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Abstract: During COVID-19, universities started to use mobile learning applications as one of the
solutions to support distance learning. The readiness of universities to apply new systems, such as
mobile learning applications, is considered one of the critical issues to ensure the system’s success.
Determining the most important aspects of readiness to use mobile learning is a key step to adopt
mobile learning in an effective way. To address this issue, this research aims to determine the
most important determinants influencing mobile learning readiness by employing the Technology
Acceptance Model (TAM). The Structural Equation Modelling (SEM) method was used to test the
hypotheses in the proposed model. The results showed that the relationship between mobile learning
readiness and awareness, IT infrastructure and top management support was positively significant.
In conclusion, the findings will be of value to decision makers and mobile learning developers in
universities to enhance the development of mobile learning applications. In addition, it may help
facilitate and promote the usage of mobile learning applications among users.

Keywords: distance learning; mobile learning applications; readiness; SEM; COVID-19

1. Introduction

During the COVID-19 pandemic, many universities around the world started to use
distance learning platforms, such as mobile learning platforms, Blackboard platform and
others [1]. Many universities around the world are attempting to develop e-learning and
mobile learning systems in their settings, in order to merge these educational systems
with the current traditional teaching method [1]. E-learning and mobile learning systems
have become critical in order to accomplish these objectives. It is critical for universities
to fully take advantage of e-learning to remain competitive in the globalized twenty-first
century [2–4]. The recent revolution in information and communication technology (ICT) has
resulted in a move from face-to-face learning to electronic learning. Throughout COVID-19,
on a global scale, this technology has helped universities to maintain the continuation of
the learning process [5]. It has also altered how students communicate with instructors
and interact with them. Because of this technological advancement, the learning process
has been transformed into e-learning systems and mobile learning applications, in order to
achieve sustainable education [6–8].

Electronics 2022, 11, 1259. https://doi.org/10.3390/electronics11081259 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11081259
https://doi.org/10.3390/electronics11081259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2215-2481
https://orcid.org/0000-0003-3160-6542
https://doi.org/10.3390/electronics11081259
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11081259?type=check_update&version=2


Electronics 2022, 11, 1259 2 of 14

The real implementation of mobile learning systems into Saudi universities can offer
some effective solutions for distance learning during the COVID-19 pandemic [9]. It can
help Saudi students to continue their learning process and offer them the autonomy to
learn, depending on their learning styles and attitudes [10–12]. In addition, online teaching
sessions through smartphones will assist them to interact with teachers anytime and any-
where during the COVID-19 pandemic. Mobile learning opened the scope for conducting
distance learning and online learning between students from their home; this tool will help
in decreasing the spread of coronavirus between them [13].

In fact, the application of mobile learning systems during the COVID-19 pandemic
for teaching and learning is considered an excellent choice, for both students and teachers.
Despite the above benefits of mobile learning, still, the widespread and effective application
of these mobile technologies in the teaching and learning process is very low among Saudi
students [14–16]. One of the main issues of usage of new technology in the learning and
teaching process is the acceptance of this technology among students [17]. To this end, this
study aims to answer the following research question:

What are the important determinants influencing mobile learning readiness during
COVID-19 among users?

2. Literature Review

According to the literature, the adoption of mobile learning applications across several
platforms, such as Android and IOS, can offer some effective solutions for students and
universities during the COVID-19 pandemic [13–15]. It can help students to continue
their learning process and offers them the autonomy to learn according to their own
learning styles and attitudes [16–19]. In addition, online mobile learning sessions will assist
them to interact with teachers anytime and anywhere during COVID-19. Mobile learning
applications have offered scope for students to undertake distance and online learning
from their homes and will help decrease the spread of coronavirus among them [20–22].

With an increasing interest in mobile learning in the higher education context, it is
important for universities to be aware of the importance of integrating mobile learning
applications for new-generation students, as well as the quality factors that can help them
to use these applications in effective ways [23–25]. The research on mobile learning in
higher education is still in the early stages [26–29], and there are a limited number of studies
that focus on the role of readiness factors on mobile learning development research and the
adoption of mobile learning [30–32]. It is important to equip designers and developers with
the necessary readiness factors to develop and implement mobile learning applications in
ways that enhance student learning and facilitate learning activities [33–35].

Several studies have been undertaken to explain the main drivers for the adoption
of mobile learning in different contexts [29–32]. According to previous studies [33–35],
which confirmed students’ acceptance of mobile learning, this acceptance is an essential
step in order to guarantee the full usage of this system. To achieve that, the main aspects
and factors of students’ adoption of mobile learning applications should be understood
effectively [36]. In addition, students’ needs and requirements should be determined by
mobile service providers and designers correctly from the beginning. To address this issue,
several studies have been conducted. For example, Ref. [37] proposed a model to examine
the students’ adoption of mobile learning applications in Jordan. The authors used the
TAM model, adding quality factors, including quality of content design, quality of learning
content, functionality, interface design and interactivity. The results indicated that quality
factors have a strong effect on students to adopt mobile learning applications. Ref. [38]
extended the TAM model to identify the determinants that promote the use of mobile
learning applications among students. Resistance to change and attachment have been
shown by empirical results to have an important influence on behavior regarding mobile
learning applications. Ref. [39] proposed a structure for M-learning acknowledgment,
dependent on integrating the Technology Acceptance Model (TAM) with the refreshed
DeLone and McLean’s model (DL&ML). The examination intended to research the impact
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of value components and individual variables on students’ fulfillment and expectation
to the utilization of the M-learning network. The outcomes presumed that quality com-
ponents identifying with framework quality, data quality, and administration quality are
fundamental measurements for guaranteeing understudies’ fulfillment and goal to the
utilization of the M-learning framework. A study conducted by [40] explored the key
factors that affect students’ acceptance of mobile learning. The study applied the Unified
Theory of Acceptance and Use Technology (UTAUT) model and revealed that perceived
data quality, similarity, trust, awareness, accessibility of assets, self-adequacy, and security
are the principal sparks of mobile learning acceptance among students.

In fact, the adoption of mobile learning applications in universities for teaching and
learning has been considered an excellent choice, for both students and teachers. Despite the
benefits of mobile learning listed, its widespread and effective application in the teaching
and learning process remains very low among students [36–38]. One of the main issues in
relation to the usage of new technology in the learning and teaching process is technological
readiness among students [39]. Therefore, this research aims to fill the following research
gap in the literature:

What are the important determinants influencing mobile learning readiness during
COVID-19 among users?

3. The Proposed Model
3.1. TAM Model

The proposed model in this study was constructed by employing some constructs from
the TAM model, adding four external factors to determine the main drivers influencing
mobile learning readiness. According to the literature (Refs. [40–43]), the TAM model is one
of the most suitable models to measure readiness to new technologies. This model includes
five main factors, including actual use (AU), intention to use (IU), attitude (AT), ease of
use (EUS) and perceived usefulness (PUS), and was developed by Davis [44–46]. These
factors are considered as predictors of mobile learning readiness according to previous
studies [46–48]. Figure 1 presents the pictorial presentation of the TAM model constructs.
Based on the TAM model, actual use can be determined directly based on one construct,
namely, intention to use. In addition, actual use can be determined indirectly based on
three constructs, namely, attitude, ease of use and perceived usefulness by the moderation
of intention to use. Based on the context of our study, the TAM model hypothesized that
the three key constructs for actual use of mobile learning are the students’ perceptions of
ease of use, their perceptions on its usefulness and their intention to use.

Figure 1. TAM model.
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In the mobile learning context, we used the two main constructs of the TAM model as
predictors of acceptance and usage of mobile learning, namely, perceived ease of use (EUS)
and perceived usefulness (PUS). EUS can be defined as the degree to which users perceive
that using the m-learning system will be free of effort. PUS refers to the extent to which
users perceive that using the m-learning system will improve their learning performance.
In the TAM model, EUS and PUS affect attitudes toward the use (AT) of mobile learning.
PUS and AT affect IU, and IU affects the actual use of the mobile learning system. Based on
the above, we formulated the following hypotheses in our proposed model:

Hypothesis 1 (H1). Ease of use positively affects mobile learning acceptance among students.

Hypothesis 2 (H2). Perceived usefulness positively affects mobile learning acceptance among students.

3.2. External Factors

Information Technology Infrastructure (ITI) refers to the combination of hardware,
software communication networks and software applications that should be offered by
universities to enable students to access their online learning systems. Providing adequate
information technology infrastructure is necessary for introducing new technology, in-
cluding mobile learning applications. Otherwise, insufficient resources of information
technology and infrastructure will impede the acceptance and usage of any new technol-
ogy [49]. Previous studies [50–53] indicated that Information Technology Infrastructure is
one of the necessary components of mobile learning acceptance. As a result, IT infrastruc-
ture in Saudi universities requires extensive analysis. Based on that, this study proposes
the following:

Hypothesis 3 (H3). IT infrastructure positively affects mobile learning acceptance among students.

According to [54], support from the level of university management is associated with
their willingness to provide all the necessary resources to ensure the development success
of the mobile learning project. In other words, the positive attitude of top management
towards the mobile learning project is a real indicator of a university to support mobile
learning adoption. Previous studies [55,56] confirmed that university management support
is vital to the development of mobile learning system adoption, which reflects positively on
student actual use and acceptance of mobile learning. Based on that, this study proposes
the following:

Hypothesis 4 (H4). University management support positively affects mobile learning acceptance
among students.

Universities should be prepared for any emergency conditions, such as the COVID-19
pandemic, and pursue alternative strategies for implementing distance learning, includ-
ing mobile learning application adoption. Based on that, university culture issues can
significantly affect the adoption of mobile learning systems. According to [57], the public
culture development is qualitatively distinct from physical infrastructure development.
The COVID-19 pandemic led to cultural shifts towards distance learning technologies, as
well as possible resistance from students to use these new technologies. Thus, university
culture could play a crucial role in how universities adopt mobile learning systems. In Infor-
mation systems, researchers found university culture is predictive of technology adoption,
including mobile learning adoption [58]. Based on that, this study proposes the following:

Hypothesis 5 (H5). University culture positively affects mobile learning acceptance among students.
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Student awareness about new technology, such as mobile learning applications, is still
limited [58]. Therefore, universities should increase the awareness among their students,
especially those who lack adequate and essential technical information. According to [59],
the awareness factor had a strong impact on the mobile learning acceptance among users.
Moreover, several researchers have indicated that one of the main issues that should be
addressed in order to increase the involvement and use of mobile learning applications
is inadequate awareness of the technology’s existence [60]. Prior studies have shown
that awareness is crucial in adopting mobile learning systems. As a result, the following
hypothesis was proposed:

Hypothesis 6 (H6). Awareness positively affects mobile learning acceptance among students.

4. Methodology

In this research, for evaluating the proposed model, SEM method was performed in or-
der to determine the main drivers influencing readiness to use mobile learning applications.
In mobile learning acceptance context, several previous studies used the SEM method for
examining students’ acceptance [61]. These studies indicated that SEM method is capable
of discovering relations among variables effectively. In addition, it is an advantageous
data analysis method and tests the structural model in technology acceptance models [62].
Based on that, we used the SEM method to test the hypotheses in the proposed model for
our study.

In order to achieve the research objective, we have conducted four main steps as
shown in Figure 2. In the first step, we analyzed the related previous studies on mobile
learning in order to determine the importance role of the factors in the proposed model,
which act as theoretical foundation of our proposed model in this study. In the second
step, we established the research model based on TAM model with four external factors.
In the third step, we used the quantitative method in order to collect the data. Then, we
conducted a pilot study in order to check the reliability and validity of the research model
measurements in step four. Finally, in step five, we tested the proposed model using SEM
technique. In the sections bellow we will present more details about each step in the
research methodology. Figure 3 presents the proposed model.

Figure 2. Research Method.
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Figure 3. The proposed model for explaining the readiness of mobile learning.

4.1. Data Collection and Participants

The participants were 600 students enrolled in the Information System Analysis
and Design course at undergraduate level and Advanced Analysis and Design course at
postgraduate level from four universities in Saudi Arabia (see Table 1). The courses, offered
through the College of Information Technology, were taught online via the Blackboard
system. The majority of respondents were in their sophomore or junior year. There were
many more female students (69.2%, n = 360) than male students (30.8%, n = 160). Most
were aged between 21 and 25 (78.8%, n = 410). About 88.4% reported owning an iPhone,
and 92.3% had the experience of using an iPhone in the learning process while attending
an online class during COVID-19.

Table 1. Analysis of Demographic Information.

Characteristic Sample (n) Frequency (%)

Gender
Male 160 30.8%

Female 360 69.2%

Age

18–20 30 5.7%

21–25 410 78.8%

Over 25 80 15.3%

Level
Undergraduate 395 75.9%

Postgraduate 125 24.0%

Mobile Owner
Android 60 11.6%

iPhone 460 88.4%

Prior experience with Mobile Learning App
Yes 480 92.3%

No 40 7.7%

Universities KFU 215 41.3%

KSU 105 20.1%

KKU 110 21.1%

DU 90 17.3%

Total Total 520 100%
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4.2. Population of the Study

This study is based on an empirical examination of Saudi universities that are engaged
in distance learning adoption activities such as mobile learning system. The study collected
the data from four universities in Saudi Arabia namely King Faisal University (KFU),
King Saud University (KSU), King Khalid University (KKU) and Al-Dammam university
(DU). The study gathered data from 520 respondents from the four universities as follows
( KFU = 240), (KSU = 130), (KKU = 110) and (DU = 100). For collecting the data from
respondents, we distributed the online questionnaire for all respondents during online
classes with assistance from their instructors.

4.3. Research Measurements

To ensure the items in the online questionnaire were measured in a valid and reliable
manner, validated scales from prior studies were used for all constructs in our study.
For instance, the items for IT infrastructure construct are adopted from [3–5], items for
university management support and university culture from [7–9], items for awareness
from a study conducted by [10]. Items for perceived usefulness and ease of use from [12].
Finally, the actual use of mobile learning is measured using items from [13], which assess
the extent to which universities have adopted mobile learning systems. All variables were
quantified using a scale with poles ranging from strongly disagree (1) to strongly agree (5).

4.4. Measurement Items Pre-Test

After preparing initial measurement items based on the hypotheses, it was essential to
ensure survey questions adequately captured desired phenomena. Therefore, an expert
panel was convened comprising IT professionals, researchers in the fields of IT and faculty
members. The panel was briefed firstly with the aim of the study and secondly, were
provided with the questionnaire and asked if the survey questions were appropriate to ex-
plore the aim of the study. Pre-testing helped the researchers gauge the clarity of questions
to understand whether the instrument captured the desired phenomena and to verify if
any important variables were omitted. Feedback served as a basis for correcting, refining,
and enhancing the survey questionnaire. Changes were made and several iterations were
conducted by panel members.

4.5. Pilot Study

A pilot study was performed to detect any weaknesses in the survey instrument.
The purpose of the pilot study was to test its wording and the sequence and layout of
the questions. In this study, 38 participants (29 males and 9 females) were invited to
undertake the pilot study. They were given the questionnaires in English. However, some
respondents found difficulty in answering the survey questions. They identified problems
with unfamiliarity with the survey process, understanding the wording of the questionnaire
and had limited understanding of the concepts of top management support. Therefore,
further changes were conducted with all 29 participants.

5. Data Analysis and Results
5.1. Reliability Analysis

In this study, reliability analysis was conducted using Cronbach’s alpha on the data
collected, as a step for measuring the internal consistency of each construct. Table 2 presents
the values of Cronbach’s alpha for all constructs. The results indicated that all values were
higher than 0.70, which is acceptable according to [63]. This means that the reliability
values for all constructs were accepted for further analysis.
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Table 2. Reliability and convergent validity analysis.

Constructs Cronbach’s Alpha AVE

Ease of use 0.792 0.937
Perceived Usefulness 0.873 0.918

University management support 0.821 0.829
Awareness 0.890 0.811

University culture 0.905 0.850
IT infrastructure 0.897 0.882

Readiness 0.852 0.912

5.2. Convergent and Discriminant Validity Analysis

To conduct the validity analysis, convergent and discriminant validity were performed.
First, convergent validity analysis was conducted through applying the average variance
extracted (AVE). Table 2 shows the findings of AVE analysis, which indicate that all values
were higher than (>0.5); this means that these values were acceptable according to [64].
Based on that, all values of AVE for all constructs were correct for the next step of analysis.

Second, discriminant validity analysis was performed by applying the square root
of AVE values for all variables. Based on the results in Table 3, AVE values were greater
than the threshold of correlation values between two variables, which indicates that these
values were acceptable, as mentioned by [65].

Table 3. Discriminant validity analysis.

EUS UMS UC AW ITI PUS RA

EUS 0.821
UMS 0.797 0.863
UC 0.630 0.758 0.990
AW 0.646 0.684 0.545 0.775
ITI 0.759 0.769 0.563 0.689 0.887

PUS 0.769 0.792 0.643 0.707 0.790 0.743
RA 0.530 0.623 0.506 0.643 0.527 0.614 0.765

5.3. Structural Model Analysis Using SEM

This research aims to answer the following research question: what are the important
determinants influencing mobile learning readiness during COVID-19 among users? To
achieve this objective, we used the SEM technique in order to identify the most important
determinants of readiness for mobile learning applications. SEM results are discussed below.

According to the findings of the SEM modelling test, as shown in Table 4, all six
pro-posed hypotheses in the research model were accepted. The findings revealed that
ease of use and perceived usefulness had significant influence on the actual use of mobile
learning (β-value = 0.421, p < 0.001) and (β-value = 0.417, p < 0.001), respectively. Thus,
the results indicated that hypotheses H1 and H2 were supported. The study indicated that
the IT infrastructure (ITI) factor influenced the actual use of mobile learning positively
(β-value = 0.399, p < 0.001), with this result supporting hypothesis H3. The findings also
indicated that the factor of university management support had a significant influence
on the actual use of mobile learning (β-value = 0.331, p < 0.001), this result means that
H4 was accepted. In addition, H5 was also supported according to the current study
findings, which indicated that university culture had a positive influence on the actual use
of mobile learning (β-value = −0.371, p < 0.001); this result means that H5 was accepted.
The results also indicated that awareness had a significant influence on the actual use of
mobile learning (β-value = 0.405, p < 0.001). Thus, the results indicated that hypothesis H6
was supported.
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Table 4. Results of Structural Equation Modelling analysis.

Hypotheses Path Impact β p-Values SE t-Value Results

H1 EUS→RA Positive (+) 0.421 0.006 0.051 4.733 Supported

H2 PUS→RA Positive (+) 0.417 0.019 0.042 4.137 Supported

H3 ITI→RA Positive (+) 0.399 0.001 0.075 1.331 Supported

H4 UMS→RA Positive (+) 0.331 0.005 0.044 3.471 Supported

H5 UC→RA Positive (+) 0.371 0.009 0.091 3.114 Supported

H6 AW→RA Positive (+) 0.405 0.022 0.06687 5.108 Supported

6. Discussion

During COVID-19, universities started to use mobile learning applications as one
of the solutions to support distance learning. The readiness of universities to apply new
systems, such as mobile learning applications, is considered one of the critical issues to
ensure the system’s success. Determining the most important aspects of readiness to use
mobile learning is a key step to adopt mobile learning in an effective way. To address
this issue, this research aimed to determine the most important determinants influencing
mobile learning readiness by employing the Technology Acceptance Model (TAM). The
SEM method was used to test the hypotheses in the proposed model.

Our findings indicated that the TAM model constructs with four external factors,
namely IT infrastructure, university management support, university culture, awareness,
ease of use and perceived usefulness, have a primary role in increasing the acceptance
of mobile learning in Saudi universities. The findings indicated that all factors have a
significant influence on mobile learning acceptance among students.

Based on the results, the IT infrastructure factor influenced the actual use of mobile
learning positively. This is because IT infrastructure enables students to access information,
increases the utility of learning activities, increases the interactivity with instructors and
improves the learning and teaching process efficiency. On the other hand, the IT infras-
tructure in Saudi Arabia is very strong, with high internet penetration and high usage
among students. Based on the findings, the current study concluded that providing high
specification IT infrastructure would lead to the greater acceptance of mobile learning
among students. This finding is consistent with prior studies [66,67].

In addition, the findings indicated that the factor of university management support
had a significant influence on the actual use of mobile learning among students in Saudi
universities. In other words, universities should prioritize top management support when
deciding to implement new technologies, such as mobile learning systems, to ensure the
development process of mobile learning systems is successful, from the first step to the
end. University management support includes top managers’ pledges and commitments
to embrace mobile learning systems, provide the necessary resources, financial support
and ensure to offer high-quality systems for student usage of mobile learning systems
effectively. Saudi universities have a high level of management capabilities that could help
in implementing mobile learning systems successfully. Our findings are consistent with
prior studies [66,67]. The current study concluded that university management support is
one of the most significant factors influencing the acceptance of mobile learning among
students in Saudi universities.
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Our findings indicated that university culture had a negative influence on the actual
use of mobile learning among students in Saudi universities. This implies that incorrect uni-
versity culture could impede the implementation of mobile learning in Saudi universities.
This study found that university culture had a negative impact on students’ willingness to ac-
cept mobile learning. The main reason for this result is the cultural differences between students
and, thus, may affect their acceptance. For example, the COVID-19 pandemic led to cultural
shifts towards distance learning technologies, as well as possible resistance from students to
use these new technologies. Based on the findings, university culture could play a crucial role
in how universities adopt mobile learning systems. Previous studies found that university
culture is predictive of technology adoption, including mobile learning adoption [64–66].

Furthermore, our findings indicated that there is significant and positive correlation
between awareness and actual use of mobile learning. The study found that the majority
of Saudi students are unfamiliar with mobile applications and how to use them. This
study found that when the percentage of awareness among students on how to use mobile
learning systems is very low, this will lead to a decrease in the acceptance of mobile learning
systems. This result is consistent with prior research by [66,67].

Finally, the study findings found that both the factors ease of use and perceived
usefulness had significant and positive correlation with actual use of mobile learning. This
indicates that when students find the mobile learning system user-friendly, simple, ease to
use, clear and useful for the learning process, it could encourage them to use it effectively;
thus, this will reflect on their opinion to accept the mobile learning system. Based on this
result, this study recommends designers and developers to take those two factors into
consideration in the development of mobile learning systems. Previous studies [68–70]
confirmed that ease of use and usefulness are among the primary dimensions that motivate
users to accept any type of educational technologies. Our findings are consistent with prior
studies [66,67].

6.1. Research Implications

This study has both theoretical and practical implications. Focusing on the theoretical
contribution first, this study contributes to the body of knowledge on mobile learning
acceptance by providing a new model that captures the most significant drivers of mobile
learning acceptance among students in public Saudi universities. Second, this study clari-
fies that important factors, such as IT infrastructure, awareness, university management
support and university culture, play a key role in increasing the acceptance of mobile
learning systems during the COVID-19-pandemic, and this will ensure the continuation
of the learning process through using this distance learning tool. Third, this study con-
firms that the TAM model’s suitability for analyzing the factors influencing the students’
acceptance of mobile learning. In terms of the practical contribution, the findings of this
study can help Saudi universities in better understanding the process of mobile learning
project implementation. The universities should consider important factors related to IT
infrastructure, awareness, university management support and university culture, in order
to improve the acceptance of mobile learning systems among students. Finally, the study’s
findings will benefit decision makers, designers and developers in universities to ensure that
students participate actively in using mobile learning systems during the COVID-19 pandemic.

6.2. Limitations of the Study

Despite this work presenting several interesting contributions, several limitations
should be covered in the future work. First, further investigation into the drivers of mobile
learning acceptance among students is needed. Second, future work could explore the
teachers’ perceptions and their needs to adopt mobile learning systems. Finally, there is a
need to investigate other important factors related to system quality factors and usability
factors and their effect on students’ acceptance of mobile learning systems.
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7. Conclusions and Future Work

This research aimed to explore the important determinants influencing mobile learning
readiness during COVID-19 among users. To achieve this objective, the SEM technique
was used. Therefore, this study developed six direct hypotheses using the TAM model
to explain the main drivers influencing mobile learning acceptance. The SEM method
was used to test the hypotheses in the proposed model. Data were collected via online
questionnaires from 520 undergraduate and postgraduate students, at four universities
in Saudi Arabia. PLS-SEM was used to analyze the data. The findings indicated that the
TAM model constructs with four external factors, namely IT infrastructure, university
management support, university culture, awareness, ease of use and perceived usefulness,
have a primary role in increasing the acceptance of mobile learning in Saudi universities.
The findings indicated that all factors have a significant influence on mobile learning
acceptance among students. This research contributes to the body of knowledge and
mobile learning acceptance practices. Likewise, it may help facilitate and promote the
acceptance of mobile learning among students in Saudi universities.
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