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Abstract: Human intention recognition belongs to the algorithm basis for exoskeleton robots to
generate synergic movements and provide corresponding assistance. In this article, we acquire
and analyze the mechanomyography (MMG) to estimate the current joint torque and apply this
method to the rehabilitation training research of the upper extremity exosuit. In order to obtain
relatively pure biological signals, a MMG processing method based on the Hilbert-Huang Transform
(HHT) is proposed to eliminate the mixed noise and motion artifacts. After extracting features and
forming the dataset, a random forest regression (RFR) model is designed to build the mapping
relationship between MMG and human joint output through offline learning. In addition, an upper
extremity exosuit is constructed for multi-joint assistance. Based on the above research, we develop a
torque estimation-based control strategy and make it responsible for the intention understanding and
motion servo of this customized system. Finally, an actual test verifies the accuracy and reliability
of this recognition algorithm, and an efficiency evaluation experiment also proves the feasibility for
power assistance.

Keywords: joint torque estimation; upper extremity exosuit; mechanomyography signal processing;
rehabilitation training; MMG; human movement assistance

1. Introduction

As is the case for most of the potential technical equipment for rehabilitation training
and movement assistance, the exoskeleton system has always attracted attention in related
research fields for the elderly and the disabled [1,2]; however, with some key issues not
being resolved, the performance of this wearable robot remains relatively limited [3].
Among them, human intention perception belongs to a pretty critical research point and
needs to be studied further. Traditional methods try to achieve this function by monitoring
limb kinematics data [4] or human-machine interaction information [5], but problems such
as response lag greatly restrict its actual effect. In recent years, recognition methods based
on biological signals have emerged and gained wide attention [6], which are expected to
realize more effective intention understanding.

Biological signals are often generated before the execution of corresponding actions,
which show a certain degree of motion predictability and can make intention recognition
more timely and accurate. In addition to eye tracking and galvanic skin response (GSR) [7],
which are not suitable for combining with exoskeleton control technology, commonly
used types in current research mainly contain electroencephalogram (EEG) [8], surface
electromyogram (sEMG) [9], and mechanomyography [10]. The EEG signal originates from
the potential of the external electrical field that fluctuates around nerve cells in the brain,
and is often applied to classify specific movement patterns [11,12]. Due to its instability
and susceptibility to interference, EEG-based methods for data collection, signal processing,
and intent identification needs to be further improved and optimized. The sEMG signal
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represents the total action potentials of different motor units innervated by certain motor
neurons, which can be obtained through electrodes placed on the corresponding muscle
tissue [13]. It has the advantage of high sensitivity and low delay, but many factors will
diminish its effectiveness for data collection, such as skin surface cleanliness, air humidity,
and patch electrode position [14]. MMG reflects the mechanical vibration signal generated
when the skeletal muscle contracts, and it contains abundant information, such as the
number of muscle fibers participating in the exercise, and the amplitude and frequency of
vibration [15]. Compared with the above two signals, it has the following advantages [16].

• The measuring device can be used directly without touching the skin, which simplifies
the preparation before data collection;

• the signal has strong anti-interference ability and will not be affected by environmental
variables such as sweat, humidity, or electromagnetics;

• the equipment cost is pretty low because the data collection task can be completed by
using an acceleration sensor that meets the accuracy requirements.

However, there are still some limitations in the practical application of MMG. For
example, it is easily contaminated by low-frequency motion artifacts, and sensitive to
sudden step noises; therefore, a suitable signal processing algorithm is needed to extract a
relatively pure sequence.

At present, classification and regression algorithms have been widely used in many
studies, such as the trajectory control of a redundant robot [17] and hand gesture recognition
for teleoperated surgical robot systems [18], which can also complete the analysis of
human motion intention. As a relatively common and easy-to-use method, motion pattern
recognition [19,20] aims at establishing the mapping relationship from sensor information
to finite human motion states through classification models. Then, the control subsystem
will generate corresponding commands according to current motion pattern and will
deliver them to underlying drivers. Joint angle prediction attempts to calculate the limb
position at the next moment based on regression models [21,22], which can effectively
avoid the response lag of the exosuit. After that, the motion state of the power-assisted
system can be dynamically adjusted through position closed-loop control. Joint torque
estimation also belongs to a direct and effective method of obtaining intentions [23,24].
The desired torque can be calculated through the Hill type model [25] or obtained from
the biological signals using machine learning algorithms [26], and can act as the input
parameter of torque closed-loop control to regulate the motor output. The last method
will provide a reference for the direct control of external torque that assists joint motion,
which is quite practical for upper extremity exosuits that need to achieve an expected
power-assisted efficiency.

If we want to use the abovementioned MMG signal to estimate the joint torque, it
is obviously quite difficult through conventional mathematical derivation. The machine
learning algorithm can train the mapping model very well based on the existing data,
and it shows an excellent fitting ability in many research fields, such as breathing pattern
detection [27] and human activity identification [28]; therefore, this method should be able
to describe the complex and nonlinear relationship between MMG and joint torques.

The inherent characteristics of the soft exosuit based on Bowden cables greatly in-
creases the difficulty for designing control strategies [29,30]. The gravity compensation
algorithm is a simple and common method for motion generation, which will output an
active torque to offset the joint load imposed by the limb weight [31,32]; however, due
to the large error of compensation model and the ignorance of dynamic characteristics,
it may cause the system response to, more or less, mismatch the joint movement. The
exosuit named CRUX [33] tries to control the target arm to follow the reference trajectory
of the healthy one, consequently completing the active rehabilitation training process [34].
This method will limit the subjective initiative of the wearer to a certain extent, and is
not suitable for situations where both arms need assistance. Some scholars from Italy
have proposed a threshold method based on sEMG [35]. When the signal amplitude of
the wearer’s measured muscle exceeds the set value, the wearable system starts to pro-
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duce a power-assisted effect for motion immediately. The most obvious disadvantage of
this method is that it only outputs a constant driving force, but the required joint torque
changes dynamically under different motion states. In general, the control logic for the
upper extremity exosuit still has some defects, and remains to be further explored.

In this paper, we intend to complete data preprocessing and feature extraction using
MMG, then establish the mapping relationship from this signal to the joint torque based on
the machine learning algorithm, and finally apply it to the rehabilitation training research of
upper extremity exosuit. MMG is collected through an inertial measurement unit (IMU) and
synthesized by the linear accelerations along three axes. The HHT will filter this original
signal to obtain a relatively pure result. We extract three features from the processed data
and combine them with the collected joint torque to form data sets for training and testing.
A RFR model is designed as the algorithm framework for joint torque estimation, and
its parameters are determined through offline training. According to the above research
results, a control algorithm based on joint torque estimation will take charge of the motion
control for an upper extremity exosuit. Eventually, some experiments are carried out to
test the accuracy of torque estimation and the efficiency of power assistance. The main
contributions and highlights of this study are summarized as follows.

• We have attempted to use the MMG signal as the medium for the exosuit to understand
human intentions, and to demonstrate the feasibility and effectiveness of this approach.

• A series of MMG-related methods for signal acquisition, filtering, and feature extrac-
tion have been developed.

• A regression model reflecting the nonlinear relationship between muscle activation
and joint output is constructed.

• A torque estimation-based control algorithm is designed and applied to the multi-joint
motion assistance of upper extremity exosuit, which can significantly amplify the
limb strength.

The remaining research content of this article is organized as follows. Section 2
describes the measurement and calculation methods for MMG, its corresponding joint
torque, and how to process the original signal to construct data sets. Section 3 introduces
the design details of RFR model and uses a large amount of test data to fit the desired
quantitative relationship. In Section 4, we have developed a control strategy for the upper
extremity exosuit based on torque estimation. Section 5 proves the feasibility of the above
methods through some experiments. Section 6 is the conclusion.

2. Data Sets Acquisition
2.1. Raw Information Collection

In order to obtain the MMG signal and corresponding joint torque at the same time,
we built a measurement platform for joint information collection. Figure 1a shows how to
use this device to get relevant data about elbow static flexion and extension.
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During this process, a six-dimension force sensor and a high-performance IMU are
responsible for detecting forces along three directions at the end of limb, and gathering
MMG at the brachioradialis of forearm, respectively. When subjects hold the force measur-
ing rod and try to perform specific actions, this platform will transmit corresponding data
to the host computer through a data line and save them in files.

With readings from a six-dimension force sensor (Fx and Fy) as input, the joint torque

(
→
T elbow) can be calculated by a certain mathematical relation. The mechanical model of the

elbow is shown in Figure 1b, where
→
A,
→
F , and L, respectively, represent the current posture

vector of human arm, the resultant force vector at the end, and the length of forearm. Then,
we can dynamically obtain the joint torque values during elbow static flexion and extension
through the following formulas.

→
F =

→
F x +

→
F y (1)

→
T elbow= L(

→
A

|
→
A|
×
→
F) (2)

During dynamic flexion/extension without using the platform, it can be seen in
Figure 2 that when the measured muscle contracts or relaxes and drives the human joint to
rotate, the IMU can perceive some regular acceleration signals in the x, y, and z directions
synchronously, and the same is true for the process of static joint output. In order to
integrate all the effective information, we calculate the sum of linear acceleration vectors
along three axes (ACCx, ACCy, and ACCz), and take its modulus as the original MMG signal
(MMG(t)), which can be expressed as the following equation.

MMG(t) =
√

ACC2
x+ACC2

y + ACC2
z (3)
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2.2. MMG Signal Processing

However, the method of using linear acceleration values for MMG characterization
inevitably mixes low-frequency artifacts into the collected original signal, such as gravi-
tational acceleration, IMU posture changing artifacts caused by muscle deformation, and
motion artifacts introduced by upper limb movements. Moreover, high-frequency white
noise may also be superimposed on it. In order to improve the quality of data and lay the
foundation for subsequent feature extraction, an effective filtering method must be applied
to eliminate the abovementioned interferences. Traditional signal processing methods are
mostly based on Fourier analysis, but these ones have limited effects in practical applica-
tions of processing MMG due to its non-linear and non-stationary characteristics. With
reference to related literatures, we decide to use HHT to analyze the original data, which is
more suitable for these kinds of signals.
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The HHT consists of two parts, namely empirical mode decomposition (EMD) and the
Hilbert transform. EMD can decompose a complex signal into a limited number of intrinsic
mode functions (IMFs) and a residual based on the local time scale characteristics of itself.
The specific implementation steps are as follows. First, we find all the local maximum points
and local minimum points of the original MMG signal and fit their respective envelopes
through the cubic spline curve. Then, the mean value of the upper and lower envelopes
(U(t) and L(t)) will be subtracted from the original sequence to get the remaining part with
the low frequency information removed (x(t)).

x(t) = MMG(t) − 1
2
(U(t) + L(t)) (4)

If the number of extreme values and zero crossings on the entire data set of x(t) differs
by 0 or 1, and the average value of its two envelopes remains zero at any time, then
IMFi(t) = x(t), otherwise it is necessary to let MMG(t) = x(t), and repeat the above steps
until these two conditions are met. Next, we remove the obtained IMFi(t) from MMG(t) and
repeat all the above steps again with the remaining part (ri(t)) to get other IMF components
until ri(t) is a constant or monotonic function. As shown in Figure 3a, the original MMG
signal is decomposed into 9 IMFs and 1 residual (res(t)) according to the signal frequency,
which can be expressed as follows.

MMG(t) =∑9
i=1 IMFi(t) + res(t) (5)
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After completing the above analysis, it is time to select the IMFs dominated by MMG
through certain methods and reorganize them to obtain a relatively pure signal. To eliminate
the noise-dominated IMFs, we introduce the concept of autocorrelation (RIMF(t1,t2)), which
reflects the correlation degree of signal values at different times (t1 and t2). Its normalized
expression form, (ρIMF(τ)), can be obtained with the following formula, where τ = t1 − t2.

RIMF(t 1, t2) = E[IMF(t 1)·IMF(t 2)] (6)

ρIMF(τ) =
RIMF(τ)

Rx(0)
(7)

If the normalized autocorrelation curve belongs to an impulse function close to the
zero point, it can be ascertained that the corresponding IMF is dominated by noise, because
noise has randomness and a weak correlation at every moment. After the calculations in
Figure 3b, the first IMF can be classified as such a disturbance.

To exclude the IMFs dominated by motion artifacts, we try to find the discrimination
basis from the energy distribution of each order component. After calculating the energy
value (Ei

IMF) of each IMF according to the following Formula (8), it is revealed that energy
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contained in each IMF has increased significantly, starting from the sixth order. By analyzing
the data of different participants, we find that removing these IMFs as motion artifacts can
achieve a better result.

In the end, we believe that IMF2~IMF5 can effectively characterize the muscle activity,
and the filtered signal can be obtained with them being recombined. It can be seen from
Figure 4 that there is a pretty clear correspondence between the processed MMG and
joint torque.

Ei
IMF =

1
n ∑n

j=1 [IMF i(j)]2 (8)
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2.3. Feature Extraction

Considering that the change in limb strength is often accompanied by the fluctuation
of the muscle fiber’s vibration amplitude, we select the root mean square (RMS) as the time
domain characteristic of MMG. It reflects the effective value of data amplitude and can be
calculated with the following formula.

RMSMMG =

√
1
N ∑N

i=1 X2
i (9)

Due to the correlation between muscle activity and its vibration frequency, mean
power frequency (MPF) is used to represent the frequency domain characteristic of MMG.
It is necessary to perform the Hilbert transform on the filtered MMG to analyze its frequency
spectrum, and then integrate it on the time axis to obtain the Hilbert marginal spectrum
that characterizes the relationship between signal frequency (fi) and energy (Ei). Then, MPF
can be calculated through the following equation.

MPFMMG =
∑N

i=1 fiEi

∑N
i=1 Ei

(10)

The MMG signal may contain information about the number of muscle fibers involved
in power output; therefore, we additionally introduce the concept of sample entropy
(SampEn) to describe the characteristic from a non-linear perspective, which can quantify
the complexity of the time series.

In order to not lose continuity information in the sequence, we apply the sliding
window strategy to extract these characteristic values of the filtered MMG signal. The
window length and step length are set as 500 ms and 50 ms, respectively. So far, the data set
of elbow static flexion/extension is established with RMS, MPF, and SampEn of the MMG
signal as features, and joint torque as the label. We can also use similar methods to obtain
relevant information of shoulder static flexion/extension and static adduction/abduction.

3. Off-Line Torque Estimation
3.1. Regression Model Design

There is a relatively complicated non-linear relationship between MMG and human
joint torque, which seems difficult to accurately describe using the traditional polynomial
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regression model. We try to introduce a machine learning method to solve this problem,
using a large amount of test data to fit the real mapping law. Considering that the joint
torque estimation algorithm is oriented to a wearable power-assisted system, the require-
ment for its stability and reliability must take precedence over that of other aspects. Since
RFR (shown as Figure 5) has these advantages, it can be well qualified for this task.
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Figure 5. Schematic diagram of RFR algorithm.

The RFR belongs to a bagging type algorithm of ensemble learning, which aims
at improving overall performance by packaging and combining several weak models,
namely decision trees, into a strong one. The entire model consists of multiple classifi-
cation and regression trees (CARTs) that are not related to each other. All CARTs jointly
determine the final output result. The specific implementation steps of the algorithm are
described as follows.

1. Randomly extract any number of samples from the training set to form multiple new
sub-training sets;

2. use each sub-training set to train a CART separately. During this process, it is necessary
to randomly obtain any number of features from all the features, and then select the
optimal segmentation point to cut the subtree;

3. repeat step 2 to obtain multiple trained CARTs;
4. calculate the average of all the CARTs’ prediction results and use it as the final

estimated value.

Only when more than half of the CARTs make wrong predictions will the output of the
RFR model seriously deviate from the true value. Even if an abnormal data point appears,
it does not affect the performance of entire algorithm too much, which fully reflects the
strong robustness to stop interference signals.

3.2. Off-Line Training and Testing

We recruited three healthy adult men to participate in training data acquisition. Based
on the abovementioned platform and methods, the information collection experiment for
three motion modes obtains 150,000 sets of sample data in total. In accordance with the
idea of cross-validation, one-fifteenth of them are selected as the test set, and the remaining
data act as the training set. Finally, on the basis of setting the number of sub-regression
trees of the RFR to 10, and the minimum leaf size to 1, the training process has been carried
out, and the verification result of the test set is also obtained.

Taking shoulder static adduction/abduction as an example, Figure 6a shows that the
minimum mean square error (MSE) decreases and tends to be stable with the increase in
iterations, and Figure 6b indicates that the difference between the predicted results and
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the actual values on the test set is relatively small. In general, the model training effect has
reached the desired level.
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To measure the predictive performance of trained RFR model, a root mean square error
(RMSE) and a coefficient of determination (R2) are introduced as evaluation indexes. The
RMSE is a commonly used method to express numerical errors, representing the sample
standard deviation of the difference between the predicted value and the actual one. It can
be calculated by using the following formula.

RMSE =

√
1
n ∑n

t=1(ŷt − yt)
2 (11)

The R2 reflects how much the regression relationship can account for changes to the
dependent variable. A higher value indicates that the regression model can produce better
prediction results. The corresponding calculation process is shown below.

R2= 1− ∑n
t=1 ŷt − yt)

2

∑n
t=1 (y t − y)2 (12)

4. Test Platform Construction
4.1. Overview of the Upper Extremity Exosuit

We intend to take advantage of the abovementioned research to design a control logic
for an upper extremity exosuit, so that it can perform rehabilitation training functions
according to human intentions. As shown in Figure 7, this wearable system aims at
providing active assistance for shoulder flexion/extension, shoulder adduction/abduction,
and elbow flexion/extension of the left arm.
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It contains three sets of cable-driven modules, each of which is responsible for driving
the bidirectional motion for one degree of freedom. The sensing network consists of three
IMUs, six tension sensors, and three absolute encoders which are integrated in motors, and
are in charge of completing multiple tasks, such as MMG signal collection, limb posture
perception, human-machine interaction information acquisition, and servo motor state
reading. As the main control board, STM32F407IGH6 will serve as the brain of the system
to perform core functions such as feature extraction, motion intent identification, and
motor servo control. Components communicate with each other through CAN bus for data
feedback and instruction delivery.

On the basis of the abovementioned hardware, the exosuit can be driven to assist the
human limb coupled with a suitable control algorithm.

4.2. Torque Estimation-Based Control Strategy

As shown in Figure 8, the control logic framework of the upper extremity exosuit
consists of two layers, namely, the intent analysis part based on torque estimation, and the
motion control part based on torque closed-loop.
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Figure 8. Torque estimation-based control strategy.

When subjects wear this exosuit for collaborative movement, the upper controller
will obtain the triaxial accelerations from the target muscle through the accelerometer
embedded in the IMU, and synthesize them into an original MMG. After completing the
EMD-based filtering operation, it screens out relatively pure signals and extracts the three
characteristics including RMS, MPF, and SampEn. The trained RFR model uses these
features as an input to estimate the expected joint torque value at the current moment.
Finally, the corresponding control commands will be sent to the lower layer.

The lower controller calculates the actual joint torque using the tension sensor readings
at the end of the Bowden cable and compares it with the expected joint torque received
from the upper layer to obtain their error value. Then, a standard PID algorithm generates
motor drive commands based on the torque error, and controls the cable-driven module to
provide appropriate assistance at the joint.

To realize this control strategy through a program code, we develop an embedded
software based on the µC/OS III operating system. Five sub-tasks, including sensing
data reception, signal processing, feature extraction, torque estimation, and motor servo
control, are set up in order of priority from high to low. The execution frequency of each is
assigned by setting different cycle times. Through the division of the abovementioned sub-
task modules, we strengthen the real-time performance of programs under the premise of
clarifying the control code logic for the upper extremity exosuit. In addition, it is convenient
for subsequent optimization work.



Electronics 2022, 11, 1335 10 of 15

5. Experiment on Exosuit
5.1. Reliability Analysis Experiment for Torque Estimation

The parameters of the RFR model are determined by offline training on a PC. After
transplantation to the control system of the exosuit, an evaluation experiment needs to
be carried out to examine its actual application effect for different people. We recruited
three male volunteers aged 22–27 to complete this experiment. Among them, two subjects
(marked as Subject 1 and Subject 2) who have taken part in the training data set collection for
torque estimation, are selected to join the experimental group, and one (marked as Subject 3),
who did not participate in that process, is assigned to the control group. It is worth noting
that volunteers should not have done any high-intensity exercise 24 hours before the tests,
to avoid affecting the physiological state of the muscles. During the experiment, they are
told to exert an external force that changes approximately in accordance with the sine law
on the measurement platform. All subjects knew and agreed with relevant experimental
procedures in advance. Research related to this article was approved by the Laboratory
Academic Committee of the State Key Laboratory of Robotics and System, Harbin Institute
of Technology.

The embedded system, mounted on an upper extremity exosuit, calculates the esti-
mated torque in real time, and sends them to a PC after being processed. The sensor on
the measurement platform obtains the force data at the end of the arm, which is converted
into the actual torque value in the PC. As it only aims to evaluate the reliability of torque
estimation, we have shielded the subtask of the motor servo control in the program, so as
to avoid the influence of man-machine coupling.

Figure 9 demonstrates the elbow joint torque estimation results of the upper extremity
exosuit on three subjects. In the experimental group, it is obvious that the estimated torque
looks very close to the actual value in terms of magnitude and variation trend. Under
this condition, the model performance behaves in a relatively stable manner, and the
identification result remains rather accurate; however, in the control group, the estimated
torque cannot effectively follow the change of the actual value.
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We use the RMSE and R2 introduced above to quantitatively describe the identification
effect for different subjects. It can be seen from Table 1 that the RMSE of the experimental
group is lower than that of the control group, indicating that the error between the actual
and estimated value is smaller for the joint torque of Subject 1 and Subject 2. Moreover, the
R2 in the experimental group comes up to 100%, which, when closely compared with the
control group, means that the trained RFR model can perform better when utilizing the
biological signals of Subject 1 and Subject 2.
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Table 1. Evaluation results of torque estimation on three subjects.

Groups Participants RMSE R2

Experimental group Subject 1 1.9812 0.9532
Subject 2 1.7008 0.8620

Control group Subject 3 3.4261 0.6824

From the above qualitative and quantitative description, the following two conclusions
can be obtained.

• If we have collected a person’s MMG signal for training the RFR model offline, the
reliability of the online torque estimation will remain at a pretty high level when they
wear the exosuit that uses the trained model;

• utilizing a trained model to estimate the joint torque of unknown subjects online may
significantly weaken the effectiveness of identification.

The reason may be that muscle activation varies among different people when they
output the same joint torque, or different thicknesses of adipose layers more or less in-
fluences MMG propagation; therefore, when using the exosuit for power assistance, it is
necessary to independently train a matching torque estimation model for the wearer based
on his/her biological information.

5.2. Efficiency Evaluation Experiment for Power Assistance

In order to verify the actual power-assisted effect of this method, we selected a healthy
subject, and collected his MMG signals at the brachioradialis, deltoid, and ectopectoralis
to customize a set of RFR models for him. After transplanting these trained models to the
embedded system, and enabling all the subtasks of control program, the subject wears the
exosuit to perform elbow static flexion/extension, shoulder static flexion/extension, and
shoulder static adduction/abduction on the measurement platform, and tries to complete
three evaluation experiments. Other conditions and requirements are basically the same as
the above experiment. An emergency stop switch needs to be held by the right hand all the
way through the experiment, to ensure that the experiment can be stopped in time if an
accident occurs.

Figure 10 shows the performance evaluation experiments for joint movement assis-
tance. We take three torque values, which are estimated by the RFR model, calculated by
the tension sensor on the cable, and converted by the six-dimension force sensor on the mea-
surement platform as human-exerted, exosuit-generated, and the total output, respectively.
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Figure 10. Actual power-assisted experiments: (a) experiment for elbow static flexion/extension;
(b) experiment for shoulder static flexion/extension; (c) experiment for shoulder static
adduction/abduction.

Figure 11 describes the changing situation of different torques in the typical time
period of each motion mode. Obviously, it can be seen that the upper extremity exosuit can
produce additional assistance in the three degrees of freedom of the shoulder and elbow
joints, although its actual output is smaller than the torque estimated by the physiological
signal. This error can be attributed to the loss of power transmission caused by friction
between cable and sheath, or the calculation model deviation induced by suit deformation.
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Moreover, the total output far exceeds the human effort, indicating that this exosuit can
significantly enhance joint strength.
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We introduce the sum of absolute values (ASUM) to quantitatively reflect the average
level of the three torques in different motion modes, and the corresponding results are
shown in Figure 12.

ASUM =
1
n ∑n

i=0|Ti| (13)
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Figure 12. ASUM of different torques under each joint movement.

It is obvious that the sum of torque generated by the exosuit, and that exerted by
a human, is not equal to the actual total output. The combined effect of factors such as
identification error, transmission error, and calculation error, may lead to this gap between
the expected and the actual. We expect to describe the power-assisted efficiency (P) through
analyzing the ratio of ASUMexosuit to ASUMtotal.

P =
ASUMexosuit
ASUMtotal

(14)

The calculation results show that when the upper extremity exosuit independently
assists elbow static flexion/extension, shoulder static flexion/extension, and shoulder static
adduction/abduction, the corresponding power-assisted efficiencies come up to 30.81%,
29.66%, and 25.78%, respectively. These data mean that when a person is equipped with
this wearable robot, the output torque for each joint of the upper limb can be roughly
reduced by a quarter to a third.
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6. Conclusions and Future Work

In this article, we propose a MMG-based joint torque estimation algorithm which
realizes the decoding from biological signals to limb strength, and transplant it into the
control system of an exosuit to calculate the motor commands for assisting the multi-joint
motion of the upper limb. Two sets of experiments are carried out to test the reliability of
torque estimation and the efficiency of power assistance.

The data collection and signal processing methods used in this paper effectively
establish the data sets which reflect human body information. The specially designed
measurement platform can obtain the MMG of muscles and corresponding joint torque in a
relatively accurate and convenient way. The HHT successfully eliminates the interference
components in the original MMG signal, and lays a solid foundation for future extraction.

A technical approach to estimate joint torque from the MMG signal is built through
training the RFR model offline. The reliability analysis experiment shows that this method
can enable the exosuit to accurately identify the wearer’s current joint torque, but the model
parameters need to be specially trained for everyone.

A torque estimation-based control strategy is successfully applied to the motion control
of the upper extremity exosuit. The efficiency evaluation experiment indicates that the
exosuit using this algorithm can significantly enhance the limb strength of wearers.

Based on the actual execution of the research, we believe that the current work has
the following limitations. First of all, the nonlinear disturbance caused by transmission
friction and motion hysteresis significantly reduces the control performance and power-
assisted efficiency of the upper extremity exosuit. In addition, the MMG-based torque
estimation algorithm has limitations in its application. The model parameters may be
trained separately for each person, and even each muscle.

Therefore, future work and research directions should aim to break through the
above limitations. First, an error compensation algorithm for this cable-driven system
should be introduced into the control logic, in an attempt to offset interferences caused by
nonlinear characteristics. Second, more general intention recognition algorithms need to be
studied further, which can meet the usage requirements of every wearer without additional
training preparation.
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