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Abstract: Winograd’s algorithms are an effective tool for calculating the discrete Fourier transform
(DFT). These algorithms described in well-known articles are traditionally represented either with
the help of sets of recurrent relations or with the help of products of sparse matrices obtained on the
basis of various methods of the DFT matrix factorization. Unfortunately, in the mentioned papers, it
is not shown how the described relations were obtained or how the presented factorizations were
found. In this paper, we use a simple, understandable and fairly unified approach to the derivation
of the Winograd-type DFT algorithms for the cases N =8, N = 16 and N = 32. It is easy to verify that
algorithms for other lengths of sequences that are powers of two can be synthesized in a similar way.

Keywords: complexity theory; compression algorithms; digital signal processing; discrete Fourier
transforms; fast Fourier transforms; matrix decomposition; signal processing algorithms; sparse
matrices; sum product algorithm; Winograd discrete Fourier transform algorithm

1. Introduction

Winograd’s method for the realization of the discrete Fourier transform (DFT) for
several decades has been discussed in a number of publications [1-12]. In comparison with
the Cooley—Tukey fast Fourier transform (FFT) algorithms, the Winograd DFT algorithm
requires substantially fewer multiplications at the cost of a few extra additions. In the
known papers, the cases of the Winograd FFTs for small sequences of odd length are mainly
considered. Moreover, the algorithms were presented in the form of algebraic relations or
in the form of DFT matrix factorizations. However, none of the publications known to us
has written on how these relations were obtained or how, on the basis of any considerations,
the matrices that make up the corresponding computational procedures were constructed.

In this paper, we want to show a simple, understandable and fairly unified approach
to the derivation of Winograd-type FFT algorithms for the cases N =8, N =16 and N = 32.
It is easy to verify that algorithms for other lengths of sequences that are powers of two can
be synthesized similarly.

2. Preliminary Remarks

The discrete Fourier transform (DFT) is one of the most important tools in digital
signal and image processing. The DFT can be defined as follows:

—j2nnk

N-1
Yk= ), xne N (1)
n=0

where x,,n =0,1,..., N — 1 is a uniformly sampled sequence, y;, k = 0,1,..., N — 1 is the
k-th DFT coefficient, and j = v/—1 is an imaginary unit.
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In vector—matrix notation, we can rewrite (1) in the following form:
Ynx1 = EnXnxa )

where

Xnx1 = [x0, %1, -, xn-1)5 YNxa = Yo, v, -+ yn-1]t

and ,
—j2nnk

Ey =|| w" ||,wk” =e¢ N ,k,n=201,..., N—1

Implementation of calculations in accordance with expression (2), especially for large
N, requires performing a large number of arithmetic operations, which in turn leads to an
increase in computation time.

In 1965, J. Cooley and J. Tukey proposed the fast algorithm to compute discrete Fourier
transform with a drastically reduced number of arithmetical operations. Mathematically,
the fast Fourier transform algorithms are based on factorization of the Fourier matrix into a
product of sparse matrices, meaning matrices with many zero entries. However, this factor-
ization can be implemented in different ways. In the case of the Cooley-Tukey algorithm,
we are dealing with the representation of the original matrix as a product of log, N sparse
structured matrices. As is well known, the complexity of this algorithm is approximately
% log, N multiplications and the same number of additions of complex numbers.

Another effective algorithm for calculating the DFT is the Winograd FFT algorithm.
In comparison with the Cooley-Tukey FFT algorithm, the Winograd FFT algorithm requires
substantially fewer multiplications at the cost of a few extra additions. Winograd proved
that the multiplicative complexity of FFT algorithms can be significantly reduced by some
increase in additive complexity. The Winograd Fourier transform algorithm (WFTA) is an
FFT algorithm which achieves a reduction on the number of multiplications from order
O(N2) in the DFT to order N. In the literature known to the authors [1-15], the Winograd
FFT algorithms that implement DFT transform for a limited set of small-length sequences
are mainly considered. As a rule, these algorithms are represented as a set of algebraic
relations [1-5,8], although the matrix interpretation of Winograd FFT algorithms are avail-
able too [6,9]. In the case of the matrix formulation of the Winograd FFT algorithms,
the factorization of the DFT matrix differs from the factorization of the DFT matrix in the
Cooley—Tukey FFT algorithms. Moreover, the mechanism for deriving such algorithms for
each specific case is unique. In addition, methods for the deriving of recurrent relations are
not published anywhere. Additionally, the ways for deriving factorized representations of
DFT matrices have never been explained. In this paper, we show a simple, understandable
and fairly unified approach to the derivation of the Winograd-like FFT algorithms for the
case when the input sequence length is a power of two.

3. Short Background

The main idea of the proposed approach is to use a new method for factorizing the
DFT matrix, which is different from Winograd factorization. In contrast to Winograd
factorization, we propose the following unified method of DFT matrix decomposition:

By = (Hp 91 (By ®Qy)Py " @)
where
(Myit1) 121‘71 QW¥oys | 1.0 0 O .
P2i+21 = (1_>) ,T2X4— 0010 ,1—1,2,3...

(szfl ® ¥ x4)12i+1

Ey is k x k DFT matrix; Qy is some “prefix” matrix containing a constellation of twiddle
factors specific for each N; I, is an identity k x k matrix; H; is the order 2 Hadamard matrix;
I(lﬁ)

Hir1  is the matrix obtained from the k x k identity matrix by shifting its columns by one
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position to the right; and signs “®”, “®” denote the tensor product and direct sum of two
matrices, respectively [16,17].

Then, the generalized scheme for the synthesis of Winograd-type DFT algorithms for
N equal to the power of two can be described as follows:

Yoir1,q = (H2 @ 1) (By ©Qyi)P ;Zzliﬂ)xziﬂxl 4)

The methods for factorizing the matrices E; and Qy are different, but both lead to
a factorization of the BCD type [18] similar to the Winograd factorization. Moreover,
as follows from expression (1), the expansions for small N are part of the expansions for
larger lengths of input sequences. When synthesizing algorithms for separate E; and Qy,
we will use the templates of matrix structures and identities presented in [19,20].

4. Synthesis of the Fast Winograd-Type DFT Algorithms

Let us show, based on specific examples, how it works.

4.1. Fast DFT Algorithm for N = 4

As an example, suppose that N = 4. Then (2) can be rewritten as

Yin1 = EgXy ®)
where ‘
ag a4 | a4 a4
E ay by | Ay —by
‘T ay —ag, ag —ay |’
ag —by ' —ay by
as — 1, b4 = —j.

Xyx1 = [%0,x1, %2, %3]7, Yas1 = [yo, y1,¥2,y3]"

Let us now define the permutation 774 and write it as a matrix in this way:

1

1

(123 4 (ma) _ | ‘
714(1324:>’ Pim = 1
|

Permute the columns of the matrix E4 according to permutation 7t4. As a result of such
a permutation, we obtain the matrix

1

where

According to the concept, Expression (4) for a given transform size can be rewritten
as follows:

Y1 = HooL)(E © QZ)PA(;H4)X4><1 (6)
where \
11
I D S R I S L _wo
o [ o 38 .
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As you can see, after rearranging the columns of the DFT matrix Ey4, it can be decom-
posed, as follows from the proposed technique, into the order 2 DFT matrix E; and the
order 2 prefix matrix Q.

For matrices E; and Q,, we can offer the following factorization schemes leading to a
reduction in computational complexity:

Taking into account the above factorization schemes, we can finally write

Yo = WDWIPX,, @)
where
| | 1 1,
= [ o] - [
1 -1

Dy = diag (o, 91, 92, ¢3),
0, P1, @2 = a3 = 1,93 = by = —j.

Figure 1 shows a data flow graph of synthesized algorithm for 4 point DFT. As can be
seen, in this case, the algorithm takes only eight additions.

0—.—0_}]_

» —H}"‘.‘

0—H}3

Figure 1. The data flow graph of the proposed algorithm for computation of 4-point DFT.

4.2. Fast DFT Algorithm for N = 8
As an example, suppose that N = 8. Then (2) can be rewritten as

Ysx1 = EgXgx1 8)

where
X8><1 = [xOI X1,X2,X3,X4, X5, X6, x7]T/
Y8><1 = [yO/ yl/ y2/y3ry41y5ry6/y7]T
ag = 1, by = 0.7071 — j0.7071, cg = —j, ds = —0.7071 — j0.7071,

7

ag 4as as as \ as as as as
as bg cs dg | —ag —bg —cg —ds
ag cg —ag —Cg, 4ag cg —ag —Cg
Eg— |8 .98 T8 bs | —as —ds cs  —bs
ag —ag ag —ag, ag —ag ag  —4as
ag —bg cg —ds —ag by —cg dg
ag —cg —ag g | Ag —Cg —ag Cg
ag —dg —cg —bg'!—ag dg g  bg |
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Let us now define the permutation g in the following form:

e — 1 23 45 6 7 8
*"\1 357 246 8)
Permutation 7rg can be written as a matrix in this way:

F ;
1 \
1
1

8 = 1

|
|
|
I
|
1!
|
|
|

1

Permute columns of the matrix Eg according to permutation 7tg. As a result of such a
permutation, we obtain the matrix

E, . —
where
ag as as as ag as as as
a C —ag  —cC b d —bg —d
E, — 8 3 8 8 and Q, = 3 8 3 8
ag —ag ag  —as cg —Cg Cg —C8
ag —cg —ag Cg dg by —dg —bg

According to the concept, Expression (4) for a given transform size can be rewritten
as follows:

Ysx1 = (Hy ®14)(E4 EBQ4)P§H8)X8x1 )

Such a structure of the matrix Eg allows to apply a divide and conquer algorithm
that recursively breaks down a matrix—vector product of order eight into two smaller

matrix—vector products of order 4 [19]. If we write the matrix Eg as a product EngﬂS), the
Equation (8) will take the form:

Ys.1 = W (B, ©Qy)PI™ Xg, 1 (10)

where
Wéo) = Hz X 14.

Permute columns of the matrix E4 and rows of the matrix Q4 according to permutation
4. As a result of such permutations, we obtain the matrices

where
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Such structures of the matrices E4 and Q, allow to apply the same schemes of factor-
ization. Therefore, we can write

Ys.1 = WOWY (A, ©B, & C, @ D)W U™ Xs (11)

where

W = H,oL) eP™, Wy =P & (H 01,

For matrices Aj, By, Cy, D, we can offer the following factorization schemes leading
to a reduction in computational complexity:

ag , a ag | a
Ay = {a:—zg} = (ag D ag)Hy, B, = {C:_;} = (ag ® cg)Hy,
o [ ] _ _ [ bsads ] _ g1 _
= | = (ng D Cg)Hz, D, = | =H, [(bg + dg) D (bg dg)]Hz
Ccs ‘ —Cs dg ‘ bg 2
Taking into account the above factorization schemes, we can finally write
Ys.1 = WOWL W DaWHI WP X, (12)
where

W;(;4) =1L, ®Hy, Wg(;3) =Is ©H,,

Dg = diag(¢o, 91, 92, 3, P4, 5, P6, P7),
®0, P1, P2, ¢4 = ag =1, @3, 95 = eg = —j, 9 = —j0.7071, 7 = 0.7071.

Expression (12) describes the Winograd-type fast Fourier transform algorithm for
N = 8. Figure 2 shows a data flow graph of synthesized algorithm for 8 point DFT. As can
be seen, in this case the algorithm takes 2 multiplications and 26 additions.

Figure 2. The data flow graph of the proposed algorithm for computation of 8-point DFT.

4.3. Fast DFT Algorithm for N = 16

Now let us consider the synthesis of a similar algorithm for N = 16. In matrix—vector
notation, we can rewrite the DFT in the following form:

Yi6x1 = E16Xi6x1 (13)

where
T
Xi6x1 = [xo, X1,X2,X3,X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, x15]

Yl6><1 = [yOI yl/ y2/ y3/ ]/4/ y5/ y6/ y7/ y8/ y9/ leI yll/ ylZI y13/ y14/ yl5]T
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Eéo,o) E&(;O,l)
Ejp = "E’(i,bj’i’"’ﬁ(i,’l)
where -~ ‘
a16 16 416 a16 1+ 16
ae bis 16 dis | e
a16 Ci6 €16 816 1 —a16
B0 = M6 di6 816 —bis | —ei
16 €16 —416 —€16 1 416
a6 fie —C16 —Ihe | eis
a16 816 €16  Cl6 1 —a16
| M6 e —816  fie | —eie
16 16 16 a16 16
—a1g —big —c1s —dig ' —e16
16 C16 €16 816 1 —a16
g0V = | M6 e 81 b | e
a16 €16 —116 —€16 1 Q16
—am6 —fie ¢  Me ' —eis
a16 816 —C€e6 Ci6 1 —a16
—a6 —he 16 —fis ! e
a1 —a16 416 —d16 1 416
a1 —big c16  —dig ! e
a6 —C6 €6 —&16 1 —416
g0 _ | M6 ~die 816 bis | e
a6 —€16 —416 €16 a16
a6 —fie —C6 Me | e
a1 —816 —€6 —C16 1 —16
| M6 —he —816 —fi6 ! —ei6
a6 —d16 416  —a16 ; 16
—ts b —ci6  dis | —e16
a6 —Cie €16 —816 1 —a16
E() — e e —816 —bis | e
a6 —€16 —d16 €16 1 416
—6  fie  c16  —hie | —es
a6 —816 —€16 —Cig | —a16
—ame6 his 16 fie | €6
where
a6 =1, b1 = 0.9239 — j0.3827,
d16 = 0.3827 — j0.9239, 16 = —J,

g16 = —0.7071 — j0.7071,

c1 = 0.7071 — j0.7071,

f16 = —0.3827 — j0.9239,
h1g = —0.9239 — j0.3827.

Let us define the permutation 7714 in the following form:

(123456 7
=113 57 9 11 13

6 8

10 12 14 16

8,9 10 11 12 13 14 15 16)

1512 4
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Permute columns of the matrix E1¢ according to permutation 7r14. As a result of such
permutation, we obtain the matrix

where

a1 €16 —a16 —€16 1 416 a1  —d16 —€16

7
M6 —d16 16 —a16 1 416 —116  d16 —a16
116 —Ci16 €16 —816 . —a16  C16 —€16 K16
a1 —€16 —d16 €16 a1  —€1 —a16 €16

|
|
|
|
Eg = ,,{%16,,,,516,,,,f,e,lﬁ,,,,,C,lﬁ,,,:,,_,fl,lﬁ,,,,_,,g,lﬁ,,,,?lﬁ,,,i?l@,,
|
|
|
|
|

1
Cle6 816 —Ci6 _816: C16 816  —Ci6 —&16
Q= | Mo The The _fie | Zde b e —fe.
€16 —€16 €16 —€16 1 €16 —€16 €16 —€16
fie —hie —bis dis | —fie Me b —dis
816  Ci16 —816 —Ci16 1 816 C16 —816 —C16
|

he fie dis  bie

—he —fie —die —bie

According to the concept, expression (4) for a given transform size can be rewritten
as follows:

Yi6x1 = (Hy ®1g)(Eg ® QS)nglé)xl@d (14)

Such a matrix structure allows for the factorization of the matrix Ey¢; similarly, as was
done in the case of the matrix of order N = 8 [19].

If we write the matrix Eq4 as a product E16P§glé), Equation (13) takes the form

Yigx1 = Wig (Bs © Qo)Pg" Xi.1 (15)
where the corresponding permutation matrix P%gm) takes the following form:
11

,,,: i i
! 1

1 |

|
| N
P4><8 = |7 l=pmmmmmmmm e ’ P4><8 = |
[
[

Pg.16 = Paxg ®Paxs, Psxi6 = Paxg ®Pyys,

T 0
Pgém) = Pgé) =
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Now let us permute columns of the matrix Eg according to permutation 7tg. As a result
of such a permutation, we obtain the matrix

116  A16 a16 16 1 M6 116 116 116
a16 €16 —a16 —€16 : €16 816 —C16 —&16
16 —a16 d16 —a16 1 €16 —€16 €16 —€16

ES_ ,,‘?1@,,,7,6,1,6,,,,_,,”,1,6,,,,?19,,J,,8J,6 ,,,,, €16~ 816 —C16 | _ {A44B4]
a1 A1 16 416 | —A1s —A1s —Alg —A16 Ay —By |/
ag €6 —A16 —C€l6 | —Cl6 —8l6 Cl6 &6
a1 —d16 d16 —d16 1 —€16 €16 —€16 €16

| 416 —€16 —d16 €16 | —816 ~—Ci6 &6  Cle |
where

a6 16 116 a16 116 16 a16 a16
a e —a —e c —C —

A, — 16 €16 16 16 and By = 16 816 16 —816
a1 —d16 d16 —a16 €16 —€16 €16 —€16
a1 —€1p —A16 €16 816 Ci6 —&816 —Ci6

Then the matrix Eg can be represented as a product EgPéHS) = Wgo) (Ay@ B4)Pén8).
Next, we permute rows of the matrix Qg according to permutation 7rg. As a result of such a
permutation, we obtain the matrix Qg

a16 16 a16 a16 ; a16 16 a16 16
€6 816 €16 —86, Cl6 816 —Cl6 —8l6
€l —€16 €16 —€16 1 €16 —€16 €16 —€16
Qg | 816 Clo ~816 —Cl6 | 86 6 86 6 | _ {C4C4}
bie die  fie e 1 —bie —die —fie —hie Dy | —Dy
die —bie —Me fie | —dic bie e —fie
fie —hie —bis die 1 —fie Me b —die
| M6 fie die bie | —he —fie —die —bie |
where
a6 416 A6 16 bis dis  fie s
C,— | G 816 G 86| L4 p,— die —bie —hie  fie
el —€l6 €l €l fie —he —bis dis
g6 Cl6  —816 —C16 he fie  die  bie

Then the matrix Qg can be represented as a product PgﬂS)Qg = Péﬂg) Ci D4)Wé0).
Taking into account the above factorization schemes, we can finally write

Yig1 = WOWY (A, B, 0 C, & DYWL POXy4,q (16)

where T

We now consider the matrices Ay, B4, C4, and D4. Permute columns of the matrix Ay
according to permutation 714. As a result of such a permutation, we obtain the matrix

a6 016 1 A16 a16
A,— | M6 _~Me | €6 6 | _ A, B
4 = | il e A, B,
e 16 1 —d16 —a16 2 —b2
a6 —d16 | —€16 €16
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Next, we permute rows of the matrix B; according to permutation 7r4. As a result of
such a permutation, we obtain the matrix B4

a6 416 1 16 a16
B el6 —e1s ' el —C1e G G
4 = |t Ammmmemmmm e = ”D’”:’"b’”
Cle &l6 | —Cl6 —&i6 2 —L»
816 Cl6 | —816 —Ci6

Now, we permute rows of the matrix C4 according to permutation 774. As a result of
such a permutation, we obtain the matrix C4

a1 d16 1 416 116
¢, — |.ce —e16 ' el —eis F, F
ZIE I (S - "G’”}’"C”'
Cle 816 1 —C16 —&16 2 —G2
816 C16 | —816 —Ci6

Next, we define the permutation in the following way:

oy — 1 2 3 4
71 2 43
Permute rows and columns of the matrix D, according to permutation 7i4. As a result
of such a permutation, we obtain the matrix Dj.

bie dis 1 Me  fie

where ‘

1 |

(o) _ | LR
P/ = : 1
|
Then .
D, = PA(17T4) (Hz ® IZ) E [(jz +K2) fast (TZ — KZ)} (H2 ® Iz)P4(17T4)

where

%(jz 1K) = % [ bis +h16d16+f16)} 1,

1z - 1[ big—Me 1 dis— fie ]
2, K, = = | Je T e 46 T Ji6 — K.
2(]2 2) 2[ di6 — fi6 ' —(b1e — Me) 2

Taking into account the matrix transformations performed above, we can write
(0 (1
Yiea = Wig Wi W PP W W P X6 (17)

where
Dis=A®B,dCo D, dF, Gy dJ, B Ky,

Pg‘é) =L® PA(;TAL) oy P£ﬂ4) @PYM), Wg‘é) — WA(LO) el @WEIO)/

WP —new?ew?aew?, PO _p™ L P,
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A [“16%} _ {“16“16]
- 7
a16 | —a16 e | —ei6
a6 | 16 _ | C16 1 816
CG=FK= [e—e D, =Gy, = |---->- T
16 16 816 | C16

die + fi6 | —(bis + h16)

dis — f16 ' — (b1 — h1e)

In turn, the matrices Ay, By, Cy, Dy, Fy, Gy, J» and K also have structures that pro-
vide effective factorization, which leads to a decrease in the multiplicative complexity

J_1|:b16+h16 di + f16 } K_l[bléhm dis — f16 ]
2—2 ’ 2—2 :

of calculations: ‘
a a
Ag = |10 ) — (a1 @ a16)Hy,
a16 . —a16
a ‘ a
2 = [1616] = (a16 ® e16)Ho,
€16 , —C€16
a ‘ a
Cp =Fp|-1%-0-00 | = (415 @ e16)H,
€16 , —€16
C16 1 1
D; =G {16816] =H,[(c16 + 816) © (c16 — 816)Ha,
816 | C16 2
‘ [j1, 0,0
J, = 1[blé+hl6d16+f16] Tyt '*]*201"172*2"1*70"' Ty,
2| die+ fie ! —(b1e + h1e) 2 0o T -
"2
where _
1 0
1 0 1
T2x3=[0 1 1], Tsuo=| 0 1 |,
11
j21 = (b1s + hie) — (dis + f16),
jo2 = —[(b16 + h1g) + (d16 + f16)],
J23 = die + fie-
‘ koy ' O 0
1| big—Me  dis — fi6 } Ll--55- SRR
Ky = |- 72 22222 =Tyxz=| 0 1kppt O |T
2 2 d16 _f]6 1 _(b16 _h]6) 2><32 "’0”"”8’2”"i{”" 3x2
‘ " k23

where
ko1 = (b1e — h16) — (d16 — f16),
koo = —[(b16 — h16) + (d16 — f16)],
kos = (d16 — f16)-

Combining the above partial decompositions in a single procedure, we can rewrite

(13) as follows:
(0 (1

Yiox1 = ng)w&)wg?P%)WgZ)AmX18D18A18x16W§2)P§2)WE?W&)PS?XMx1 (18)

where
WY = oH) oL, WY =LoHoLoH,ol,



Electronics 2022, 11, 1342

D18 = dillg(q)ol 4)1/ ey 9017)/

P, P1, P2, P4, P8 = a16 = 1, 03, P5, P9 = €16 = —J,
1 ) 1
P6, P10 = E(Clé +g16) = —j0.7071, Q7,911 = 5(016 — g16) = 0.7071,
1 )
P12 = E[(blé +h1g) — (d16 + f16)] = j0.5412,

1 .
P13 = *5[(1?16 + h1s) — (d16 + f16)] = j1.3066,

(d16 + f16) = —j0.9239,

NI —

P14 =
1
P15 = 5[(516 —hig) — (d16 — f16)] = —0.5412,
1
P16 = —E[(bls — h1g) + (d16 — f16)] = 1.3066,

1
P17 = E(dm — f16) = —0.3827,

Aisxis = Lin @ Toyz @ Toxs, Aigyi6 = Lo @ T340 © T30

Figure 3 shows a data flow graph of synthesized algorithm for 16 point DFT. As can

be seen, in this case the algorithm takes 10 multiplications and 74 additions.

xp K 9o T—F Yo
- e . ?
2 (3] Hy _L »2

P4 | ya

]

L) = ll=] =] [=

Figure 3. The data flow graph of the proposed algorithm for computation of 16-point DFT.
4.4. Fast DFT Algorithm for N = 32

Now let us consider the synthesis of a similar algorithm for N = 32. In matrix—vector

notation, we can rewrite the DFT in the following form:

Y31 = E3pX3o1

where

T T
x32><1 - [xO/ X1,%X2,...,%X29,X30, x31] ’ Y32><1 - [y()/yl/yZ/' . -/]/29/]/30/y31]
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Let us define the permutation 713; in the following form:

1 2 3 4 5 6 7 8,9 10 11 12 13 14 15 16

13 5 7 9 11 13 15'17 19 21 23 25 27 29 31
732 = ‘

17 18 19 20 21 22 23 24,25 26 27 28 29 30 31 32

2 4 6 8 10 12 14 16'18 20 22 24 26 28 30 32

Permute columns of the matrix E3; according to permutation 7135. As a result of such
permutation, we obtain the matrix

. Ei |
Es = {16 Qlé} :EBZP;(),;TSZ)

Ei6 —Qi6
According to the concept, expression (4) for a given transform size can be rewritten
as follows: .
Y341 = Wéz) (Eie® Q16)P§§32)stx1 (20)
where

Wég) = (H; ®I),

P . 3 (i R 3 (i
ng&) — ,,K1§2<§,2,, , P16><32 — EB Pz(11>)<8/ P16><32 — EB Pz(;lg,
Pig32 i=0 i=0
1 | 1 |
0 1 5 (1) 1!
Pyyg= |- :”1 ”””””” ’ P4l><8 = | :1 ”””” ’
| 1 | 1

E¢ is the same as in the algorithm for N = 16, so we will skip this part.
Q¢ is a new matrix. Permute rows of the matrix Q¢ according to permutation 7ty¢.
As a result of such a permutation, we obtain the matrix

~ Ag ' A
Qi = [B:*—BS] =Q16PY§“’)
where
azp a3 app  ap | ax  4xm  4xm  axp
j2 ka2 by mym | —j —kn —lp —mp
n3p 032 —N32  —032 , N32 032 —n3p 032
Ag— | f T Tmm In | ke jm mm lw |
P2 —P32 P —PR PR —PR PR PR
oy —mzp —j ka2 |~ omn jn ks
032 n3p —032 —Nn32 | 032 M3y  —032 —MN32
L ksp  jm2 ' —mzm I —ks  —ja2
and ~ ‘ _
by ¢ dn  exn  fz g han  ix
2 fo 2 —dn ! —gn bn  en hap
d» i3z —fx e hn —exn bn  gn
Bs— | 2. 7902 o Thn | T hn  —gn fan
fa2 —8n hn —in . —byp 3 —dm exn |’
82 bn —en hyp ! e —fn in dp
hsy e bxn —gxn . —dn i fn 3
| iz ha g fa ! e dn o bxn |
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where
azx =1,

by = 0.9808 — j0.1951, 3, = 0.8315 — j0.5556,
dsp = 0.5556 — j0.8315,  es, = 0.1951 — j0.9808,
fsp = —0.1951 — j0.9808, g3 = —0.5556 — j0.8315,
h3, = —0.8315 — j0.5556, i3 = —0.9808 — j0.1951,
ja2 = 09239 — j0.3827, ks = 0.3827 — j0.9239,
Iy = —0.3827 — j0.9239,  mz, = —0.9239 — j0.3827,
ngp = 0.7071 — j0.7071, o0z = —0.7071 — j0.7071,

P32 = —j,
Taking into account the above factorization scheme, we can finally write
0)xxs(0 = (1
Yar1 = WIWS) (Bs © Qs @ Ag @ Bg) WS PU X554 (21)
where ~ ‘ _ ~ ‘ _
1 | |
\ 1 \
| |
1 | |
. | R 1
Pgyy = |- SR A N o ,
| |
| | 1
| |
| 1 |
| | 1

Pioxs = Pgxa ®Psys, Pioxg = Pgus ®Pgyy,
Pis = [ Pioxs Pioxs |,

~ (0 N ~ (1 .
Es and Qg are the same as in the algorithm for N = 16, so we will skip this part.
Ag and Bg are a new matrix from the bottom half of the algorithm for N = 32. Permute

rows of the matrix Ag according to permutation 7tg. As a result of such a permutation, we
obtain the matrix

Gy i -Gy
where
as; axp | A4zxp 43 2 ka2 1 o m3p
n 0 ' —n —0 k —j3r ' —m l
Foo | M2 0 | hm om |4 og | ke i oma ln
P32 —pP32 1 P —P3 lsp —mz | —j32  ka
032 Nz | —o3 —n3y mzp I ok jx

Let us now define the permutation néz) in the following form:

@ _ (123456738
8 “\1 23487 65)
(2)

Permutation 75’ can be written as a matrix in this way:
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[
[
[
1
(7-[8 )_ 7777777777777 17‘ 777777777777777
Py = +‘ L
! 1
[
[
[

L ! 1 -

Then, we permute rows and columns of the matrix Bg according to permutation ”t(32>-
As a result of such a permutation, we obtain the matrix

5. - [ Ja i Ka ] _ pm?)p pln
where
by ¢ 1 dn exn i hp | g2 fn
Jo= |2 feo i Tdn g k= | b mem
dp i | —fa g2 by | —exn  hap
ez —dzm ! 3 —by fa2 —g3 ! hn —ixp

To reduce the computational complexity for matrix Bg, we need to perform the follow-
ing calculations:

5 Js Ky }
By — | 244 | —Hy(f, oK )H
[ KT, s(Js ®K4)Hg
where
b3y + i3 c+hzy o dyp+gn e + f3
1 1| c3+h3p fao+ex ' izp+by —dszy + —g3
= = +Ky) = = | -5 -m0e Y R pom-f A TR ovi
L. 2 Us+Ky) 2| dpp+g3 izp+bzx | —fan+—e3n cn+hxp
es2t fao —dn+ -8 ! pthyn  —bpt+—ixn
and
byp—ixy cp—hyn | dn—gn en—fn
> 1 1| c3o—hz fao—exn ! izp—byp —dp+g»
Ky==-(s— = |t R Ll LEEEEEENECEEP S .
172 Us —Ky) 2| dypp—83 in—bypn | —fanten c3—hyp

es2— fao —dyp+g3n ! p—hpn —bntixp

Taking into account the above factorization scheme, we can finally write

Yar1 = W W3 PO WS D W P WS PG Xas (22)
where
P B p ol Wl Wi e oWl
Dy =A; 0B, 0Cy 0Dy 0F, &G 0T, DKy
wiy —wllew®ewl, PP Pl elepr?.
where

T
Pl =P{W oL, PP -Lo[p™],

wl—ewl”, w2-_wlear,
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A4, By, C4 and Dy are the same as in the algorithm for N = 16, so we will skip this part.
F,, G4, J4 and K, are a new matrix from the bottom half of the algorithm for N = 32. Permute
rows of the matrix F4 according to permutation 74. As a result of such a permutation, we
obtain the matrix

where

aszp . a ngy 0
L= {32*32} and M, — [32¢32]‘
P32+ —P32 032 + 132

Permute rows and columns of the matrix G, according to permutation 4. As a result
of such a permutation, we obtain the matrix

where

N, — [fsszefz} and O, — [”132'132].
ks —j32 ‘

To reduce the computational complexity for matrix G4, we need to perform the follow-
ing calculations:

= N>, i (o)) =
G4 = {OZ_NZ} =H4(N2 @02)H4
where \
< 1 1] jo2a+m3 | kpp+1p }
N = ~(Np +0y) = [ 7777777777
2= 7 N2 +02) =3 ks + 132 | —ja2 — m3
and

A 1 1[ jso—mz kap—In }
Oy = 2(Np—0y) = L[ 2T k2 —ha
2 2( z 2) 2[ ksp —Izp ! —jzp +m3p

(1) 2

Let us define the permutations 77, ' and 77, in the following form:

W (123 4 @ (123 4
”4_<3214 and 7T =1 43 2)

Permutations 7@(11) and 7T£2) can be written as matrices in this way:
1 1
[ (2) [
77777777 and PL(;T‘* ) e [P

1 1

(") 1
P =
|

1

"1
|

(1)

Permute rows and columns of the matrix J; according to permutation my for rows

()

and 7r,” for columns. As a result of such a permutation, we obtain the matrix

where

_ d32+g32;632+h32} R, — {—f32+—€32'b32+i32
c2t+ha i —dap+—gxn |’ by +iz exntfn |

es2 + fao | —bax + —iz
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To reduce the computational complexity for matrix J;, we need to perform the follow-
ing calculations:

where
m {011
T2><3 11 0 11
The same permutations as on matrix J4 are applied to matrix K4. As a result of such
permutations, we obtain the matrix

: T, L (7 g pl7a)
K4 - |:W2*T2:| - P4 4 K4P4 4
where .
T, — {dsz_g:%zwsz—hsz} _ {esz—fszlsz—bsz
c32—hzp i —dp+g3n | izp—Db3 | fao—ex

es2 — fa2 1 i3 — b3

To reduce the computational complexity for matrix K4, we need to perform the follow-
ing calculations:

Taking into account the above factorization scheme, we can finally write
~ (0 (1
Yax1 = ng)wéz)l’g)wg)lag)wszx36D36W36x32P §§)W§§)P§§)W§2)P§§”)Xazx1 (23)

where

Yy o)

P — P &™) o P P o™,
Wi =W aL oW & (T§1X)3 ®H2) @ (TSX)3 ®H2),
D3 =Dy #D{y,
D%) =A 0B, oC oD, dF, G @), Ky,
D%) =L oM N, @O, ©P, @Ry S, T, U @ W),
Wiz =W oW oW @ (T, ®Hy) @ (T @ Hy),
PO — P o1, 0P P o).

In turn, the matrices A, By, Cy, Dy, Fo, Gy, ], and K; are the same as in the algorithm
for N = 16, so we will skip this part. The matrices Ly, My, Np, Oz, Py, Ry, Sy, Ty, Up and W
also have structures that provide effective factorization, which leads to a decrease in the
multiplicative complexity of calculations:

aszp | asp

L = |-t mmmmm - - @ H/
2 {Pa‘z 1 _p3z} (a32 @ p32)Hz
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L0 1
M; = j}ggﬁ:”@gh =Hy - [(n32 + 032) © (132 — 032)|Ha,
032 ! Nz 2
N, _ L[ mtme | ko tln ][ —j03827, —j0.9239 1 _ [ —nf) i n) | _
2T 2 kbl o omay | [ 09239103827 | | )0
T [(n ) & [ (- )] @n]
o, _ L[ jn—mn kp—lp ] _[09239) 03827 1 _[of) of) |_
2T 2kl | —jmtmym | | 038271 —09239 | ol _03@ -
0 1 0 1 1
= T3 [(ng) - Uéz)) ® {_ (‘7;2) + ng))] @ng)]T3x2
P, 1{%2 +in—(dn+gn) | en+fo—(cothy) | _[j06364, j04252 ] _
27 2| e+ far — (cao + hzp) ' —bap — iz + (d32 + g32) j0.4252' 1 —70.6364
0 " 1)
0 1 0 1 1
= [P%%)Pﬁ@ = Taxs {(Péz) - sz)) ® [f( gz) + Péz))} @sz)}nﬁ
Py | —Pa3
R, — 1[—f32—€32—<d32+832)b32+i32—(632+h32) _ [ 18123, j03605 ] _
) by + i3 — (c30 + h32) 1 fa +es+ (dsx + g32)) j0.3605 1 —71.8123
(0) ' (1)
T T 0 1 0 1 1
[ ] -l - 2 )] e
T3p , T3
g, _ L[ dntsn enthy ] _[ jos315 | 05556 ] [ sg) 1 sy | _
2| ;o +hay | —da — g3 —j0.5556 | —j0.8315 s s
0 1 0 1 1
=Taxs [(5:(32) - ng)) ® [_ (ng) +Sé2))} @ng)}nﬂ
T, - L {bsz—isr(dsrgsz)esz_fsz_(%rhsz) _ [ 04252 | —06364 | _
2 2| ez — f32 — (ng — h32) 1 —bszp +i3p + (dgz — ggz) —0.6364 1 —0.4252
()
tay 1 0 1 0 1 1
[ S (- @) s (8 ) = ]
t32 | _t32
U, — 1{632f32(d32832)iszbea(cazhsz) _ [ 03605, —1.8123 | _
27 2 i —bp—(cn—l3) " —esn + fi + (d3 — g32) ~1.8123 ' 0.3605
© "' )
u | u 0 1 0 1 1
[ ] ~mao (4 ) 2 [ (40 )] 5 2]
Uzy | —Uszp
W,_ L[ dn—smi cn—hm | _[055% 08315 | [ wyp  wh |
2| e —hxn | —dn+gxn 0.8315 ' —0.5556 wgp w _wég)
Ty (ol — o) o [ (el + )] o u]Tove
Taking into account the above factorization scheme, we can finally write
Y31 = Wég)Wég)Péi’)Wé‘Z’)Pg)Wszxsswé?Psex%D% X 24)

(1
XP46><36W§,?W36 xazPé?Wé‘é) Péi)Wéz)Pé’;”)Xazx 1

where

Wé(é) = Wg? ©LeH, ®he,  Pasxas = Arex1s ©Ls @ (T§‘§)3 ® Is>,
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Wé? = ng) OHy DHy ©lis,  Pyexze = A1gx16 DLy @ (Tésx)z ® Ig),

and finally
Dy = diag(po, ¢1,-- -, Pa5)
where
. 1 .
P18 =axn =1, P19 = pa2 = —j, 20 = 5 (132 +032) = —j0.7071,
1 1,. .
921 = 5(n3 — 03) = 0.7071, P22 = 5 (fa2 + a2 — kap — lap) = j0.5412,
1, . . 1 .
¢ = 5(—]32 —m3p — kaz — I32) = j1.3066, P2 = §(k32 +I32) = j0.9239,
1,. 1, .
P25 = E(BZ —m3y —k3p +13) = 0.5412, P26 = 5(—]32 +may — kap + I32) = —1.3066,
1
P27 = E(k32 - 132) = 0.3827,
1 . .
28 = 5 (bs2 +is2 — (da2 + 832) — (e32 + fa2 — (c32 + ha2))) = j1.0616,
1 . .
P29 = 5 (—(bs2 +iz2 — (d32 + 832) + (e32 + fa2 — (e32 + h3)))) = —j0.2112,

@30 = = (32 + fao — (c32 + h3p)) = —j0.4252,

N —

1 . .
P31 = 5 (—fa2 — s — (dz2 +g32) — (ba2 +i32 — (32 + h32))) = j1.4518,

1 . )
P32 = 5 (—(—fa2 —e32 = (da2 + g32) + (ba2 +iz2 — (c32 + 132)))) = —j2.1727,

(b32 + i3z — (ng + h32)) = j0.3605,

NI~

P33 =
1 .
P34 = E(d:;z +g32 — (C32 + h32)) = —]02759,

(c32 + h3z) = —j0.5556,

NI =

1 )
P35 = 5 (—(da2 + 832 + c32 + ha)) = j1.3870, P36 =
1 )
P37 = 5 (bs2 — i3 — (da2 — 832) — (e32 = f32 — (32 — hz2))) = 1.0616,
1 .
Pas = 5 (—(bs2 —is2 — (d32 = 832) + (e32 — fa2 — (c32 — x2)))) = 0.2112,

(e32 — fao — (c30 — h3p)) = —0.6364,

N —

P39 =

1 .
Pa0 = 5 (32 — fi — (dz2 — g32) — (iz2 — b2 — (32 — hz2))) = 14518,

1 .
Pu = 5 (—(ex2 = fa2 — (ds2 — g32) + (iz2 — b2 — (c32 = x2)))) = 2.1727,
1. 1
Qa2 = 5 (a2 — b — (e — h3p)) = —1.8123, a3 = S (d32 — g3 — (c32 — h2)) = ~0.2759,
1 1
Paa = 5(=(dz2 — ga2 + (c32 — h2))) = —1.3870, a5 = 5 (32 — hyp) = 0.8315.

Figure 4 shows a data flow graph of a synthesized algorithm for the 32-point DFT.
As can be seen, in this case, the algorithm takes 36 multiplications and 244 additions.
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5. Conclusions

In this article, we show for the first time a simple, clear and unified approach to the
derivation of fast Winograd-like DFT algorithms. The idea of constructing algorithms is
based on the application of the method of synthesis of fast algorithms for calculating matrix—
vector products described in [19]. The mathematical background for the construction of
the described algorithms is the original method of hierarchical factorization of the DFT
matrix, which differs from the factorization of this matrix in the case of the Cooley-Tukey
FFT. The method of synthesis of algorithms is shown by the examples of the construction of
these algorithms for two typical lengths of the initial data sequences: N=4, N =8, N =16
and N = 32. As follows from Figure 1, the upper part of the data flow graph for N =4,
outlined by the dotted line, corresponds to the algorithm for N = 2. In turn, the upper
part of the data flow graph for N = 8 (see Figure 2), circled with a dotted line, corresponds
to the algorithm for N = 4. The upper part of the data flow graph for N = 16 (Figure 3),
circled by a dotted line, corresponds to the algorithm for N = 8. Finally, the upper part of
the data flow graph for N = 32 (Figure 4), circled with a dotted line, corresponds to the
algorithm for N = 16. It is easy to verify that algorithms for other lengths of sequences that
are powers of two can be synthesized in a similar way. Therefore, the described method
can be considered as universal.

The advantage of the presented algorithms in comparison with the Cooley-Tukey
algorithms is that the critical path in the graph of any of the obtained algorithms contains
only one multiplication. If there is more than one multiplication in the critical path of the
algorithm, then this will create additional problems for the implementation of computations.
As a result of multiplying two n-bit operands, a 2n-bit product is obtained. The need
for repeated multiplication requires an additional amount of manipulations with the
operands and therefore requires more time and effort than when we are dealing with only
a single multiplication. In fixed-point devices, this fact can cause overflow—underflow
handling. If we want to preserve the accuracy, then double access to the memory is required
both when writing and when reading. Using floating-point arithmetic in this case also
creates additional problems related to exponent alignment, mantissa addition, etc. This
is what we had in mind when we wrote about additional dignity. Another important
advantage of these algorithms over the Cooley-Tukey algorithms is that the multiplications
here are either purely real or purely imaginary. Multiplying complex numbers requires
three multiplications of real numbers, while multiplying a complex number by a real
number requires only two real multiplications. It leads to an additional reduction in
the multiplicative complexity of computations. These two advantages are typical of all
Winograd-type algorithms.
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