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Abstract: A cell-level radiation hardening by design (RHBD) method based on commercial processes
of single event transient (SET) and single event upset (SEU) is proposed in this paper, in which new
radiation-hardened D-type flip-flops (DFFs) are designed. An application-specific integrated circuit
(ASIC) of a million gates level is developed based on DFFs, and SEU and single event functional
interruption (SEFI) heavy-ion radiation tests are carried out. The experimental results show that
the new DFF SEU ability is increased by 63 times compared with the DICE-designed DFF, and is
three orders of magnitude higher than the redundantly designed DFF. The SEFI ability of the ASIC
designed by the new DFF is 2.6 times higher than the circuit hardened by the TMR design.

Keywords: D-type flip-flop; single event transient; single event upset; radiation hardened

1. Introduction

Heavy ions and high energy protons in space can produce single event effects (SEE)
on semiconductor devices, while single event soft errors in digital integrated circuits have
become the main cause of failure of space vehicles. First, SEU is more sensitive in a small
size process, which makes the multi node upset (MNU) occur more easily in the adjacent
device due to the charge sharing [1]. Second, with the increasing working frequency of the
circuit, SET is more likely to be captured by sequential units and be converted to SEU [2].
Third, the single continuous error (SCU) is easier to generate due to the clock tree affected
by SET as the circuit scale increases [3], which will lead to the probability of single event
soft errors being greatly increased in digital integrated circuits.

The RHBD method based on the commercial process has the advantages of not need-
ing to modify the process parameters, having a low cost of tape-out, and having a good
hardened performance, and has been widely used in the development of aerospace inte-
grated circuits. The guard ring structures method is commonly used in the layout level
of anti-SET [4]. The single event charge sharing can be suppressed by inserting minority
carrier guard rings between the adjacent drains. The cell-level anti-SET and anti-SEU meth-
ods of DFF include triple modular redundancy (TMR) [5], C cell [6], dual interlocked cell
(DICE) [7], and error correction code (ECC) [8], which improve the anti-SEE performance
at the expense of area or time.

To improve the anti-SEU capability of DFF, considering SETs from buffers or logic
gates inside the cell may cause DFF errors. A new DFF IP cell that is resistant to SET, SEU,
and MNU, is designed by optimizing the filter of the DFF input to reduce the influence of
SET [1,3]. In addition, two types of DFFs with different reinforcement levels are used for
the circuit design, which can save layout area overhead and ensure a high SEU resistance
by rationally screening and replacing DFFs on non-critical paths. Finally, the design, tape-
out, and radiation tests of the verification circuit ASIC based on the 0.18 µm commercial
standard CMOS process are completed through the above methods.
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2. DFF Design

A novel DFF structure based on redundant delay filter (RDF) and dual DICE is
designed, as shown in Figure 1 [3], and is called RDD-DFF. DICE is used to improve
the SEU threshold, while RDF is used to filter out the external SET. The two outputs in
our design are independent, so the SET generated by a single output will not affect the
dual-mode redundant DICE latch. In this way, the source of the SET can be eliminated
maximally.
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Figure 1. The RDD-DFF structure.

2.1. SET Simulation

The SET simulations were performed on Sentaurus TCAD, applying a Fermi−Dirac
statistics and hydrodynamic model, taking into account the effects of doping, electric field,
carrier−carrier scattering, and interface scattering on mobility, as well as the effect of
band-gap narrowing, while the temperature was set at 25 ◦C. The simulation results of
Bi−923.2MeV and Cl−158MeV are shown in Figure 2a,b, while the arrow direction is the
vertical 90−degree incident direction of the heavy ions. The SET horizontal track widths
under irradiation can be obtained at about 1 µm. The electrostatic potential distribution is
shown in Figure 2c. The SET sensitive area generated by the heavy ions is mainly on the
drain region of the device in the off state. At this time, the drain PN junction is at a reverse
bias, and a depletion region is formed, which is the main region for collecting charges. The
holes induced by radiation are collected at the drain, resulting in the potential of the drain
increasing.
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Figure 2. The TCAD simulation results of SET: (a) Bi−923.2MeV; (b) Cl−158MeV; (c) electrostatic
potential distribution.
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2.2. Anti-SET Design

Charge sharing comes from diffusion effects in NMOS, which is the main course of SET
on the double-well process, while for PMOS, charge sharing mainly comes from the bipolar
amplification. The guard rings and contact holes are designed to speed up the collection
of interfering charges to reduce the SET pulse width. In addition, it is also necessary to
strengthen the charge sharing of transistors with different polarities. With the guidance of
the SET width obtained by simulation, the isolation of the sensitive node pairs is realized
by introducing another complementary well between the same phase nodes. The distances
between the same phase nodes are designed to be greater than 2 µm, as shown in Figure 3.
In this way, the charge between the same polarity transistors can be eliminated, and the
charge deposited on the sensitive nodes is reduced.
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The RDF structure is designed as shown in Figure 4 [3]. The filtering delay threshold
is set to be adjustable. The appropriate filtering threshold can be set according to the SET
circuit test results, while a corresponding time overhead is required.
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2.3. Anti-SEU Design

The SEU-sensitive node pairs in the DICE memory cell are shown in Figure 5. The
state of node A is flipped from 1 to 0 when the heavy ion is irradiated on the reverse-biased
NMOS drain region (n1), so that NMOS-M7 is turned off and PMOS-M4 is turned on, which
makes the state of node B flip from 0 to 1. Then, PMOS-M6 will turn off while nodes C and
D are both in a floating state. The DICE cell will finally flip if both nodes are simultaneously
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affected by the charge sharing effect or oblique angle injection. Therefore, all sensitive node
pairs should be properly laid out during the layout design stage.
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The team has proposed an error quenching double DICE (EQDD) method using the
layout crossing of two DICE cells to improve the SEU ability of DICE [1], through which
the SEU LET threshold could effectively be improved. The charge sharing between the non-
sensitive nodes in one DICE cell can be used to reduce the SET error through a quenching
effect, while the distance between the sensitive nodes within adjacent DICEs can be set to
more than 6 µm. In this way, the sensitive node pairs can be separated without losing the
area cost through the layout crossing design of two DICE cells, as shown in Figure 6.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 8 
 

 

on, which makes the state of node B flip from 0 to 1. Then, PMOS-M6 will turn off while 

nodes C and D are both in a floating state. The DICE cell will finally flip if both nodes 

are simultaneously affected by the charge sharing effect or oblique angle injection. 

Therefore, all sensitive node pairs should be properly laid out during the layout design 

stage. 

M2 M4 M6 M8

M1 M3 M5 M7

n2
n4 n6 n8

n7n5n3n1

A=1 B=0 C=1 D=0

CKN

CK

CKN

CK

 

Figure 5. The sensitive node analysis of the DICE cell. 

The team has proposed an error quenching double DICE (EQDD) method using the 

layout crossing of two DICE cells to improve the SEU ability of DICE [1], through which 

the SEU LET threshold could effectively be improved. The charge sharing between the 

non-sensitive nodes in one DICE cell can be used to reduce the SET error through a 

quenching effect, while the distance between the sensitive nodes within adjacent DICEs 

can be set to more than 6 µm. In this way, the sensitive node pairs can be separated 

without losing the area cost through the layout crossing design of two DICE cells, as 

shown in Figure 6. 

 

Figure 6. Layout of the EQDD method. 

2.4. Selective SEU Design 

The RDD-DFF design needs an extra delay and area, although it has both a better 

SEU and SET performance. At the VLSI level, DFFs can be chosen at different anti-SEE 

levels according to the timing constraints. The DFF on the non-critical path can be re-

placed with RDD-DFF to improve the SEE capability under the premise that the overall 

circuit delay will not be increased after replacement. 

All path delay values can be comprehensively enumerated with the help of the DC 

tool to import the circuit netlist, through which the critical path can be formed by count-

ing the maximum path delay. The improvement of the circuit SEE can be obtained at the 

cost of a minimal area overhead, with the help of a program written in C# (as shown in 

Figure 7) to identify alternative DFFs. 

Figure 6. Layout of the EQDD method.

2.4. Selective SEU Design

The RDD-DFF design needs an extra delay and area, although it has both a better SEU
and SET performance. At the VLSI level, DFFs can be chosen at different anti-SEE levels
according to the timing constraints. The DFF on the non-critical path can be replaced with
RDD-DFF to improve the SEE capability under the premise that the overall circuit delay
will not be increased after replacement.

All path delay values can be comprehensively enumerated with the help of the DC
tool to import the circuit netlist, through which the critical path can be formed by counting
the maximum path delay. The improvement of the circuit SEE can be obtained at the cost of
a minimal area overhead, with the help of a program written in C# (as shown in Figure 7)
to identify alternative DFFs.
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3. Radiation Tests

An ARINC 659 bus protocol control circuit (ASIC) is designed using the RDD-DFF
cell with the above-mentioned RHBD methods at 0.18 µm through the CMOS process. The
circuit scale is about 1.65 million gates with 26,725 DFFs, which has the highest operating
frequency at 144 MHz. The appearance of the chip is shown in Figure 8.
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An SEU test system based on a scan chain is developed to verify the RDD-DFF SEE
performance. The test clock frequency is set at 1 MHz and the internal DFFs are in the
dynamic mode so as to read back the “01” code stream. A typical functional SEFI test
system is also developed to evaluate the SEU performance of the circuit. FPGA is used to
input the same excitation vector to both the device being tested and the comparison device,
while the operating frequency is set at 144 MHz. The output results of the device being
tested and the comparison device are collected separately by FPGA, while the real-time
comparison result is used to determine whether a single event function interruption or
error occurred. The SEE experiments are carried out on the HIRFL cyclotron accelerator
in Lanzhou and the HI-13 tandem accelerator in Beijing, respectively. The heavy ions are
shown in Table 1. The test site picture is shown in Figure 9.

Table 1. The heavy ion parameters.

Ion Energy
(MeV)

LET
(MeV × cm2/mg)

Range
(µm) Accelerator

Cl 158 13.1 51.1
HI-13Ti 169 21.8 37.9

Ge 205 37.3 30

Bi 923.2 99.8 53.7 HIRFL
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4. Results and Discussion

The SEU results of RDD-DFF obtained based on the SCAN method are shown with
the red line in Figure 10, while the SEU results of the DICE-DFF that did not use the EQDD
method before are shown with the blue line for comparison. The other results of the 0.18 µm
CMOS DFF (DFF-R) designed using the RHBD method of two redundant storage node
topologies proposed in [9] are shown with the black line. The SEU saturated cross-section
is obtained by fitting and drawing the Weibull curve, while the SEU LET threshold value
can be taken as corresponding to 10% of the saturated cross-section. The SEU on-orbit error
rates normalized to each bit is shown in Table 2, which are obtained using the RPP model in
the radiation environment of the Adams 90% maximum bad case and the 3-mm equivalent
Al shielding.
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Table 2. The heavy ion parameters.

Types Saturation Cross Section
(cm2/bit)

LET Threshold (10%)
(MeV × cm2/mg)

SEU On-Orbit Error Rate
(/bit/day)

RDD-DFF 7.48 × 10−10 28.4 5.50 × 10−10

DICE-DFF 2.05 × 10−8 35.0 3.51 × 10−8

DFF-R 7.90 × 10−8 3.1 3.87 × 10−6
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The results show that the SEU of RDD-DFF is similar to the DFF using ordinary DICE
under the condition of small LET ions, which can be due to the small LET ions having
a small charge sharing radius, which is difficult to occur through SEU in DICE. Thereof,
the probability of SEU occurrence in DICE using EQDD is equivalent to the traditional
DICE, while the SEU of DFF is mainly derived from the SET occurring in RDF and CLK.
However, the SEU cross-section is reduced by about 27 times under large LET ions by
using the EQDD method, which means it is more effective against SEU than the traditional
DICE. The SEU error rate of RDD-DFF is 63 times better than DICE-DFF and four orders of
magnitude better than DFF-R, which indicates that DICE plays an important role in SEU,
as well as RDF in SET.

To compare the SEFI performance, the SEFI Weibull curves of the designed ASIC, the
DSP circuit SMV320C6701 at 0.18 µm process in [10], and the DSP circuit RTAX4000D at
0.15 µm process in [11] are drawn in Figure 11, while the SEFI index is calculated as shown
in Table 3.
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Table 3. The heavy ion parameters.

Types Frequency
Saturation

Cross Section
(cm2/bit)

LET
Threshold (10%)
(MeV × cm2/mg)

SEFI On-Orbit
Error Rate
(/bit/day)

ASIC 144 MHz 1.7 × 10−6 27.2 8.12 × 10−7

RTAX4000D 120 MHz 5.4 × 10−6 34.0 2.11 × 10−6

SMV320C6701 140 MHz 4.8 × 10−4 9.4 3.57 × 10−3

As the key status and data registers in complex circuits such as ASIC and DSP are
generally DFF cells, they are likely to cause a disorder of the state machine of DUT and
lead to SEFI, while SEU occurs on these registers. The SEFI probability of ASIC is 2.6 times
smaller than that of RTAX4000D due to the better SEU performance of DICE-DFF. The
R-cell in RTAX4000D is a TMR design, which has a better resistance to SEU, while the
filter is used to improve the SET performance. In contrast, the ASIC in this paper adopt
hardened-design of DFF cells instead of TMR strategy, which can effectively reduce the
layout area, power consumption, and the operating fre-quency performance.

The SEFI probability of ASIC is three orders of magnitude smaller than SMV320C6701,
while the SEU results of the cache, memory, and other storage cells in SMV320C6701
show that no effective SEU hardening design is carried out at a cell level. In contrast,



Electronics 2022, 11, 1302 8 of 8

ASIC does not reduce the operating frequency, which is the same advantage as using the
RHBD method.

5. Conclusions

In the field of aerospace, more attention has been paid to the cost of chips, which
makes obtaining reliable radiation resistance and a high performance with the smallest
area cost an eternal topic. In this paper, the SEU performance is improved 63 times through
designing a new hardening circuit structure and layout innovation, as well as through
using selective optimization methods of DFF. The traditional cell-level hardening design of
DFF is improved, while maintaining no additional increase in area. The SEFI performance
of ASIC hardening by the cell is better than using the TMR method by about 2.6 times,
which indicates that cell-level hardening design is one of the most cost-effective ways to
design aerospace integrated circuits.
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