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Abstract: Smart Internet of Vehicles (IoVs) combined with Artificial Intelligence (AI) will contribute
to vehicle decision-making in the Intelligent Transportation System (ITS). Multi-vehicle pursuit
(MVP) games, a multi-vehicle cooperative ability to capture mobile targets, are gradually becoming
a hot research topic. Although there are some achievements in the field of MVP in the open space
environment, the urban area brings complicated road structures and restricted moving spaces as
challenges to the resolution of MVP games. We define an observation-constrained MVP (OMVP)
problem in this paper and propose a transformer-based time and team reinforcement learning
scheme (T3OMVP) to address the problem. First, a new multi-vehicle pursuit model is constructed
based on Decentralized Partially Observed Markov Decision Processes (Dec-POMDPs) to instantiate
this problem. Second, the QMIX is redefined to deal with the OMVP problem by leveraging the
transformer-based observation sequence and combining the vehicle’s observations to reduce the
influence of constrained observations. Third, a simulated urban environment is built to verify the
proposed scheme. Extensive experimental results demonstrate that the proposed T3OMVP scheme
achieves improvements relative to the state-of-the-art QMIX approaches by 9.66~106.25%, from
simple to difficult scenarios.

Keywords: multi-agent systems; multi-agent reinforcement learning; Internet of Vehicles; urban area

1. Introduction

The Internet of Vehicles (IoVs) is a typical application of Internet of Things (IoT)
technologies in the Intelligent Transportation System (ITS) [1–3]. With the Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications, the IoVs combined with
Artificial Intelligence (AI) can improve the decision making of vehicles and the efficiency of
ITS [4,5]. Reinforcement learning (RL) has been widely used in the ITS as a representative of
advanced technology in AI [6]. Furthermore, multi-agent reinforcement learning (MARL)
has been used in the IoVs to reduce communication latency and enhance communication
efficiency [7,8]. The multi-vehicle pursuit (MVP) game describes a multi-vehicle cooperative
ability to capture mobile targets, represented by the New York City Police Department
guideline on the pursuit of suspicious vehicles [9]. The MVP game is becoming a hot topic
in the IoVs supported by AI research.

There are mainly two ways to solve the MVP game: one is the game theory, and the
other is cooperative MARL. Concerning the game theory, Eloy et al. proposed a team
cooperative optimal solution for the border-defense differential game [10], and Huang et
al. proposed a decentralized control scheme based on the Voronoi partition of the game
domain [11]. However, it becomes challenging for game theory solutions to define a suitable
objective function when the problem becomes more complex, such as the increased number
of agents, restricted movement, and a complicated environment.
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Concerning cooperative MARL research for the MVP game, the multi-agent system is
modeled using Markov Decision Processes (MDP) [12], and a neural network can be used
to approximate the complex objective function [13]. Cristino et al. used the Twin Delayed
Deep Deterministic Policy Gradient (TD3) to demonstrate a real-world pursuit–evasion in
the open environment with boundaries [14]. Timothy used the Deep Deterministic Policy
Gradient (DDPG) with omnidirectional agents [15]. Thomy et al. proposed a Resilient
Adversarial value Decomposition with the Antagonist-Ratios method and verified the
method in the predator–prey scenario [16]. Jiang et al. proposed a vehicular end–edge–
cloud computing framework to implement vertical and horizontal cooperation among
vehicles [17]. Peng et al. proposed a Coordinated Policy Optimization to facilitate the
cooperation of agents at both local and global levels [18]. However, the above studies in
cooperative MARL are not verified in urban environments with complicated road structures,
restricted moving spaces, and constrained observations due to architectural obstructions.

This paper introduces the transformer block to process the observation-entities of all
agents inspired by [19]. The QMIX [20] is used as the baseline to control the pursuing
vehicles, which is a state-of-the-art MARL algorithm that was successfully applied to other
domains. Furthermore, this paper modifies the predator–prey scenario in [16] by adding
intersections to the original open space to construct a multi-vehicle pursuing urban area for
instantiating the MVP game. The proposed transformer-based time and team reinforcement
learning scheme (T3OMVP) is presented in Figure 1.

Figure 1. An overview of T3OMVP for the problem of multi-vehicle pursuit in the multi-intersection
urban area. The transformer encoder is used to process the observation-entities of all pursuers. The
hidden state is used to store historical observations.

The main contributions of this paper are:

1. The MVP game in the urban environment is defined as the observation-constrained
multi-vehicle pursuit (OMVP) problem with the occlusion of buildings to each pursu-
ing vehicle.

2. The T3OMVP scheme is proposed to address the OMVP problem using Dec-POMDPs
and reinforcement learning. The T3OMVP introduces the transformer block to deal
with the observation sequences to realize the multi-vehicle cooperation without a
policy decoupling strategy.

3. A novel low-cost and light-weight MVP simulation environment is constructed to verify
the performance of the T3OMVP scheme. Compared with large-scale game environments,
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this simulation environment can improve the training speed of reinforcement learning.
All source codes are provided on GitHub (https://github.com/its-ant-bupt/T3OMVP)
(last accessed on 27 February 2022).

The details of the MVP problem and its relationship with Dec-POMDPs are presented
in Section 2. The OMVP problem and the specific implementation details of the T3OMVP
scheme are presented in Section 3. The experimental results and discussions are provided
in Section 4. Section 5 concludes this paper.

2. Multi-Vehicle Pursuit
2.1. Problem Statement

This paper mainly describes a multi-intersection urban area, as shown in Figure 1.
In a W ×W grid, there are N learning red pursuing vehicles and N

2 randomly moving
blue evading vehicles. The pursuing vehicle has an observation field of M×M, but the
shape of its observation field is a cross or a straight line corresponding to the scenarios
of an intersection or a straight road due to the influence of obstacles. According to the
description in [9], each pursuing vehicle will share its observation and position with other
pursuing vehicles. The shared observation is the position of the evading vehicle in the field
of vision. In addition, each vehicle also has an observation field showing the position of
the obstacles in its M×M field. Therefore, the state of each pursuing vehicle includes its
own M×M observation and those shared by other vehicles. The global state is a W ×W
observation. The reward of each pursuing vehicle is calculated by the normalized function
g = 1

n . If there are n ∈ {1, . . . , N} pursuing vehicles capturing the same evading vehicle,
the reward of each corresponding pursuing vehicle is 1

n . The global reward is the sum of all
the pursuing vehicles’ rewards, and an evading vehicle is captured with the global reward
of +1.

2.2. Dec-POMDP

In the scenario of the urban area, each vehicle can be modeled as an agent which
can only have partial observation of the environment. As such, the cooperative multi-
agent MVP task characterized by communications between agents can be formulated as
a partially observable Markov game G = 〈S, K, A, P, r, O, Z, n, γ〉. The global state of the
environment is denoted by s ∈ S. At each step t, each agent k ∈ K ≡ {1, . . . , N} chooses
an action ak ∈ A, forming a joint action a ∈ A ≡ An. Thus, the state transition function
P(s′ | s, a) : S×A× S→ [0, 1] represents a transition in the environment. A global reward
function r(s, a) : S×A→ R is necessary in MARL to estimate a policy; this paper shares
the same reward function among agents. Meanwhile, a partially observable scenario is
considered in which each agent draws an individual observation o ∈ O according to
observation function Z(s, k) : S× K → O. Each agent has an action-observation history
τk ∈ T ≡ (O× K)∗ on which it conditions a stochastic policy πk

(
ak | τk

)
: T × A→ [0, 1].

The joint policy π has a joint action-value function Qπ(st, at) = Est+1:∞ ,at+1:∞ [Rt | st, at],
where Rt = ∑∞

i=0 γirt+i is a discounted reward and γ ∈ [0, 1) is the discount factor.

3. T3OMVP Scheme

The OMVP problem can be formulated by cooperative MARL, and each pursuing
vehicle can be modeled as an agent with state, action, and reward.

3.1. State, Action, and Reward

According to the assumptions of the MVP problem, each pursuing vehicle can obtain the
observations of other pursuing vehicles through V2V or V2I communication. At time t, pt

pur,k =

(it
k, jt

k) represents the position of the kth pursuer, pt
eva,m = (it

m, jt
m) represents the position of

the mth evader, and pobs,n = (in, jn) represents the position of the nth obstacle area. Therefore,
Pt

pur = (pt
pur,1, . . . , pt

pur,N) means the positions of all pursuers, Pt
eva = (pt

eva,1, . . . , pt
eva,N/2)

means the positions of all evaders, and Pobs = (pobs,1, . . .) means the positions of all obstacle

https://github.com/its-ant-bupt/T3OMVP
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areas. It is defined that the observation of the kth pursuer at time t is divided into two parts:
evading target observation and obstacle observation, which are represented by Et

k and Bt
k,

respectively. Both Et
k and Bt

k are represented by an M × M matrix, where Et
k is limited by

urban roads and Bt
k is not limited. et

k,i,j and bt
k,i,j are the elements in row i and column j in Et

k
and Bt

k, respectively. Define ot
k ∈ Et

k as the observable area of the kth pursuer, whose shape is a
cross or a straight line. For the OMVP problem in grid environment, let

et
k,i,j =

{
1 i f (i, j) ∈ ot

k and (i, j) ∈ Pt
eva

0 others

bt
k,i,j =

{
1 i f (i, j) ∈ Pobs

0 others
.

(1)

In order to achieve vehicle cooperative pursuit, the state of each pursuing vehicle
should include the observations of all other vehicles. st

i = (Et
i , Bt

i , Et
other) represents the

state of ith pursuer at the time t, including the evading vehicle observation, the obstacle
observation of ith pursuer, and the evading vehicle observation of the other pursuers.

Because the urban area is built in the grid world, the action space of pursuing vehicles
can be divided into five parts, including moving forward, moving backward, turning left
at the intersection, turning right at the intersection, and stopping. The reward and global
reward in the OMVP are the same as in the MVP.

3.2. Centralized Training with Decentralized Execution

This paper considers that extra state information is available and vehicles can communi-
cate freely. Centralized training with decentralized execution (CTDE) is a standard paradigm
in MARL. In the training process, the centralized value function, which conditions on the
global state and the joint actions, is obtained. Meanwhile, each agent utilizes individual
action-observation histories to learn its individual value function, which is updated by a
centralized gradient provided by the centralized value function. In the executing process, the
learnt policy for each agent conditioning on the individual value function can be executed
in a decentralized way. State-of-the-art MARL algorithms, such as the VDN or QMIX, adopt
this architecture.

3.3. Observation-Constrained Multi-Vehicle Pursuit

The OMVP can be modeled as a Dec-POMDP. This paper uses the QMIX to deal with
the multi-agent credit assignment in the MVP. At the same time, in order to deal with the
problem that the observation area is affected by the complex environment, the transformer
is used to process the time observations and team observations.

3.3.1. Monotonic Value Function Factorization

Deep Q-Networks (DQNs) contain the experience replay mechanism and the target
network to fit the action-value function better, which can be used in MARL. The cost
function of DQNs is the standard squared TD error:

L(θ) = Es,a,r,s′
[
(yDQN

i −Q(s, a | θ))2
]
, (2)

where a is the action at the current state s, s′ is the next state, yDQN = r+γ maxa′ Q
(
s′, a′ | θ̄

)
and r is the received reward. θ̄ are the parameters of target network Q which are periodically
copied from the θ of current network Q.

At present, cooperative MARL often uses CTDE for training but requires a centralized
action-value function Qtotal that conditions on the global state and the joint action. Qtotal
can usually be approximated using a neural network by Q̂total, which is factorized to
approximate individual Q̂i for each agent i in order to update Q̂i. The objective of the
update is to minimize the following loss which is analogous to the standard DQN loss:
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L(θ) =
b

∑
i=1

[(
ytotal

i − Q̂total(τ, a, s; θ)
)2
]

, (3)

where b is the batch size to sample from the replay buffer, ytotal = r+γ maxa′ Q̂total
(
τ′, a′, s′; θ̄

)
.

VDN is the simplest method to approximate the individual action-value function. It
formulates Q̂total as a sum of individual action-value functions Q̂i(τ

i
t , ai

t), one for each agent
i, which condition only on individual action-observation histories:

Q̂total(τ, a) =
N

∑
i=1

Q̂i(τ
i, ai; θi), (4)

where τ ∈ T ≡ TN is the action-observation history of all agents, a ∈ A is the joint action,
τi

t ∈ T and ai
t ∈ A is the action-observation history and action of agent i, respectively.

Because the full factorization of VDN is not necessary to extract decentralized policies
that are fully consistent with their centralized counterpart, the QMIX uses a mixing network
to represent the Q̂total. The mixing network is a feed-forward neural network that takes
the agent network outputs as input and mixes them monotonically. The weights of the
mixing network are restricted to be non-negative to enforce the monotonicity constraint
of Equation (5).

∂Q̂total

∂Q̂i
≥ 0, ∀i ∈ K (5)

3.3.2. Observations Sequence

For the OMVP problem, although the state acquired by the pursuing vehicle is incom-
plete, more historical observations endow pursuing vehicles with better decisions of the
next action. As such, the MVP problem becomes a Dec-POMDP. A coordinated method
of time observations and team observations, named TT-Observations, is used to process
the joint observation of all pursuing vehicles, thus solving the problem of constrained
observations limited by the complex urban environment.

Time Observations

Because pursuing vehicles can save part of the road information in the historical
observation, a more extensive observation range can be obtained by combining multiple
historical observations. Therefore, when other pursuing vehicles find the position of the
target vehicle in the historically observed road, the pursuing vehicle can trace the source,
thereby improving the pursuing efficiency. For example, in Figure 2a, the orange area
is the historical time observations of the red pursuing vehicle No. 1. When it arrives at
the position P, an evading vehicle appears two blocks behind it. Due to the limitation of
its field of view, pursuing vehicle No. 1 cannot observe the evading vehicle. Although
the red pursuing vehicle No. 2 can observe the evading vehicle, it still cannot pursue the
evading vehicle after turning around, due to the evading vehicle being able to move to
the right. Because the red pursuing vehicle No. 1 can drive in the opposite direction, it
can trace the source based on historical time observations to capture the evading vehicle.
Furthermore, the previously observed information is added to the input of the transformer
block to process time observations using the self-attention mechanism.

Team Observations

A more comprehensive observation range can also be constructed through integrating
the observations of all pursuing vehicles. In the IoVs, vehicles can communicate through
V2V or V2I, so the team’s observation sequences can be used to deal with complicated
roads in urban environments. When multiple pursuing vehicles observe the same target,
it is possible to avoid all pursuing vehicles aiming at the same target by focusing on the
observation sequence of all vehicles, so that the target can be dispersed and the pursuing
efficiency can be improved. For example, in Figure 2b, the yellow area is observations of all
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the red pursuing vehicles. When two pursuing vehicles observe the blue evading vehicle
No. 2 at the same time, by processing all observation sequences, it is possible to avoid two
red vehicles pursuing the blue evading vehicle No. 2 at the same time, and pursue the most
suitable vehicle separately, thereby improving the pursuing efficiency. Furthermore, the
joint observation of all pursuing vehicles is used as the input of the transformer block to
process team observations using the self-attention mechanism.

Figure 2. (a) Time observations are used to backtrack historical paths: pursuing vehicle No. 1 traces
the previous location of the evading vehicle in the time observation of pursuing vehicle No. 2 and
turns around to capture the evading vehicle. (b) Team observations are used to assign team goals:
pursuing vehicle No. 1 chooses to capture evading vehicle No. 1 instead of evading vehicle No. 2
which is in the observation of pursuing vehicle No. 2.

TT-Observations

There are two ways to combine time observations and team observations. One is
that the team observations are the main body, and the time observations are used as an
additional input. The other is that the time observations are the main body, and the
team observations are used as an additional input. In the recurrent neural network, time
information is usually transmitted and encoded through the hidden layer. Using the
transformer structure based on team observations, the self-attention mechanism can be
fully utilized to realize the cooperative control of the team. If the transformer structure
based on time observations is used, the self-attention will only be placed on a single
pursuing vehicle and cannot realize the cooperative control of the team. Therefore, the
T3OMVP adopts the transformer structure based on team observations and uses a hidden
layer h to store time observations as an additional input.

3.3.3. Transformer-Based TT-Observations

This paper uses the method TT-Observations that combines time observations and
team observations and uses the transformer block to calculate the Q-value of each agent
through the self-attention mechanism based on UPDeT.

Self-Attention Mechanism

Vaswani et al. first used the self-attention mechanism in the transformer block [21]. In
the self-attention, each input embedding vector X has three different vectors, Q, K, and V,
representing query, key, and value, respectively. Q, K, V are obtained by multiplying three
different weight matrices Wq, Wk, Wv with the embedding vector X, and the dimensions of
the three weight matrices are the same. The calculation formula of self-attention output is
as follows:

Attention (Q, K, V) = softmax
(

QKT
√

dk

)
V, (6)
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where dk equals the number of columns of the Q and K matrices to prevent the inner
product from being too large; KT represents the transpose of the matrix K.

Transformer in Time and Team Observations

This paper assumes that the observation can be transmitted among the pursuing
vehicles through communication. At time t, the observation set of all pursuing vehicles is
Ot, which contains independent observations of N agents {ot

1, ot
2, . . . , ot

N}. The indepen-
dent observations of all pursuing vehicles can be encoded into embedding vectors of the
same length through the embedding layer, so the embedding vector of the entire team
observations can be obtained as follows:

Et = {Emb(ot
1), Emb(ot

2), . . . , Emb(ot
N)}, (7)

where Emb represents the embedding layer in the neural network. Unlike UPDeT, this
paper uses the joint observation of all pursuing vehicles as the input of the transformer
block to realize the overall decision-making control of the pursuing vehicles. Similar to
UPDeT, this paper uses a hidden state ht−1 to record the historical observation state to
achieve historical backtracking. The observed embedding vector and the hidden state
are combined at time t − 1 as the input of the transformer block to obtain X1, and Xl
(l ∈ {1, 2, . . . , L}) is the input of the transformer block of the lth layer; L is the number of
layers in the transformer encoder. The whole calculation process is as follows:

X1 = {Et, ht−1}
Ql , Kl , Vl = LFQ,K,V(Xl)

Xl+1 = Attention (Ql , Kl , Vl).

(8)

where LF represents the linear functions used to compute Ql , Kl , and Vl . The T3OMVP
scheme further uses the output of the last self-attention layer as the input of the linear layer
LN that calculates Q-value:

Qt(Et, ht−1, a) = LN(Xl+1, a) = {Qt
1, Qt

2, . . . , Qt
N}, (9)

where Qt
i(i ∈ {1, 2, . . . , N}) represents the Q-value of each agent at time t, and Qt represents

the set of Q-values of all agents. After obtaining the Q-values of all agents, the global
Q-value can be calculated by credit assignment function:

Qt
total(τt, at) = F(Qt

1, Qt
2, . . . , Qt

N)= F(Qt(Et, ht−1, a)), (10)

where F is the credit assignment function. In this paper, the QMIX is used to calculate the
global Q-value. In the QMIX, F is a mixed linear network to ensure that the derivative of
the global Q-value and the individual Q-value is positive.

Decision-Making and Training Process

In UPDeT, in order to make the QMIX added with the transformer block more effective
than the original QMIX, UPDeT adopts a policy decoupling strategy, that is, all action
groups are calculated separately for the Q-value of each agent, which will make the
calculation more complicated and difficult to apply to other scenarios.

In the T3OMVP scheme, the local information observed by each agent is jointed as
shown in Figure 3. After each pursuing vehicle obtains the observations of other pursuers
through V2V or V2I, all the information will be jointed linearly. On the one hand, the
action set in the OMVP problem is small, and it is inconvenient to divide the action set
into multiple action pairs. On the other hand, the larger-range joint observation can in-
clude the set of targets observed by all pursuing vehicles to facilitate cooperative control.
Therefore, the T3OMVP scheme does not have to adopt the policy decoupling strategy. The
following experiments show that, in the T3OMVP scheme, jointing the observation into
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the network without using policy decoupling can achieve the same benefits as adopting
policy decoupling.

Figure 3. Generating joint observation. The observations of N pursuing vehicles are jointed into a
larger observation matrix linearly.

The training process of the T3OMVP scheme is shown in Algorithm 1. At the beginning
of each episode, the joint observation o0 of each agent can be obtained from the global
initial state s0. In each step of simulating, actions are generated by the ε-greedy strategy;
note that the ε-greedy strategy will be defined in Section 4.2. After obtaining the next
observation and reward (ot+1, rt), (τt, at, rt, τt+1) is stored to M. Finally, a minibatch of
transitions are sampled from M to update all networks.

Algorithm 1: T3OMVP On-line training

1 Initialize replay memory M;
2 Initialize individual value network Q̂i and global value network Q̂total with

random parameters θi and θ;
3 Initialize target individual value parameters θ̄i = θi and target global value

parameters θ̄ = θ;
4 for episode = 1 to E do
5 Initialize hidden state h0;
6 Observe initial state s0 and joint observation o0 = [Z(s0, i)]Ni=1;
7 for t = 1 to T do
8 With probability ε select a random action ai

t;
9 Otherwise ai

t = arg maxai
t
Qi(τ

i, ai, ht−1; θi);

10 Take action at, and get the next observation and reward (ot+1, rt);
11 Store transition (τt, at, rt, τt+1) in M;
12 Sample a random minibatch of transitions (τ, a, r, τ′) from M;

13 Set ytotal(r, τ′; θ̄) = r + γQ̂total
(
τ′, a′, s′; θ̄

)
,

a′ =
[
arg maxai Q̂i

(
τi,′, ai, h′; θ̄

)]N
i=1;

14 Update the Q̂i and Q̂total by minimizing the loss:

L = ∑b
i=1

[(
ytotal

i − Q̂total(τ, a, s; θ)
)2
]

;

15 Update the target networks parameters θ̂i = θi and θ̂ = θ with period I.
16 end
17 end
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4. Results
4.1. Evader Strategy

In this paper, four movement strategies are designed for evaders to test the robustness
of the T3OMVP in the pursuit. The four strategies are: keeping still, moving around in the
latitudinal direction, moving around in the longitudinal direction, and moving in a circle,
as shown in Figure 4. In each episode of training and testing, the evading vehicle randomly
selects and executes one strategy from the above four.

Figure 4. Evader Strategy. (a) Keeping still. (b) Moving around in the latitudinal direction. (c) Moving
around in the longitudinal direction. (d) Moving in a circle.

4.2. ε-Greedy

The T3OMVP utilizes the ε-greedy strategy when the agent makes a decision. Specif-
ically, the agent randomly chooses an unknown action with probability ε to explore or
exploits with probability 1−ε by selecting the action with the largest Q-value among the
existing actions. The ε-greedy algorithm is as follows:

A∗ = arg max
a

Q(s, a)

π(a | s) =

{
1− ε + ε/|A(s)| if a = A∗

ε/|A(s)| if a 6= A∗
.

(11)

where A∗ represents the local optimal action obtained according to the Q-value.

4.3. Simulation Settings

The T3OMVP scheme is trained and evaluated in a self-designed urban multi-intersection
environment, developed with Python 3.6 (Python Software Foundation, Beaverton, OR,
USA). The environment is based on the gym and contains multiple intersections in a
W ×W grid environment. In the experiment, λ represents the ratio of pursuing vehicles to
evading vehicles. In order to verify the effect of λ on the stability of the T3OMVP scheme,
λ is set variably with 2, 1, 0.5. Experimental scenarios include the 8v4 (eight pursuing
vehicles vs. four evading vehicles) scenario, 4v4 (four pursuing vehicles vs. four evading
vehicles) scenario, and 2v4 (two pursuing vehicles vs. four evading vehicles) scenario. The
parameters of the relevant experimental environment are shown in Table 1.

This paper adopts QMIX as the baseline method, including two hypernetworks, and
uses the Elu activation function after each layer of the network DN(o) where o represents
the dimension of the network output. The Elu can avoid the disappearance of the gradient,
reduce the training time, and improve the accuracy in the neural network [22]. Similar to
UPDeT, after obtaining the joint observation, the T3OMVP feeds it into the transformer
together with the hidden state. The transformer encoder consists of multiple blocks, each
of which contains a multi-head self-attention, a feed-forward neural network, and two
resnet structures. In UPDeT, the QMIX with the transformer needs to adopt the policy
decoupling strategy to achieve better performance than the QMIX with the transformer.
However, the T3OMVP adopts an extensive observation matrix integrating observations
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of all pursuing vehicles to replace the policy decoupling strategy and achieves a better or
same performance than UPDeT. The complete hyperparameters are listed in Table 2.

Table 1. Experimental Parameters.

Parameters Value

Number of episodes E 40,000
Time step T 50
Grid space width W [13, 17, 21]
Intersection interval 1
Number of intersections [36, 64, 100]
Distance of vehicle moves each time 1
Size of the observation space of the pursuing vehicle 5× 5
Size of the joint observation space of the pursuing vehicle [3× 13× 13, 3× 17× 17, 3× 21× 21]
Number of evading vehicles 4
Historical observation length 5

Table 2. Hyperparameters for Neural Networks.

Hyperparameters Value

Batch size 32
Memory capacity M 20,000
Learning rate 0.001→ 0
Optimizer Adam
Discounted factor γ 0.95
ε decay 0.0001
ε min 0.1
Period of update I 4000

QMIX
Hypernetwork w #1 [DN(128), Elu, DN(128 + N)]
Hypernetwork w #final [DN(128), Elu, DN(128)]
Hypernetwork b #1 [DN(128)]
Output [DN(128), Elu, DN(1)]

Transformer Encoder
Transformer depth 2
Embedding vector length 250
Number of heads 5

4.4. Discussion

The entire experiment is divided into three parts. In the first part, to compare the T3OMVP
with UPDeT, the unified reward function is used to evaluate the T3OMVP, QMIX, QMIX +
UPDeT, VDN, VDN + UPDeT, and T3VDN, except M3DDPG which has been proven not
to perform well in the pursuit–evasion scenario [16]. In this part, all methods are trained
in the 13× 13 multi-vehicle pursuit grid environment with the 8v4 scenario, 4v4 scenario,
and 2v4 scenario, respectively. There are four strategies for evading vehicles as shown in
Section 4.1. At test time, 50 episodes of verification are performed to calculate the average
value of the reward as the reward for the current training step. In the second part, the
performances of T3OMVP, QMIX, and VDN are verified on multiple scenarios of different
difficulty, including λ ∈ {2, 1, 0, 5} and W ∈ {13, 17, 21}. Finally, to evaluate the role of the
self-attention mechanism in decision making, the attention is analyzed in two aspects: team
observations and time observations.

Figure 5 depicts the performance comparison of T3OMVP, QMIX, QMIX + UPDeT,
VDN, VDN + UPDeT, and T3VDN in the 13× 13 grid environment on the 8v4 scenario,
4v4 scenario, and 2v4 scenario, respectively. As shown in Figure 5a–c, the T3OMVP
scheme, based on QMIX and using joint observation rather than a policy decoupling
strategy, can achieve the best performance on both the simple 8v4 scenario and the difficult
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2v4 scenario. However, its performance on the 4v4 scenario is not as good as that of
QMIX+UPDeT which uses the policy decoupling strategy. The reason is that on the 4v4
scenario, the observations dimension is close to the number of actions, so the action–
observation pairs are more suitable for policy decoupling. However, when the observations
dimension and the number of actions are different, policy decoupling will make it difficult
to assign appropriate actions, resulting in a performance degradation even worse than the
original QMIX in the 2v4 scenario. Furthermore, the T3OMVP weakens the influence of
the observations dimension and number of actions, because the transformer combined
with TT-observations endows the pursuing vehicle with more comprehensive information
from all other vehicles, which avoids vehicles from falling into the local optimum situation,
and thereby the pursuing efficiency can be improved in more scenarios. The purple line
and dark blue line in Figure 5 indicate that VDN + UPDeT performs poorly in the OMVP
scenario. This phenomenon can be interpreted as follows: On the one hand, the relatively
simple reward mechanism in our scenario is more adaptive with a concise way of calculating
the global Q-value; hence, the VDN can solely achieve relatively competitive performance.
On the other hand, the update process involved in the VDN is relatively simple; thus, the
VDN + UPDeT is not sufficient for significantly improving the original performance in the
OMVP scenario. Given the result that the VDN combined with a transformer structure
and TT-observations can still achieve better performance than the VDN, it proves that the
transformer combined with TT-observations can improve or maintain the performance
without the policy decoupling strategy.

Figure 5. Comparison of T3OMVP and UPDeT methods in the 13 ∗ 13 grid environment in 8v4
scenario (a), 4v4 scenario (b), and 2v4 scenario (c), respectively. QMIX + UPDeT and VDN + UPDeT
refer to methods using the UPDeT with policy decoupling strategy. T3VDN refers to VDN using
transformer-based time and team observations without policy decoupling strategy.

Figure 6 shows the performances of the T3OMVP, QMIX, and VDN at different diffi-
culty levels. According to the change of λ, Figure 6a–c show the situation in a 13× 13 grid
environment in the 8v4 scenario, 4v4 scenario, and 2v4 scenario, respectively. As shown
in Figure 6a–c, in the simple 8v4 scenario, the VDN shows better performances than the
QMIX and can even reach the performance of the T3OMVP. It indicates that the VDN can
adapt to such situations better than the QMIX in relatively simple scenarios. As the number
of pursuing vehicles decreases, the problem becomes complicated. The performance gap
between the T3OMVP and QMIX gradually widens, and so does that between the T3OMVP
and VDN. Furthermore, the performance gap between the VDN and QMIX gradually nar-
rows. The results indicate that as the difficulty increases, the VDN with a simple structure
cannot adapt to these scenarios anymore; thus, the gap between it and the QMIX gradually
narrows, but the T3OMVP can still achieve the best performance. According to the change
of W, Figure 6d,g show the situation in the 8v4 scenario in the 17× 17 grid environment
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and 21× 21 grid environment, respectively. As shown in Figure 6a,d,g, it can be seen that
as the size of the environment increases, the difficulty of pursuing increases, the VDN still
gradually reaches the same performance as the QMIX, and the T3OMVP gradually shows
better performance than the QMIX and VDN. It is consistent with the previous statement
that the T3OMVP can show better performance in more difficult scenarios, because the
T3OMVP can more comprehensively evaluate the observed information through the self-
attention mechanism. At the same time, as the difficulty of the scenario increases, the gap
between the QMIX and VDN gradually narrows, and the QMIX shows more competitive
performance than the VDN in the 2v4 scenario in the 21× 21 grid environment. It can be
concluded that, as the difficulty increases, the QMIX can adapt to more complex scenarios,
which is beneficial to the decision making among multi-vehicles. Furthermore, this paper
compared the performance of the T3OMVP and QMIX on multiple test scenarios. In order
to eliminate the influence of the evading vehicle movement, the strategy of the evading
vehicles is keeping still, and the random number seed is fixed. The results are shown in
Table 3. It is observed that transformer structure improves the performance of the QMIX by
9.66~106.25% on multiple test scenarios. For that reason, the T3OMVP scheme is generated
by adding the transformer structure on the basis of the QMIX to deal with the OMVP
problem in the urban multi-intersection environment.

Figure 6. Comparison of T3OMVP, QMIX, and VDN in 8v4 scenario (a,d,g), 4v4 scenario (b,e,h), and
2v4 scenario (c,f,i) with W ∈ {13, 17, 21}.

Figure 7a describes the 8v4 scenario in the 13 ∗ 13 urban multi-intersection environ-
ment. As shown in Figure 7b, when two pursuing vehicles observe different targets, the
attention of the pursuing vehicle No. 5 is the highest and that of the pursuing vehicle No. 7
ranks second. The reason is pursuing vehicles No. 5 and No. 7 are the closest vehicles to
the evading vehicle and the calculated attention is also biased toward No. 5 and No. 7. In
addition, Figure 7b also shows that the attention of the pursuing vehicle No. 2 is the highest
except for the pursuing vehicles No. 5 and No. 7. The reason is that pursuing vehicle
No. 2 is most relevant to the direction of the evading vehicle observed by No. 7. Therefore,
focusing on pursuing vehicle No. 2 can improve the pursuing efficiency by mobilizing the
No. 2 vehicle to pursue the evading vehicle observed by No. 7 in the subsequent actions.
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Table 3. Testing for comparison of performance in 8v4 scenario, 4v4 scenario, and 2v4 scenario with
W ∈ {13, 17, 21}. The bold texts are to represent the min and max to emphasize our outstanding per-
formance.

Sum of Rewards Grid Space Width 13 17 21

8v4 scenario

QMIX 3.88 1.1775 0.76

T3OMVP 4.255 1.5175 0.9175

Improvement 9.66% 28.87% 20.72%

4v4 scenario

QMIX 1.345 0.455 0.345

T3OMVP 2.115 0.88 0.475

Improvement 57.24% 93.40% 37.68%

2v4 scenario

QMIX 0.51 0.16 0.09

T3OMVP 0.86 0.33 0.18

Improvement 68.62% 106.25% 100%

Figure 7. Heatmap of Team Attention. (a) shows the current state in which the red agent is the
pursuing vehicle, the blue agent is the evading vehicle, the gray area is the road, the yellow area is
the observation of the pursuing vehicle, and the green area is the building. (b) shows the attention in
the current state.

Figure 8 shows the role of hidden states in historical observations. Figure 8a,b show
the positional relationship between the pursuing vehicle and the evading vehicle in the
previous state and current state, respectively, and Figure 8c shows the attention in the
current state and the hidden state retained in the previous state. As shown in Figure 8a,b,
because the pursuing vehicle No. 5 did not move, the evading vehicle observed by the
pursuing vehicle No. 5 in the previous step drove out of the observation field of the
pursuing vehicle No. 5; however, the pursuing vehicle No. 5 still has the highest attention
among the attentions in the current state. Due to the hidden state of the previous state,
the attention reserved by the pursuing vehicle No. 5 is the highest except for the pursuing
vehicle No. 3, because the pursuing vehicle No. 3 does not observe the evading vehicle
in both steps and the observation field shrinks due to the complicated road structure;
that is why the pursuing vehicle No. 5 can obtain the highest attention at the current
state. According to the transmission of the hidden state, the pursuing vehicle can save the
experience of historical observations and improve the pursuing efficiency.
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Figure 8. Heatmap of Hidden State. (a,b) show the previous state and current state. The upper of
(c) shows the attention in current state. The bottom of (c) shows the attention in hidden state of
previous state.

5. Conclusions

An OMVP problem was defined from an MVP problem in which the pursuing vehi-
cles are required to pursue the evading vehicles in the building-blocked environment. A
T3OMVP scheme was proposed to solve the OMVP problem in the simulated urban envi-
ronment which has a complicated road structure, restricted moving spaces, and constrained
observations. The T3OMVP scheme integrated a transformer structure into the QMIX
to process the time and team’s attention to various observations. Different from UPDeT,
the T3OMVP used joint observation to collect the observations of all pursuing vehicles
instead of the policy decoupling strategy for final attention. The T3OMVP can directly make
decisions and achieve a better or the same performance without policy decoupling. This
paper modified the predator–prey scenario and obtains a complex urban multi-intersection
OMVP simulator, which is a light-weight system with easy to train agents, and the proposed
T3OMVP scheme was verified in this simulation environment. More extensive experiments
proved that the T3OMVP can achieve a much better performance on more difficult sce-
narios than the original QMIX and VDN. Through the distribution of attention displayed
by the heatmap, it can be seen that adding the transformer structure can coordinate the
attention of the team, and the hidden state can store some historical information so that it
can be applied to multiple problems based on Dec-POMDPs. Furthermore, according to
the performance of the experiments, the T3OMVP can be generalized to more cooperative
multi-agent scenarios, such as robot control or power grid dispatching.

For the application of the transformer in reinforcement learning, our future work
will focus on the theoretical analysis of transformers, which will help to better explain
the application of the attention mechanism in processing joint observation among agents
in MARL. Furthermore, the ITS is subject to potential cyberattacks with the increase in
connectivity in transportation networks and cyberattacks can inject malicious information
into the transportation networks to mislead autonomous vehicles. The other future work
will focus on the issue of resilience to cyberattacks in the OMVP for real-world scenarios,
which will help us analyze the impact of cyberattacks on the network when exposed from
outside. The future work will focus on the modeling and theoretical analysis of transformers.
It will greatly help to better explain the application of the attention mechanism in processing
joint observation among agents in MARL.
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