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Abstract: As a crucial part of ubiquitous networking and computing (UNC) technologies, low earth
orbit (LEO) satellite communications aim at providing internet connectivity services everywhere.
To improve the spectrum efficiency of satellite-to-ground communications, adaptive modulation
and coding (AMC) are widely used, which can adjust the modulation and coding types according
to the varying channel condition. However, satellite-to-ground communication channels have
the characterizations such as fast dynamic change, fast switching, and significant fading. These
characterizations make it challenging to predict the channel state information accurately and, thus,
to perform accurate AMC. For example, rain loss is one of the crucial factors in satellite-to-ground
channel fading. In general, it is difficult to build an integrated global model for rain loss because it
varies in different regions around the world. Moreover, for the emerging applications of multiple
antennas on satellites, the conventional look-up table method cannot cope with the high-dimensional
inputs of the multiple antennas. To tackle the above challenges, we propose an AMC method
based on deep learning (DL) and deep reinforcement learning (DRL) for ubiquitous satellite-to-
ground networks. The proposed method directly processes real-time global weather and location
information in the environment and intelligently selects encoding schemes to maximize system
throughput. Simulation results show that the proposed method can increase the total throughput.
The total number of correctly transmitted bits per unit time is improved, and the efficiency of the
satellite-to-ground communication is enhanced.

Keywords: ubiquitous networking and computing; adaptive modulation and coding; deep learning;
deep reinforcement learning; satellite communication; rain loss

1. Introduction

Global network traffic has been proliferating in recent years [1]. To meet the increasing
traffic demand in the network, ubiquitous networking and computing (UNC) have been
widely used in production and life in recent years [2]. As an essential part of the ubiquitous
network communication [3,4], the low earth orbit (LEO) satellite constellations offer high
coverage [5] and remain available in times of disaster [6]. It also plays an essential role in
the military [7] and the field of autonomous driving [8].

With the development of satellite constellations in recent years, [9], AMC has been
used for satellite-to-ground communications within complicated and variable channel
environments [10,11]. AMC adjusts the modulation and coding scheme according to the
varying channel conditions [12–14]. The basis for the correct choice of AMC for satellite-
to-ground communications is the accurate estimation of the satellite-to-ground channel
state. Vincent et al. [15] introduced a noncoherent M-ary orthogonal AMC method for
use in direct sequence code division multiple access scenarios. Ola et al. [16] dynamically
selected different low-density parity-check (LDPC) codes according to the bit error rate
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(BER). However, in these methods, how to estimate the complicated and variable satellite-
to-ground channel is not taken into consideration.

To obtain accurate estimations of the satellite-to-ground channel state, many research
works have been carried out. Hole et al. [17] predicted the channel quality using a smooth
fading method to predict channel quality. Daniels et al. [18] and Tsakmalis et al. [19] adopted
support vector regression (SVR) [20], a variant of support vector machine (SVM) [21] to es-
timate the channel status. Angelone et al. [22] estimated the channel quality by subtracting
the estimated feeder downlink signal to noise ratio (SNR) from the end-to-end SNR and
selecting the coding scheme based on this. Wang et al. [23] adopted machine learning and
tested the prediction accuracy of multiple machine learning methods (i.e., linear regression
and multilayer perception). Due to the strong regularity of satellite motion, historical
channel information is highly relevant to the channel information to be predicted. With
the development of machine learning in recent years, long short-term memory (LSTM) [24]
has been widely used in the field of time series prediction. Cheng et al. [25] used LSTM
in an audio-video coding scenario to predict the channel quality of the next moment.
Moniem et al. [26] used LSTM that considers historical SNRs in predicting the channel
quality. The above works have not considered the effect of real-time weather on the channel
state and, therefore, cannot accurately predict the channel state.

As mentioned, the weather condition strongly affects satellite-to-ground communica-
tions, so it should be involved in the estimation process of channel states. According to
the second-generation standard for satellite broadband services, DVB-S2 [27], satellite-to-
ground communications should allow for a fixed margin of 6 dB for rain loss. However,
the average rain loss varies across the globe and is significantly lower at high latitudes
compared with low ones [28]. Even at low latitudes, the real-time rain loss depends on
whether it is raining locally and how much it rains. Therefore, the coding scheme can be
selected based on real-time weather conditions. Thus, an encoding scheme that can transmit
more data is selected when sunny, and a more secure encoding scheme when it is raining
or snowing. Choi et al. [29] considered weather and predicted the channel variation using
an auto-regressive method. Alberty et al. [30] proposed a method to estimate satellite-to-
ground channel quality according to the quality of service (QoS) under different weathers.
These schemes only simulate the situation over a specific area. Nevertheless, LEO satellites
move around the globe, and thus a model that can consider real-time multiple-region
weather is necessary.

Furthermore, even if the actual channel state is obtained, AMC needs to adjust the
coding scheme dynamically. Some works [15,16] adopted a look-up table method to obtain
the optimal coding scheme. However, the conventional look-up table method cannot cope
with multiple antennas scenario. Reinforcement learning can adapt to the complicated
satellite-to-ground channel and multiple antennas scenario. Victor et al. [31] proposed a
Q-learning algorithm with constrained exploration spaces. Some methods [32,33] proposed
a multi-objective Q-learning algorithm to select a coding scheme for satellite-to-ground
communication. The satellites move in traditional ways, and therefore, there exist rela-
tionships between the current channel state and the historical ones. Unfortunately, these
works have not considered the past channel state, which may limit their performance
and feasibility.

This paper proposes an AMC method based on deep learning (DL) and deep reinforce-
ment learning (DRL) for ubiquitous satellite-to-ground communications. The estimation
model solves the drawback of inaccurate channel estimation in the previous works by estab-
lishing a global real-time weather model and considering the precious channel information.
The decision model can only cope with the multi-antenna scenario that the table look-up
method in the previous works can cope with. Nevertheless, the throughput of the satellite-
to-ground communication can be improved by using an actor-critic network. The proposed
method consists of a DL-based estimation model and a DRL-based decision model. It is
proved that the proposed AMC scheme can improve the throughput performance.
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This paper’s remaining sections are organized as follows: Finally, Section 2 describes in
detail the work in recent years that is similar to this paper. Section 3 introduces a satellite-to-
ground channel and formulates the AMC problem into a Markov decision process (MDP).
Section 4 presents the proposed intelligent weather-conscious AMC method. Section 5
describes the performance validation procedure and the simulation results. Section 6
concludes this paper.

2. Related Works
2.1. DL-Based Channel Estimation

Accurate channel estimation is the basis for choosing the correct choice coding scheme
in AMC. In the terrestrial audio and video transmission scenario, Cheng et al. [25] use LSTM
networks to predict the packet loss rate at the next moment and dynamically adjust the code
rate of the Reed–Solomon codes [34]. Reed–Solomon codes are a type of cascade code that
can recover the contents of lost packets based on the packets before and after Nevertheless,
it cannot accurately recover the contents of lost packets even after the communication
quality has deteriorated significantly. This inter-packet FEC can save the time needed to
retransmit automatic repeat-request messages. The paper demonstrates that their proposed
method can recover more packets at different packet loss rates then a fixed redundancy rate
coding scheme at lower redundancy rates using two metrics: the number of successfully
recovered packets and the redundancy rate.

Wireless channels are more complicated to estimate compared to wired channels.
Moniem et al. [26] use LSTM to predict the channel state and dynamically allocate trans-
mitter power. This article is a non-orthogonal multiple access [35] scenario for multi-user
communication, where adaptive coding is achieved by dynamically adjusting the pilot
symbols for each user, assigning power to each user, and sending information from the
base station. The advantage of using LSTM networks for channel estimation is that the
historical information in the channel is used.

Rain loss has a significant impact on the satellite-to-ground channel. Luini et al. [36]
used different coding schemes for different rainfall and different atmospheric conditions
in Germany. They demonstrated through simulation that their method could serve more
users than the original AMC method under weather conditions.

2.2. DRL-Based Coding Scheme Selection

In the face of the rapid development of multi-user and multi-antenna communications,
the conventional table look-up method [15,16] with BER and PER as criteria is no longer
applicable. Victor et al. [31] use the Q-learning method for channel estimation and selection
of coding schemes. This article introduces reinforcement learning into AMC, which solves
the drawback that the table look-up method occupies large memory, cannot adapt to chang-
ing channels, and cannot identify continuous state and action spaces. Ferreira et al. [33]
add neural network responsible for exploration of the Q-learning framework to avoid over-
exploration of the unsuitable parameter space. As fewer parameter spaces are explored,
Q-learning converges faster and consumes less energy.

3. System Model

As shown in Figure 1, it is expected that the weather varies from location to location.
The satellite over Beijing can choose a coding scheme that can transmit more data because
of the clear weather and higher SNR, whereas the satellite over Shanghai can only choose
a relatively conservative coding scheme because of the interference from clouds and low
SNR. The SNR of the communication link is mainly determined by free-space loss (FSL)
and rain loss. However, the current margin value accounting for rain loss is tremendous,
which results in the waste of spectrum, so we can dynamically adjust the coding scheme
according to the SNR to make full use of the spectrum source.
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Figure 1. Illustration of varying satellite-to-ground path loss in different areas caused by various
weather conditions.

3.1. Satellite-to-Ground Channel Loss Formulation

We set the scene as terrestrial user equipment (UE) downloading from a satellite. In
this scenario, the satellite can dynamically adjust the coding scheme according to the SNR
to increase the throughput. The SNR in our scenario is defined as

SNR = EIRPSat +
G
T UE

− FSL− k− Lr − Bn − Rb (1)

In this equation, Boltzmann’s constant k is fixed, transmitter power EIRP, receiver
power G

T , and bandwidth Bn are set by the scenario in the beginning and usually remain
unchanged. We assume that the transmission rate Rb is constant to observe the band
utilization. Here, only the remaining FSL and rain loss Lr are changing.

FSL = 20 log10(
4πd f

c
) (2)

FSL is only related to distance and frequency, and frequency changes only slightly,
so we consider it fixed. Satellites become increasingly closer to us and then fade away,
so FSL initially decreases and increases. According to the rain loss calculation method
specified by ITU-R P.618-1, rain loss is mainly associated with average rainfall, the altitude,
and latitude of UE, elevation angle, and communication frequency. As the communication
frequency is fixed, the UE altitude does not easily change, and the elevation angle of each
communication is also the same. Therefore, the latitude has the most significant impact.
Generally speaking, low-latitude areas have thicker clouds and more significant annual
rainfall, while high-latitude areas have lower annual precipitation. Therefore, the rain loss
is usually more significant in low-latitude areas, while the rain loss in high-latitude areas is
slight. The margin for conventional rain loss, fixed at 6 dB, thus wastes band resources. If
we can accurately predict the SNR of the next moment and select a proper coding scheme,
band utilization and the throughput can be significantly improved. Table 1 summarizes the
terms and their abbreviations in this paper in a cross-reference table.
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Table 1. Abbreviations in the article cross-reference

Abbreviations Full Name

AMC adaptive modulation and coding
AR4JA accumulate-repeat-4-jagged-accumulate
BER bit error rate
CCSDS consultative committee for space data systems
DL deep learning
DRL deep reinforce learning
EIRP equivalent isotropically radiated power
FCC federal communications commission
FEC forward error correction
FSL free-space loss
GAE generalized advantage estimation
GDP gross domestic product
G/T gain-to-noise-temperature
LDPC low-density parity-check
LEO low earth orbit
LSTM long short term memory
MAE mean absolute error
MDP markov decision process
PER package error rate
PPO proximal policy optimization
QPSK quadrature phase shift keying
SNR signal to noise ratio
SVR support vector regression
SVM support vector machine
UE user equipment
UNC ubiquitous networking and computing

3.2. AMC Problem Formulation

We assume that the coordinates of a UE are (lat, lon), and the coordinates of a satellite
are (x, y, z), and the distance between them can be identified by their coordinates. As cloud
thickness and rainfall vary in different locations on Earth, we can use the local real-time
weather w and the position of UE (lat, lon) to indicate the local real-time rain loss Lr.

Lr = g(lat, lon, w) (3)

From Section 3.1, SNR can be expressed as a function of d and Lr:

SNR = f (lat, lon, x, y, z, w) (4)

In a real scenario, we do not know the real-time SNR at this moment due to the delay
in channel transmission, and for the estimation method normally used, which we denote
as ˆSNR, we want the error between the estimated value and the true value to be close to 0:

|SNRt − ˆSNRt| −→ 0 (5)

Now that we have obtained an estimate of the real-time SNR, the next task is to
select a suitable redundancy rate. The communication coding standard proposed by the
consultative committee for space data systems (CCSDS) for use in LEO satellites, uses
the accumulate-repeat-4-jagged-accumulate (AR4JA) [37] code was constructed from the
protograph based on LDPC, using three data rates of 50%, 66%, and 80%. As is shown in
Figure 2, each data rate will have a specific BER at the corresponding SNR. We should try
to maximize the data rate while maintaining the quality of communication to obtain the
maximum throughput:



Electronics 2022, 11, 1297 6 of 21

∗
max

DR
DR[1− PER(DR, ˆSNR)] (6)

where DR is the data rate and PER(·) represents the package error rate of the corresponding
data rate and SNR.

－2 0 2 4 6
SNR

10 6

10 5

10 4

10 3

10 2

10 1
B

ER

50.0%
66.6%
80.0%

Figure 2. Different data rates correspond to different BERs at the same SNR.

3.3. Markov Decision Process Formulation

As the throughput at this frame is only related to the data rate selected before trans-
mission, we can transform the above problem into an MDP problem represented by a tuple
(S ;A;P; r), where S is the set of states observed from the environment, A is the set of
actions from the available selections, the probability distribution of the system is written as
P : S ×A× S −→ R, and r : S ×A× S −→ R is the reward.

We first define the state at time slot t as st. This part consists of two components:
the distance dt of the satellite-to-ground channel and real-time weather wt. As we can
obtain the distance dt from the satellite position (xt, yt, zt) and the UE position (latt, lont),
Moreover, rain loss at different latitudes and longitudes around the world varies. Therefore,
we retain the original position information of the state. The connection between the satellite
and the UE is concise. Even the longest time is less than 3 min in the Starlink scenario.
Hence, we use the weather at the beginning of the connection wt as the real-time weather for
each connection in a single connection. In summary, we define st = {latt, lont, xt, yt, zt, wt}.

Next, we define the action at time slot t as at = {DRt}, where DRt is the data rate at
time t. It is worth mentioning that the action will not affect the environment itself because
the choice of data rate will not affect the location of the satellite and UE, nor will it affect the
weather. It will, however, affect the throughput. Although the BERt will be very low if we
choose an overly conservative data rate, the throughput will also be low; on the contrary,
selecting an overly aggressive action will cause the receiver to make mistakes, and the
BERt is so high that it cannot communicate normally.
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Finally, we define the reward at time t as rt = {DRt[1− PER(DRt, SNRt)]}, where
PER(·) represents the package error rate of the corresponding data rate DRt and SNRt. In
order to transmit more data per time slot, we define rt as the number of bits transmitted
per unit bandwidth. The cumulative reward is R = ∑∞

t=1 γtrt, where γ is the discount rate.

4. Intelligent Weather-Conscious AMC Scheme for Global
Satellite-to-Ground Communications
4.1. Overview

We propose an AMC method for satellite-to-ground based on DL and DRL, which
fully considers satellite motion patterns, historical SNRs, and weather conditions. This
method can identify transmitter and receiver characteristics, learn online, and adapt to
highly variable radio communication scenarios. As shown in Figure 3, the intelligent
weather-conscious AMC model processes the position and weather information from the
environment. Furthermore, it estimates the state of the satellite-to-ground channel jointly
with the past channel information. The coding scheme is then dynamically selected based
on the estimation results. So the integrated AMC model can be represented as a DL-based
estimation model and a DRL-based decision model. The estimation model makes full use of
the historical data of the satellite-to-ground channel and takes the real-time global weather
model into account. The decision model can input multi-dimensional information and
identify the characteristics of different transmitters and receivers.

Agent Environment

(𝑥 , 𝑦 , 𝑧 )

(𝑙𝑎𝑡 , 𝑙𝑜𝑛 )
𝑆𝑁𝑅  

𝑆𝑁𝑅  

𝑆𝑁𝑅  

…

1111

…

Estimation Model Decision Model

⋯⋯

Actor

Critic

𝑆𝑁𝑅

2
3

Action

Reward

4

(𝐶𝑙𝑜𝑢𝑑𝑦)

Figure 3. Proposed intelligent weather-conscious AMC for global satellite-to-ground communications.

First, the estimation model reads information from the environment, including the po-
sition of the UE at moment t: (latt, lont), the position of the satellite at moment t: (xt, yt, zt),
the SNR for the past moments {SNRt−1, SNRt−2, . . . , SNRt−n}, and the real-time weather
conditions. We use one-hot encoding (Sunny, Cloudy, Rainy) to describe weather; if it is
currently sunny, the encoding should be (1, 0, 0), and to write this conveniently, we will use
wt to represent weather at moment t. In summary, the information read by the estimation
model from the environment at moment t is (latt, lont, xt, yt, zt, wt).
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Next, when the estimation model predicts the satellite-to-ground channel state at the
moment t as ˆSNRt, it is passed to the actor-critic network in the decision model to select
the optimal encoding scheme. The actor-network is responsible for selecting the optimal
encoding scheme, i.e., giving the selected action at, Moreover, the critic network needs to
score the selection of the actor-network, and the two enhance each other and work together
to learn the optimal strategy for selecting the encoding. When the actor selects the action at,
it needs to be passed to the environment as the encoding scheme for the satellite-to-ground
channel at time t. Finally, the environment will pass back the reward rt, which is the actual
throughput DRt[1− PER(DRt, SNRt)] at moment t. This concludes a complete interaction.

4.2. DL-Based Estimation Model

Along with DL development, LSTM is widely used in temporal sequence prediction.
Considering that the memorability of LSTM can adequately identify the regular motion of
satellites, past SNRs, and weather, we chose the LSTM network as an estimation model to
predict the SNR of the next moment.

The input of the LSTM network state s(t) is divided into two parts: location infor-
mation and weather information. We classify the global weather into three types: sunny,
cloudy, and rainy, and represent them with one-hot encoding (sunny, cloudy, rainy), de-
note as wt. We denote rainfall and snowfall weather uniformly as rainy because they are
both precipitations. The UE on the ground can acquire the weather conditions wt and
its real-time position (latt, lont) and the satellite position for the next moment by storing
the satellite orbit information. We use latitude and longitude to describe the location of
the UE on the ground. In a practical scenario, we can use GeoHash [38] to compress the
latitude and longitude information to 6 bits to reduce the bandwidth consumption while
preserving the location information. As satellites have altitude, any 3D coordinate system
can, theoretically, describe their position. We use the geographic coordinate system [39] to
describe the satellite position, where (xt, yt, zt) denotes the longitude, latitude, and altitude,
respectively, of the satellite at the moment t.

After introducing the input for the LSTM network, we introduce its architecture. As
shown in Figure 3, the input parameters need to go through the embedding layer first.
The embedding layer has two blocks, whereby the first block aims to process weather
information and the other block aims to process the location information. Two embedding
blocks converge together into an LSTM layer. The LSTM layer, differently from conven-
tional RNNs, controls the flow of information through three gates: the forget, memory,
and output gates.

4.2.1. Forget Gate

When new information is input, the model needs to forget some of the old information,
and the forget gate is used to select which information to forget and which to keep and,
in this way, avoids the problems of gradient disappearance and gradient explosion:

ft = σ
[
W f s(t− 1) + U f h′(t− 1) + b f

]
(7)

where W f represents the weight between the input and the forget gate, U f is the weight
between the precious hidden state h′(t− 1) and the forget gate, b f is the bias of the forget
gate, and σ(·) is the sigmoid function.

4.2.2. Input Gate

The input gate is used to determine which new information is saved in the cell state of
the gate. The input gate is divided into two parts, where one is a control signal consisting
of a sigmoid function to control the Ĉt input, and the other is the estimated cell state Ĉt at
the current moment generated by a tanh(·) function:
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it = σ
[
Wis(t− 1) + Uih′(t− 1) + bi

]
C̃t = tanh

[
Wcs(t− 1) + Uch′(t− 1) + bc

] (8)

where Wi and Wc are the weights between the input gate and state s(t), while Ui and Uc
are the weights between the precious hidden layer h′(t− 1) and the input gate. tanh(·) is a
hyperbolic tangent function. The cell state vector is updated as follows:

Ct = ft � C(t− 1) + it � C̃t (9)

where � represents Hadamard product operator.

4.2.3. Output Gate

The output gate, which is responsible for selectively outputting the hidden state of
the cell, has two parts. One is the control signal ot represented by the sigmoid function,
and the other is the final output value ht:

ot = σ
[
Wos(t) + Uoh′(t− 1) + bo

]
h′(t) = ot � tanh(Ct)

(10)

where Wo is the weight between the current input and the output gate and U f is the weight
between the hidden state of the last moment h′(t− 1) and the output gate. The predicted
state is represented as

st = σ[Wth′(t− 1)] (11)

where Wt is the weight vector of the output gate.
The LSTM layer is followed by a fully connected layer, which is used to integrate

and analyze the outputs of the LSTM layer. The output layer is connected after the fully
connected layer, and since we only need to predict SNR in moment t as ˆSNRt, the size of
the output layer is one neuron.

The estimation model can be pre-trained using historical information. Finally, the out-
put of the estimation model ˆSNRt is passed to the actor-critic network as input in the
decision model. Accurate prediction of the SNR at this moment is crucial, which is the basis
upon which the decision model can make correct decisions.

4.3. DRL-Based Decision Model

As MIMO antennas are often used in satellite-to-ground channel communication,
the conventional look-up table method cannot cope with it; moreover, in order to be com-
patible with the gap between different devices and to adapt to the dynamically changing
characteristics of the satellite-to-ground channel, we adopt a DRL-based decision model for
selecting the optimal coding scheme for each moment.

For simplicity of presentation, we use st, at, rt to represent state, action, reward,
respectively, at moment t. The state of the decision model is the satellite-to-ground channel
state estimated by the estimation model, action is defined as at = {DRt}, and reward is
represented as throughput rt = {DRt[1− PER(DRt, SNRt)]}. We suppose a trajectory
exists in the MDP problem and that the trajectory describes the interaction process between
the environment and the DRL agent. Therefore, we can obtain the rewards of each time in
the trajectory, and the real cumulative reward at state st is

V′π(st) =
T(π)

∑
τ=t

γτ−trτ (12)

where discount factor γ ∈ [0, 1] is a hyperparameter that balances short-term and long-
term returns.

There is less accurate data available for learning in satellite-to-ground channel commu-
nication, so we want to use historical data fully. Therefore, the Proximal policy optimization
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(PPO) algorithm [40], based on the actor-critic algorithm [41], is used as the gradient update
algorithm. Actor and critic are the two neural networks in the agent. The actor-network is
responsible for making decisions and selecting the best action at, while the critic network is
responsible for scoring and evaluating the choice of the actor.

We use this sampled value as the expected cumulative reward to train the critic
network. The loss function is defined as

Lc(φ) = ||Vπ
φ (st)−V′π(st)||2 (13)

where φ is a parameter of the critic network.
The environments of satellite-to-ground channels are similar, under similar environ-

ments and similar SNRs, and the choices are likely to be the same. To fully use the informa-
tion from other trajectories, we introduced importance sampling into gradient propagation.

maximize
θ

Ê
[

πθ(at|st)

πθold (at|st)
Â
]

(14)

where πθ(at|st) is the current policy and πθold(at|st) is the old policy for collecting trajectory,
Ât is the estimation of advantage function, which measures how much a specific action at
is better than the average actions at state st. To reduce the bias of advantage function, we
employ an exponentially weighted method to obtain the Generalized Advantage Estimation
(GAE) [42]:

Ât =
T(π)

∑
τ=t

(γλ)τ−t
(

rt + γVπ
φ (st+1)−V′π(st)

)
(15)

where λ ∈ [0, 1] is a hyperparameter. If t + 1 > T(π), we have Vπ
φ (st+1) = 0.

Referenced by the gradient descent, we obtain the first-order derivative solution,
which is closer to the second-order derivative solution, by adding soft constraints. Due
to excessive deviations in the trajectory, we adopted the method in [40] to avoid large
gradient deviations.

LCLIP (θ)=E
[

T

∑
t=0

[
min

(
r(θ)Âπk, clip(r(θ), 1−ε, 1+ε)Âπk

)]]
(16)

where r(θ) = πθ(at |st)
πθk

(at |st)
is the ratio between the new policy and the old policy, ε is a hy-

perparameter that denotes the tolerance for the deviation level, and clip(r(θ), 1− ε, 1 + ε)
modifies the surrogate objective by clipping the probability ratio, which removes the
incentive for moving r(·) outside of the interval [1− ε, 1 + ε].

Therefore, we can formulate the objective function of the actor network as

La(θ) = LCLIP(θ) + ζEt[H(πθn(at|st))] (17)

whereH(πθn(at|st)) is an entropy bonus that encourages exploration and ζ is a balancing
hyperparameter. We summarize the training procedure of purposed intelligent weather-
conscious AMC in Algorithm 1. Each expectation term is evaluated by the averaged results
of a batch of samples.
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Algorithm 1: Training of the Intelligent Weather-Conscious AMC.

1 Randomly initialize parameters of the estimation model as χ;
2 Randomly initialize parameters of the critic and the actors as φ and θ;
3 Initialize estimation model learning rate αE, batch size bE, max epoch Emax;
4 Initialize decision model learning rate αD, batch size bD, sample reuse time N,

and initial state s0;
5 Initialize trajectory buffer M with size ||M||;
// Training of estimation model

6 for epoch E := 1 to Emax do
7 Collect a batch bE of weather and location information (latt, lont, xt, yt, zt, wt);
8 Estimate satellite-to-ground channel state as ŝt;
9 Update estimation model: χ← χ− αE∇χL(χ);
// Training of decision model

10 Current state st ← s0;
11 for step S := 1 to Smax do

// Collecting trajectory
12 while M is not filled do
13 Collect weather and location information (latt, lont, xt, yt, zt, wt);
14 Estimate satellite-to-ground channel state as ŝt;
15 Sample action at ∼ πθ(at|ŝt);
16 Execute at and observe reward rt, the next state st+1;
17 Append (st, at, rt, st+1) into M;
18 if st+1 is the terminate state then
19 st ← reinitialized state s0;
20 else
21 st ← st+1;

22 S← S + 1;

// Updating Network
23 Compute state value for states in M with (12);
24 Compute advantage for states in M with (15);
25 for epoch e := 1 to bN × (||M||/bD)c do
26 Sample B samples from M;
27 Compute Lc(φ) and La(θ) with these samples;
28 Update critic: φ← φ− αD∇φLc(φ);
29 Update actor: θ ← θ − αD∇θLa(θ);

30 Clear memories in M.

5. Performance Evaluation
5.1. Simulation Setup
5.1.1. Satellite Constellation

We chose the first phase of SpaceX’s Starlink as the low earth orbit constellation
as simulated in the system tool kit (STK), and the scenario of the simulation is shown in
Figure 4. Starlink is a constellation of 72 orbits and 22 satellites in each orbit. The inclination
of each orbit is 53◦, and the satellite’s altitude from the ground is 550 km. As the satellite’s
altitude is only 550 km, we can consider that the earth is approximately flat on such a
small scale. Using the trigonometric function, we can determine that the satellite can
communicate with an area below that can be represented by a circle of radius of 573.5 km.
Furthermore, we can find that the satellite can communicate with users whose straight-line
distance is as far as

√
573.52 + 5502 ≈ 794.6 km.

We defined the parameters of the satellite transmitter and receiver according to the
technical documents submitted by Starlink to the federal communications commission
(FCC) in 2017 [43]; its communication downlink frequency is 10.7–12.7 GHz, transmit-
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ter equivalent isotropically radiated power (EIRP) is 10–12.88 dBW/MHz, and receiver
power gain-to-noise-temperature (G/T) is 11.1–13.7 dB/K. In our scenario, we take the
communication frequency as 12 GHz, EIRP and G/T take the maximum value, EIRP is
12.88 dBW/MHz, and G/T is 13.7 dB/K. After the constellation is fully deployed, the mini-
mum elevation angle is 40 degrees, which means its communication range is determined
accordingly. These parameters are also shown in Table 2.

Figure 4. The scene is modeled by Starlink, where the lines represent satellite-to-ground connections.

Table 2. Parameters in the scenario simulation.

Name Value

Orbit Planes 72
Satellite Per Orbit 22
Inclination 53◦

Altitude 550 km
Transmitter EIRP 12.88 dBW/MHz
Receiver G/T 13.7 dB/K
Ground Communication Range Radius 573.5 km
Farthest Connection Distance 794.6 km
Downlink Speed 50 Mbps
Modulation Method QPSK
Channel Encoding Method AR4JA
Frequency 12.0 GHz
Data Rate 50%, 66%, 80%
Date 8 and 9 December 2020
Data Interval 1 s

5.1.2. Satellite-to-Ground Channel

The influence of clouds and atmosphere needs to be strongly considered in low earth
orbit satellite communication scenarios. As stated in Section 3.1, the fading of the satellite-
to-ground channel mainly originates from FSL and rain loss, However, to model the realism
of the scenario, we also take into account losses such as atmospheric noise, flicker loss,
and losses caused by terrain.

After considering the cloud cover and atmospheric environment modeling, we speci-
fied the coding approach. We adopted AR4JA as the channel encoding method, with code
length k = 1024 and code rates of 50%, 66%, and 80%. After repeating Monte Carlo simula-
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tions 10 million times at different SNRs, we obtain their PER and BER curves, as shown in
Figure 2. Quadrature phase-shift keying (QPSK) modulation is adopted as the modulation
method. According to users’ actual download speed test nowadays, the maximum is
116 Mbps, so we take 100 Mbps as the downlink speed. In the simulation, we assume that
the satellite’s location and the channel quality are derived once per second.

5.1.3. Weather Model

To truly simulate the global communication scenario under different weather condi-
tions, we use hourly weather data from 8 December 2020 to 9 December 2020. We selected
150 cities with the highest gross domestic product (GDP) globally and assumed that users
communicate with satellites at these locations. These cities are spread across six continents,
and each latitude has a wide range of representation.

As Starlink has an inclination angle of 53◦, it cannot communicate with some high-
latitude cities (such as Moscow). Finally, 147 cities can communicate with satellites. Due
to the fast speed of the satellite, the longest time for each link is about 173 s. Hence,
we consider the weather for a single connection to be the weather at the beginning of
the connection.

5.1.4. Estimation Model

The estimation model is responsible for processing the information in the environment
and predicting the satellite-to-ground channel state. In experiments, we set the satellite-to-
ground channel state as SNR. Accurate prediction of SNR with as little introduced noise as
possible becomes the keynote of the estimation model network design. In the experiments,
we set the LSTM network to contain 100 neurons in 1 layer and set the fully connected
layer behind the LSTM layer to also contain 100 neurons as the LSTM network itself is
powerful enough.

The neurons responsible for processing weather information and distance information
in the embedding layer are nW and nD, respectively. Their influences on prediction accuracy
are discussed in the following text.

The number of passing moments considered by the LSTM network n is also significant.
An excessively small n leads the network not fully to consider past information, while an
excessively large n will cause the network to consider too much noise, and the training
speed and convergence speed will be slow. Thus, we need to strike a balance between
the two.

In summary, the network structure of the estimation model from front to back is an
embedding layer consisting of nW and nD neurons, an LSTM layer containing 100 neurons,
a complete connection layer contains 100 neurons, and an output layer contains one neuron.

In the experiment, the learning rate is 0.01, all data are trained at 400 epochs, and the
learning rate is reduced at 100 and 200 epochs such that the initial learning rate is multiplied
by 0.1. The sequence length is n, which means that n pieces of data enter the network each
time. Therefore, the batch size that we select is 128. We divided the overall dataset into a
training set, test set, and validation set according to the ratio of 70%, 20%, and 10%. We
used STK to collect data from Starlink on 8 December 2020 and the weather data of that
day for training, with a total data volume of 600 MB. Mean absolute error (MAE) is served
as the criterion of loss. The above parameters are summarized in Table 3.

We have chosen the following methods as the estimation methods for comparison:

• Linear Smoothing [17]: The historical data are assigned weights, and the sum of these
weights is 1. We define all weights as 1

n , where n is the number of past moments we
need to consider.

ˆSNRt =
t−1

∑
τ=t−n

1
n

SNRτ (18)
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• Exponential Smoothing [17]: Compared to linear smoothing, the importance of the
historical data is measured by exponential weights, which focus more on the data at
the nearer moments. The sum of the weights is equal to 1.

ˆSNRt =
t−1

∑
τ=t−n

a(1− a)t−τSNRτ (19)

where a is the weighting factor, and a higher value of a indicates a greater appreciation
of historical information. To balance historical and new information, we set a as 0.6.

• SVR [18,19]: SVR borrows ideas from SVM and applies them to the field of time-
series prediction.
Samples that are linearly indistinguishable in low-dimensional space can be linearly
distinguishable after mapping to higher dimensions. Kernel function avoids comput-
ing the parameters of the nonlinear transformation function and avoids dimensional
catastrophe [44]. SVR also adopted this method [45], and the objective function is
set as

f (x) =
t−1

∑
i=0

(α̂i − αi)κ
(

xT
i x
)
+ b, (20)

where α̂ and α is the Lagrange multiplier, b is the bias term, and κ(·) is the kernel
function. We adopt the radial basis function [46] as the kernel function.

Table 3. Parameters in estimation model and decision model.

Name Value

Neurons in Weather Embedding Layer nW
Neurons in Distance Embedding Layer nD
Consider Past Moment Number n
Estimation Model Learning Rate αE 0.01
Estimation Model Training Epochs Emax 400
Estimation Model Batch Size bE 128
Estimation Model Loss Criterion MAE
Estimation Model Training Data Set 70%
Estimation Model Validation Data Set 20%
Estimation Model Test Data Set 10%

Decision Model Training Data Set 80%
Decision Model Test Data Set 20%
Decision Model Memory Size ||M|| 8192
Decision Model Batch Size bD 2048
Decision Model Repeat Time N 40
Decision Model Maximum Step Smax 60 k
Decision Model Learning Rate αD 0.001
Decision Model Forget Factor γ 0.3, 0.5, 0.7, 0.9
Baseline (BER) Method Margin 10−5

Baseline (PER) Method Margin 0.1

As the above estimation methods for comparison has a different ability to process
information, we provide the linear smoothing and exponential smoothing method with the
sequence of past SNRs as input. As SVR cannot, in practice, handle the input mentioned
in Section 3.3, we provide SVR with (dt, sunny, cloudy, rainy) as input, in which the
five-dimensional distance information (latt, lont, xt, yt, zt) is processed as distance dt.
The disadvantage of this is the loss of the ability to identify different locations around
the globe.
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5.1.5. Decision Model

The decision model is based on the DRL framework, so we introduce it as two parts:
environment and agent.

Environment: The input of the decision model is the output of the estimation model,
and the estimation model can achieve high accuracy, so we used accurate SNR data directly
in training the decision model. The initial state in the environment is the state at the
first moment.

After the agent has selected the action for that step, the environment will step forward
accordingly, simulating time change in the real world. We classify 80% of the data as the
training set and the other 20% as the test set. We consider one interaction between the
satellite and the UE as a trajectory and test the current model performance after collecting
one trajectory.

The environment also calculates the throughput based on Equation (6) and returns it
to the agent to update its parameters.

Agent: The agent part is mainly composed of the actor and the critic. The neural
network structure of actor and critic is (256, 128, 64, 3) neurons in each layer. The activation
function between layers is relu(·), and the output layer goes through a so f tmax function.

The gradient algorithm we adopted is the PPO algorithm mentioned in Algorithm 1,
whose memory ||M|| size is 8192, batch size b is 2048, repeat time N is 40 times, and
maximum number of steps, Smax is 60k. The network parameters are updated every ||M||
step, and the test set data are run once to ensure that the network is not overfitted. The
learning rate of both actor and critic networks is 0.001.

The forgetting factor γ is discussed in the following sections, and we discuss the case
when γ is (0.3, 0.5, 0.7, 0.9) separately. A more prominent forgetting factor means that the
system values historical data more, while a smaller forgetting factor means that the system
is more straightforward and related to nearby values.

The baseline in the decision model experiment comprises the following.

• Select Data Rate by BER [16]: The BER is the ratio of the erroneous bits to the total
number of bits in a frame, and the BER decreases as the SNR increases. The data rate
is selected according to BER as the highest data rate among the coding schemes with
BER less than 10−5. To simplify writing and drawing, we will hereafter refer to this
method as “BER”.

• Select Data Rate by FER [15]: FER is the probability that there is an error code in a
frame. FER can be calculated as

FER = 1− (1− BER)L (21)

where L is the length of a frame.
FER decreases rapidly as SNR rises. The data rate is selected according to FER as
the highest data rate among the coding schemes with FER less than 0.1. To simplify
writing and drawing, we will hereafter refer to this method as ”FER”.

To verify the convergence and stability of the algorithm, the experiments were repeated
three times for each pair of parameters. To demonstrate the necessity of the estimation
model, we also use the state (latt, lont, xt, yt, zt, wt) in the environment directly in the
agent in the experiment, instead of feeding it to its predicted SNR, and the results will be
described in Section 5.3.

5.2. Estimation Model Results Analysis
5.2.1. Performance of Different Methods

We adopted the different methods mentioned in Section 5.1.4 as the approach to the
estimation model. The results are shown in Table 4. So the error can be further reduced, we
use MAE as the criterion of the loss function.
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Table 4. MAE of Different Methods.

Method MAE

Linear Smoothing 0.114
Exponential Smoothing 0.062
SVR 0.032
Proposed method 0.014

Linear smoothing has the worst performance because it takes the average of past
moments into account; exponential smoothing has slightly better performance because it
favors information from the nearer moments.

The performance of SVR that adopts machine learning methods is excellent. However,
LSTM considers the information of past moments, and the MAE is even lower and per-
forms best according to general presence. To show its sustainability, we will discuss the
performance of each method in each location around the world in the next part.

5.2.2. Performance in Different Locations

After knowing that LSTM works well in terms of overall performance, we analyze
the performance of different methods for different locations. As satellites need to move
around the globe, we expect the algorithm to maintain a low MAE and high prediction
accuracy at any location. We tested the algorithm’s performance separately for 147 cities
around the world. These locations are found on different continents at different latitudes
and longitudes and with different weather conditions.

The test results are shown in Figure 5, where the vertical axis is a cumulative distri-
bution function (CDF) plot composed of the test results from different locations around
the world. These results indicate that the proposed method performs better than other
algorithms in the vast majority of worldwide locations. Even in the worst-performing
locations, the MAE of the proposed method is less than 0.07.

10 3 10 2 10 1

MAE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Linear smoothing
Exponential soomthing
SVR
LSTM

Figure 5. CDF of MAE for different methods in estimation model to predict SNR in different locations.

5.2.3. Performance According to the Number of Neurons in the Embedding Layer

Different network architectures may lead to the widely varying performance of the
network. One of the essential tasks of the estimation model is to interpret weather and
distance information in the environment. As mentioned in Section 4.2, different embedding
layers are used to handle weather and distance information. We take nW as the number of
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neurons in the weather embedding layer and nD as the number of neurons in the distance
embedding layer.

The experimental results are shown in Table 5, and it can be seen that the best per-
formance is achieved when nW and nD are 3 and 5, respectively. This value corresponds
exactly to the number of dimensions of the data in the input states.

Table 5. Performance According to Differences in the Number of Neurons in Embedding Layers.

nW

MAE nD
1 2 3 4 5

1 0.93 0.54 0.21 0.029 0.028
2 0.93 0.60 0.20 0.024 0.018
3 0.91 0.61 0.18 0.027 0.014
4 0.90 0.65 0.15 0.06 0.06
5 0.88 0.67 0.12 0.08 0.06

5.2.4. Performance of the Number of Past Moments n

LSTM needs to consider information from past moments. Considering too few mo-
ments may result in too much focus on current information while ignoring historical
information, whereas considering information for excessively long times will introduce
more noise. Therefore, we tested the estimation accuracy of the network according to
variations in n. The results are shown in Table 6.

Table 6. MAE of Different Number of Past Moments n.

n 1 2 3 4 5 6 7

MAE 0.06 0.013 0.014 0.016 0.014 0.019 0.019

When n = 1, the LSTM degenerates to a single memory cell with a large MAE. When
n = 2, the LSTM considers the information of the most recent past moments and therefore
has the highest accuracy. However, because the network only considers information from
very few moments in the past, it is overly reliant on this information and tends to perform
poorly in real scenarios with high variability. When n = 3, the accuracy decreases again,
indicating the possibility of overfitting the network at this point, which confirms our
conclusion above. As n continues to increase, the MAE also slowly increases. We finally
take n = 5, which not only takes into account the past information more fully but also does
not introduce too much noise.

5.3. Decision Model Results Analysis
5.3.1. Necessity of Estimation Model

To demonstrate the importance of the estimation model, we selected the data rate
without using the estimation model and used the agent to read the data directly from the
environment. The results for when historical information is fully considered, for example,
when γ is 0.9 or 0.95, are shown in Figure 6. The network can sometimes learn the
correct strategy for choosing the data rate, but the variance is enormous and does not
ensure the system’s stability. Moreover, the performance is lower than the baseline even
after the network converges. Experiments also show that when γ is smaller than 0.9,
such as when γ is 0.5 or 0.7, the training results are a straight line, indicating that the
network cannot learn to select a data rate effectively. When γ is more significant than
0.95, for example, when γ is 0.99, the network fails to learn the correct strategy because it
overlooks historical information.
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Figure 6. The system does not converge when using decision models to process information from the
environment directly and make decisions.

This set of experiments demonstrates that the simple DRL framework is not sufficient
to extract useful information from complex states and make choices at the same time. The
need for the estimation model is thus confirmed.

5.3.2. Performance of the Forgetting Factor γ

In this part, we discuss the effect of different γ on the results and we conduct experi-
ments for the system performance when γ is 0.3, 0.5, 0.7, and 0.9. As shown in Figure 7,
the system performs better than the baseline method for different γ.
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Figure 7. System converges under different γ and throughput improves with the adoption of the
estimation model.

An extensive γ means paying more attention to historical information, while a small
γ means paying more attention to current information. The training curves show that
the convergence is faster when γ is smaller. This indicates that the introduction of the
estimation model reduces the difficulty of deciding for the agent and allows it to focus on
current information.

Based on the throughput in Table 7, which is also the reward in the DRL framework, it
can be seen that our proposed method improves 22.9% over the BER method and 3.13%
over the PER method. We will explore the reasons why performance exceeds the baseline
in Section 5.3.3.
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Table 7. Throughput of Different Methods.

Method Throughput

Baseline (BER) 96,316
Baseline (PER) 114,763

Proposed method 118,358

5.3.3. Performance According to Different SNRs

To explore the reason for the throughput improvement, we plotted the PER perfor-
mance of different methods at different SNRs, as shown in Figure 8. When the SNR is very
low, the PERs of all methods are high. When the SNR is high, the PERs of the different
methods are all 0 and, again, there is no difference.
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DRL
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Figure 8. Comparison of PER of different methods at different SNRs.

The “junction” of different encoding schemes, i.e., when the data rate needs to be
switched, represents the point at which our method can confer an improvement. To ver-
ify the strategy of the proposed method to switch between the adjacent coding schemes,
an additional AR4JA code with a code rate of 60% is included in this paper. We have
zoomed in on this region in the right half of the figure for ease of observation. The pro-
posed method switches to the following encoding scheme earlier, using a more significant
data rate to increase the total throughput. AMC is a trade-off between efficiency and
accuracy, and our solution improves total throughput by learning historical information for
accurate estimation.

6. Conclusions

In this paper, we proposed a weather-conscious AMC method for satellite-related UNC.
Firstly, the satellite-to-ground scenario was modeled and formulated into an MDP problem.
Then, the proposed framework was depicted, which contained the DL-based estimation
model and the DRL-based decision model. The estimation model was based on LSTM,
which remembered historical information and was responsible for acquiring information
from the environment and predicting satellite-to-ground channel states. The decision model
was designed based on the actor-critic network. The actor-network in the decision model
was responsible for selecting a proper coding method, and the critic network scored the
selection of the actor-network. Within our proposed method, the real-time global weather
and historical channel information were fully considered, and therefore, the accuracy of
channel estimations could be improved. The designed decision model can intelligently
switch coding schemes in advance, thus increasing the total throughput of satellite-to-
ground communications. Simulations were carried out by using the LSTM network and
actor-critic network to verify the performance of the proposed method. Results showed that
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our estimation model outperformed three existing ones, including SVR, linear soothing,
and exponential smoothing. It was also demonstrated that the proposed method improved
the throughput by 3.1% over the BER-based and PER-based look-up table method. This
work can be helpful to realize the internet connectivity service everywhere in the UNC.
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