)
8 ⊕PPP

(π
(2)
8)

8 , WWW(3)
32 = WWW(2)

16 ⊕ III8 ⊕WWW(0)
8 ,

DDD32 = AAA4 ⊕BBB4 ⊕CCC4 ⊕DDD4 ⊕FFF4 ⊕GGG4 ⊕ J̃JJ4 ⊕ K̃KK4

WWW(4)
32 = WWW(1)

16 ⊕WWW(0)
8 ⊕WWW(0)

8 , PPP(4)
32 = PPP(1)

16 ⊕ III8 ⊕PPP(2)
8 .

where
PPP(1)

16 = PPP(π8)
8 ⊕ III8, PPP(2)

16 = III8 ⊕
[
PPP(π8)

8

]T
,

WWW(1)
16 = III8 ⊕WWW(0)

8 , WWW(2)
16 = WWW(0)

8 ⊕ III8,

Electronics 2022, 11, 1342 16 of 22

AAA4, BBB4, CCC4 and DDD4 are the same as in the algorithm for N = 16, so we will skip this part.
FFF4, GGG4, J̃JJ4 and K̃KK4 are a new matrix from the bottom half of the algorithm for N = 32. Permute
rows of the matrix FFF4 according to permutation π4. As a result of such a permutation, we
obtain the matrix

F̃FF4 =

[
LLL2 LLL2
MMM2 −MMM2

]
= FFF4PPP(π4)

4

where

LLL2 =

[
a32 a32
p32 −p32

]
and MMM2 =

[
n32 o32
o32 n32

]
.

Permute rows and columns of the matrix GGG4 according to permutation π̃4. As a result
of such a permutation, we obtain the matrix

G̃GG4 =

[
NNN2 OOO2
OOO2 NNN2

]
= PPP(π̃4)

4 GGG4PPP(π̃4)
4

where

NNN2 =

[
j32 k32
k32 −j32

]
and OOO2 =

[
m32 l32
l32 −m32

]
.

To reduce the computational complexity for matrix GGG4, we need to perform the follow-
ing calculations:

G̃GG4 =

[
NNN2 OOO2
OOO2 NNN2

]
= HHH4

(
ÑNN2 ⊕ ÕOO2

)
HHH4

where

ÑNN2 =
1
2
(NNN2 +OOO2) =

1
2

[
j32 + m32 k32 + l32
k32 + l32 −j32 −m32

]
and

ÕOO2 =
1
2
(NNN2 −OOO2) =

1
2

[
j32 −m32 k32 − l32
k32 − l32 −j32 + m32

]
Let us define the permutations π

(1)
4 and π

(2)
4 in the following form:

π
(1)
4 =

(
1 2 3 4
3 2 1 4

)
and π

(2)
4 =

(
1 2 3 4
1 4 3 2

)
.

Permutations π
(1)
4 and π

(2)
4 can be written as matrices in this way:

PPP
(π

(1)
4)

4 =


1

1
1

1

 and PPP
(π

(2)
4)

4 =


1

1
1

1

.

Permute rows and columns of the matrix J̃JJ4 according to permutation π
(1)
4 for rows

and π
(2)
4 for columns. As a result of such a permutation, we obtain the matrix

J̇JJ4 =

[
PPP2 RRR2
SSS2 PPP2

]
= PPP(π̃4)

4 J̃JJ4PPP(π̃4)
4

where

PPP2 =

[
d32 + g32 c32 + h32
c32 + h32 −d32 +−g32

]
, RRR2 =

[
− f32 +−e32 b32 + i32

b32 + i32 e32 + f32

]
,

SSS2 =

[
b32 + i32 e32 + f32
e32 + f32 −b32 +−i32

]
.

Electronics 2022, 11, 1342 17 of 22

To reduce the computational complexity for matrix J̇JJ4, we need to perform the follow-
ing calculations:

J̃JJ4 =
(

TTT(1)
2×3 ⊗HHH2

) SSS2 −PPP2
RRR2 −PPP2

PPP2

(TTT3×2 ⊗HHH2)

where

TTT(1)
2×3 =

[
0 1 1
1 0 1

]
.

The same permutations as on matrix J̃JJ4 are applied to matrix K̃KK4. As a result of such
permutations, we obtain the matrix

K̇KK4 =

[
TTT2 UUU2
WWW2 TTT2

]
= PPP(π̃4)

4 K̃KK4PPP(π̃4)
4

where

TTT2 =

[
d32 − g32 c32 − h32
c32 − h32 −d32 + g32

]
, UUU2 =

[
e32 − f32 i32 − b32
i32 − b32 f32 − e32

]
,

WWW2 =

[
b32 − i32 e32 − f32
e32 − f32 i32 − b32

]
.

To reduce the computational complexity for matrix K̇KK4, we need to perform the follow-
ing calculations:

K̃KK4 =
(

TTT(1)
2×3 ⊗HHH2

) WWW2 −TTT2
UUU2 −TTT2

TTT2

(TTT3×2 ⊗HHH2).

Taking into account the above factorization scheme, we can finally write

YYY32×1 = WWW(0)
32 W̃WW(0)

32 PPP(3)
32 WWW(3)

32 PPP(5)
32 WWW32×36DDD36WWW36×32PPP(6)

32 WWW(4)
32 PPP(4)

32 W̃WW(1)
32 PPP(π32)

32 XXX32×1 (23)

where

PPP(5)
32 = PPP(4)

16 ⊕PPP(π4)
4 ⊕PPP(π̃4)

4 ⊕PPP
(π

(1)
4)

4 ⊕PPP
(π

(1)
4)

4 ,

WWW32×36 = WWW(4)
16 ⊕ III4 ⊕WWW(0)

4 ⊕
(

TTT(1)
2×3 ⊗HHH2

)
⊕
(

TTT(1)
2×3 ⊗HHH2

)
,

DDD36 = DDD(1)
18 ⊕DDD(2)

18 ,

DDD(1)
18 = AAA2 ⊕BBB2 ⊕CCC2 ⊕DDD2 ⊕FFF2 ⊕GGG2 ⊕ JJJ2 ⊕KKK2,

DDD(2)
18 = LLL2 ⊕MMM2 ⊕NNN2 ⊕OOO2 ⊕PPP2 ⊕RRR2 ⊕SSS2 ⊕TTT2 ⊕UUU2 ⊕WWW2,

WWW36×32 = WWW(3)
16 ⊕WWW(0)

4 ⊕WWW(0)
4 ⊕ (TTT3×2 ⊗HHH2)⊕ (TTT3×2 ⊗HHH2),

PPP(6)
32 = PPP(3)

16 ⊕ III4 ⊕PPP(π̃4)
4 ⊕PPP

(π
(2)
4)

4 ⊕PPP
(π

(2)
4)

4 .

In turn, the matrices AAA2, BBB2, CCC2, DDD2, FFF2, GGG2, JJJ2 and KKK2 are the same as in the algorithm
for N = 16, so we will skip this part. The matrices LLL2, MMM2, NNN2, OOO2, PPP2, RRR2, SSS2, TTT2, UUU2 and WWW2
also have structures that provide effective factorization, which leads to a decrease in the
multiplicative complexity of calculations:

LLL2 =

[
a32 a32
p32 −p32

]
= (a32 ⊕ p32)HHH2,

Electronics 2022, 11, 1342 18 of 22

MMM2 =

[
n32 o32
o32 n32

]
= HHH2

1
2
[(n32 + o32)⊕ (n32 − o32)]HHH2,

NNN2 =
1
2

[
j32 + m32 k32 + l32
k32 + l32 −j32 −m32

]
=

[
−j0.3827 −j0.9239
−j0.9239 j0.3827

]
=

[
−n(0)

32 n(1)
32

n(1)
32 n(0)

32

]
=

= TTT2×3

[(
−n(0)

32 − n(1)
32

)
⊕
[
−
(
−n(0)

32 + n(1)
32

)]
⊕ n(1)

32

]
TTT3×2

OOO2 =
1
2

[
j32 −m32 k32 − l32
k32 − l32 −j32 + m32

]
=

[
0.9239 0.3827
0.3827 −0.9239

]
=

[
o(0)32 o(1)32

o(1)32 −o(0)32

]
=

= TTT2×3

[(
o(0)32 − o(1)32

)
⊕
[
−
(

o(0)32 + o(1)32

)]
⊕ o(1)32

]
TTT3×2

PPP2 =
1
2

[
b32 + i32 − (d32 + g32) e32 + f32 − (c32 + h32)
e32 + f32 − (c32 + h32) −b32 − i32 + (d32 + g32)

]
=

[
j0.6364 j0.4252
j0.4252 −j0.6364

]
=

=

[
p(0)32 p(1)32

p(1)32 −p(0)32

]
= TTT2×3

[(
p(0)32 − p(1)32

)
⊕
[
−
(

p(0)32 + p(1)32

)]
⊕ p(1)32

]
TTT3×2

RRR2 =
1
2

[
− f32 − e32 − (d32 + g32) b32 + i32 − (c32 + h32)

b32 + i32 − (c32 + h32) f32 + e32 + (d32 + g32))

]
=

[
j1.8123 j0.3605
j0.3605 −j1.8123

]
=

=

[
r(0)32 r(1)32

r(1)32 −r(0)32

]
= TTT2×3

[(
r(0)32 − r(1)32

)
⊕
[
−
(

r(0)32 + r(1)32

)]
⊕ r(1)32

]
TTT3×2

SSS2 =
1
2

[
d32 + g32 c32 + h32
c32 + h32 −d32 − g32

]
=

[
j0.8315 −j0.5556
−j0.5556 −j0.8315

]
=

[
s(0)32 s(1)32

s(1)32 −s(0)32

]
=

= TTT2×3

[(
s(0)32 − s(1)32

)
⊕
[
−
(

s(0)32 + s(1)32

)]
⊕ s(1)32

]
TTT3×2

TTT2 =
1
2

[
b32 − i32 − (d32 − g32) e32 − f32 − (c32 − h32)
e32 − f32 − (c32 − h32) −b32 + i32 + (d32 − g32)

]
=

[
0.4252 −0.6364
−0.6364 −0.4252

]
=

=

[
t(0)32 t(1)32

t(1)32 −t(0)32

]
= TTT2×3

[(
t(0)32 − t(1)32

)
⊕
[
−
(

t(0)32 + t(1)32

)]
⊕ t(1)32

]
TTT3×2

UUU2 =
1
2

[
e32 − f32 − (d32 − g32) i32 − b32 − (c32 − h32)
i32 − b32 − (c32 − h32) −e32 + f32 + (d32 − g32)

]
=

[
−0.3605 −1.8123
−1.8123 0.3605

]
=

=

[
u(0)

32 u(1)
32

u(1)
32 −u(0)

32

]
= TTT2×3

[(
u(0)

32 − u(1)
32

)
⊕
[
−
(

u(0)
32 + u(1)

32

)]
⊕ u(1)

32

]
TTT3×2

WWW2 =
1
2

[
d32 − g32 c32 − h32
c32 − h32 −d32 + g32

]
=

[
0.5556 0.8315
0.8315 −0.5556

]
=

[
w(0)

32 w(1)
32

w(1)
32 −w(0)

32

]
=

= TTT2×3

[(
w(0)

32 − w(1)
32

)
⊕
[
−
(

w(0)
32 + w(1)

32

)]
⊕ w(1)

32

]
TTT3×2.

Taking into account the above factorization scheme, we can finally write

YYY32×1 = WWW(0)
32 W̃WW(0)

32 PPP(3)
32 WWW(3)

32 PPP(5)
32 WWW32×36WWW(0)

36 PPP36×46DDD46×

×PPP46×36WWW(1)
36 WWW36×32PPP(6)

32 WWW(4)
32 PPP(4)

32 W̃WW(1)
32 PPP(π32)

32 XXX32×1

(24)

where

WWW(0)
36 = WWW(6)

16 ⊕ III2 ⊕HHH2 ⊕ III16, PPP36×46 = AAA16×18 ⊕ III4 ⊕
(

TTT(4)
2×3 ⊗ III8

)
,

Electronics 2022, 11, 1342 19 of 22

WWW(1)
36 = WWW(5)

16 ⊕HHH2 ⊕HHH2 ⊕ III16, PPP46×36 = AAA18×16 ⊕ III4 ⊕
(

TTT(3)
3×2 ⊗ III8

)
,

and finally
DDD46 = diag(ϕ0, ϕ1, . . . , ϕ45)

where

ϕ18 = a32 = 1, ϕ19 = p32 = −j, ϕ20 =
1
2
(n32 + o32) = −j0.7071,

ϕ21 =
1
2
(n32 − o32) = 0.7071, ϕ22 =

1
2
(j32 + m32 − k32 − l32) = j0.5412,

ϕ23 =
1
2
(−j32 −m32 − k32 − l32) = j1.3066, ϕ24 =

1
2
(k32 + l32) = j0.9239,

ϕ25 =
1
2
(j32 −m32 − k32 + l32) = 0.5412, ϕ26 =

1
2
(−j32 + m32 − k32 + l32) = −1.3066,

ϕ27 =
1
2
(k32 − l32) = 0.3827,

ϕ28 =
1
2
(b32 + i32 − (d32 + g32)− (e32 + f32 − (c32 + h32))) = j1.0616,

ϕ29 =
1
2
(−(b32 + i32 − (d32 + g32) + (e32 + f32 − (c32 + h32)))) = −j0.2112,

ϕ30 =
1
2
(e32 + f32 − (c32 + h32)) = −j0.4252,

ϕ31 =
1
2
(− f32 − e32 − (d32 + g32)− (b32 + i32 − (c32 + h32))) = j1.4518,

ϕ32 =
1
2
(−(− f32 − e32 − (d32 + g32) + (b32 + i32 − (c32 + h32)))) = −j2.1727,

ϕ33 =
1
2
(b32 + i32 − (c32 + h32)) = j0.3605,

ϕ34 =
1
2
(d32 + g32 − (c32 + h32)) = −j0.2759,

ϕ35 =
1
2
(−(d32 + g32 + c32 + h32)) = j1.3870, ϕ36 =

1
2
(c32 + h32) = −j0.5556,

ϕ37 =
1
2
(b32 − i32 − (d32 − g32)− (e32 − f32 − (c32 − h32))) = 1.0616,

ϕ38 =
1
2
(−(b32 − i32 − (d32 − g32) + (e32 − f32 − (c32 − h32)))) = 0.2112,

ϕ39 =
1
2
(e32 − f32 − (c32 − h32)) = −0.6364,

ϕ40 =
1
2
(e32 − f32 − (d32 − g32)− (i32 − b32 − (c32 − h32))) = 1.4518,

ϕ41 =
1
2
(−(e32 − f32 − (d32 − g32) + (i32 − b32 − (c32 − h32)))) = 2.1727,

ϕ42 =
1
2
(i32 − b32 − (c32 − h32)) = −1.8123, ϕ43 =

1
2
(d32 − g32 − (c32 − h32)) = −0.2759,

ϕ44 =
1
2
(−(d32 − g32 + (c32 − h32))) = −1.3870, ϕ45 =

1
2
(c32 − h32) = 0.8315.

Figure 4 shows a data flow graph of a synthesized algorithm for the 32-point DFT.
As can be seen, in this case, the algorithm takes 36 multiplications and 244 additions.

Electronics 2022, 11, 1342 20 of 22

Figure 4. The data flow graph of the proposed algorithm for computation of 32-point DFT.

Electronics 2022, 11, 1342 21 of 22

5. Conclusions

In this article, we show for the first time a simple, clear and unified approach to the
derivation of fast Winograd-like DFT algorithms. The idea of constructing algorithms is
based on the application of the method of synthesis of fast algorithms for calculating matrix–
vector products described in [19]. The mathematical background for the construction of
the described algorithms is the original method of hierarchical factorization of the DFT
matrix, which differs from the factorization of this matrix in the case of the Cooley–Tukey
FFT. The method of synthesis of algorithms is shown by the examples of the construction of
these algorithms for two typical lengths of the initial data sequences: N = 4, N = 8, N = 16
and N = 32. As follows from Figure 1, the upper part of the data flow graph for N = 4,
outlined by the dotted line, corresponds to the algorithm for N = 2. In turn, the upper
part of the data flow graph for N = 8 (see Figure 2), circled with a dotted line, corresponds
to the algorithm for N = 4. The upper part of the data flow graph for N = 16 (Figure 3),
circled by a dotted line, corresponds to the algorithm for N = 8. Finally, the upper part of
the data flow graph for N = 32 (Figure 4), circled with a dotted line, corresponds to the
algorithm for N = 16. It is easy to verify that algorithms for other lengths of sequences that
are powers of two can be synthesized in a similar way. Therefore, the described method
can be considered as universal.

The advantage of the presented algorithms in comparison with the Cooley–Tukey
algorithms is that the critical path in the graph of any of the obtained algorithms contains
only one multiplication. If there is more than one multiplication in the critical path of the
algorithm, then this will create additional problems for the implementation of computations.
As a result of multiplying two n-bit operands, a 2n-bit product is obtained. The need
for repeated multiplication requires an additional amount of manipulations with the
operands and therefore requires more time and effort than when we are dealing with only
a single multiplication. In fixed-point devices, this fact can cause overflow–underflow
handling. If we want to preserve the accuracy, then double access to the memory is required
both when writing and when reading. Using floating-point arithmetic in this case also
creates additional problems related to exponent alignment, mantissa addition, etc. This
is what we had in mind when we wrote about additional dignity. Another important
advantage of these algorithms over the Cooley–Tukey algorithms is that the multiplications
here are either purely real or purely imaginary. Multiplying complex numbers requires
three multiplications of real numbers, while multiplying a complex number by a real
number requires only two real multiplications. It leads to an additional reduction in
the multiplicative complexity of computations. These two advantages are typical of all
Winograd-type algorithms.

Author Contributions: Conceptualization, A.C.; methodology, A.C. and M.R.; validation, A.C. and
M.R.; formal analysis, A.C. and M.R.; investigation, M.R.; writing—original draft, A.C. and M.R.;
writing—review and editing, M.R.; supervision, A.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Dorota Majorkowska-Mech for advice and guidance on
how to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 1342 22 of 22

References
1. McClellan, J.H.; Rader, C.M. Number Theory in Digital Signal Processing; Prentice-Hall Signal Processing Series; Prentice-Hall:

Englewood Cliffs, NJ, USA, 1979.
2. Douglas, E.; Rao, K.R. Fast Transforms Algorithms, Analyses, Applications; Academic Press: Cambridge, MA, USA, 1982.
3. Elliott, D.F. (Ed.) Handbook of Digital Signal Processing: Engineering Applications; Academic Press: San Diego, CA, USA, 1987.
4. Nussbaumer, H.J. Fast Fourier Transform and Convolution Algorithms; Springer Series in Information Sciences; Springer:

Berlin/Heidelberg, Germany, 1982; Volume 2. [CrossRef]
5. Burrus, C.S.; Parks, T.W.; Potts, J.F. DFT/FFT and Convolution Algorithms: Theory and Implementation; Topics in Digital Signal

Processing; Wiley: New York, NY, USA, 1984.
6. Blahut, R.E. Fast Algorithms for Digital Signal Processing; Addison-Wesley Pub. Co.: Reading, MA, USA, 1985.
7. Tolimieri, R.; An, M.; Lu, C. Algorithms for Discrete Fourier Transform and Convolution; Signal Processing and Digital Filtering;

Springer: New York, NY, USA, 1989. [CrossRef]
8. Smith, W.W.; Smith, J.M. Handbook of Real-Time Fast Fourier Transforms: Algorithms to Product Testing; IEEE Press: New York, NY,

USA, 1995.
9. Parhi, K.K. VLSI Digital Signal Processing Systems: Design and implementation; Wiley: New York, NY, USA, 1999.
10. Moon, T.K.; Stirling, W.C. Mathematical Methods and Algorithms for Signal Processing; Prentice Hall: Upper Saddle River, NJ,

USA, 2000.
11. Garg, H.K. Digital Signal Processing Algorithms: Number Theory, Convolution, Fast Fourier Transforms, and Applications; Press

Computer Engineering Series; CRC Press: Boca Raton, FL, USA, 1998.
12. Bi, G.; Zeng, Y. Transforms and Fast Algorithms for Signal Analysis and Representations; Birkhäuser Boston: Boston, MA, USA, 2004.

[CrossRef]
13. Burrus, C.S.; Selesnick, I. Winograd’s Short DFT Algorithms; OpenStax CNX, Rice University: Houston, TX, USA. Available online:

http://cnx.org/content/m16333/latest (accessed on 15 March 2022).
14. Winograd, S. On computing the discrete Fourier transform. Math. Comput. 1978, 32, 175–199. [CrossRef]
15. Silverman, H. An introduction to programming the Winograd Fourier transform algorithm (WFTA). IEEE Trans. Acoust. Speech

Signal Process. 1977, 25, 152–165. [CrossRef]
16. Regalia, P.A.; Sanjit, M.K. Kronecker Products, Unitary Matrices and Signal Processing Applications. SIAM Rev. 1989, 31, 586–613.

[CrossRef]
17. Steeb, W.H.; Hardy, Y. Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra, 2nd ed.; World

Scientific: Singapore, 2011. [CrossRef]
18. Beck, A.; Tetruashvili, L. On the Convergence of Block Coordinate Descent Type Methods. SIAM J. Optim. 2013, 23, 2037–2060.

[CrossRef]
19. Cariow, A. Strategies for the Synthesis of Fast Algorithms for the Computation of the Matrix-vector Products. J. Signal Process.

Theory Appl. 2014. [CrossRef]
20. Andreatto, B.; Cariow, A. Automatic generation of fast algorithms for matrix–vector multiplication. Int. J. Comput. Math. 2018,

95, 626–644. [CrossRef]

http://doi.org/10.1007/978-3-642-81897-4
http://dx.doi.org/10.1007/978-1-4757-3854-4
http://dx.doi.org/10.1007/978-0-8176-8220-0
http://cnx.org/content/m16333/latest
http://dx.doi.org/10.1090/S0025-5718-1978-0468306-4
http://dx.doi.org/10.1109/TASSP.1977.1162924
http://dx.doi.org/10.1137/1031127
http://dx.doi.org/10.1142/8030
http://dx.doi.org/10.1137/120887679
http://dx.doi.org/10.7726/jspta.2014.1001
http://dx.doi.org/10.1080/00207160.2017.1294252

	Introduction
	Preliminary Remarks
	Short Background
	Synthesis of the Fast Winograd-Type DFT Algorithms
	Fast DFT Algorithm for N = 4
	Fast DFT Algorithm for N = 8
	Fast DFT Algorithm for N = 16
	Fast DFT Algorithm for N = 32

	Conclusions
	References

